L7 An LVErvICwW Oof the Arcnitecturce

R*: AN OVERVIEW OF THE ARCHITECTURE

R. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng,
R. Obermarck, P. Selinger, A. Walker, P. Wilms and R. Yost

IBM Research, Almaden Research Center, Ca. USA.

Abstract

R* is an experimental distributed database system being developed at IBM Research to study the issues
and problems of distributed data management. R* consists of a confederation of voluntarily co-operating
sites, each supporting the relational model of data and communicating via IBM’s CICS. A key feature of
the architecture is to maintain the autonomy of each site. To achieve maximum site autonomy SQL
statements are compiled, data objects are named and catalogued, and deadlock detection and recovery are
all handled in a distributed manner. The R* architecture, including transaction management, commit
processing, deadlock detection, system recovery, object naming, catalog management, and authorization
checking is described. Some examples of the additions and changes to the SQL language needed to support
distributed function are given.

S3&7

330

CHAPTER 4 / Distributed Database Systems

ent system, DDBMS,‘tof suppl
of users potentially able to share a]] the data at all the sites,

With these goals in mind, we have designed a DDB

It is a follow-on project from System R 9,0,
1o allow for new functions but existing SQL, p

skeletal architecture of R* is described by following
processing in R* is similar 1o the query Pprocessing i

® Environment and Data Definitions
Object Naming
Distributed Catalogs |
Transaction Management and Commit Protocols
- Transaction Number
7 Preparation
= Name Resolution
- Authorization Chiecking o
= Access Path Selection and Optimization -
® Query Execution =
- Concurrency = v
- = Deadlock Detection and. Resolution
SQL Additions and: Changes

R* is partially implemented (see Status section 9),

R*: An Overview of the Architecture

2. ENVIRONMENT & DATA DEFINITIONS FOR R*

R* consists of several database sites that communicate via CICS, an IBM software product®, as shown
in Figure 1. CICS was chosen as the communication medium to minimize our prototyping efforts so that
we could concentrate on distributed database, DDB, issues. Any network configuration and interconnection
topology allowed by CICS can be used in R* CICS communications is used merely as a transport
medium. R* also considers the communications medium to be unreliable, ie., message delivery.is not
guaranteed, however when messages are delivered to the database software they are assumed to be delivered
intact in order and without duplication. R* runs in a CICS address space, and CICS handles terminal
1/O, program and task management. Note that sites in R* would typically be physically separate computer
systems, but sites need to be only logically distinct, not physically distinct, especially for initial development
purposes (there are already enough problems using one machine for debugging complex software)!

Data in R* is stored in tables (relations) that may be dispersed, replicated or partitioned. Combinations
of these distributions are supported also; for example partitioned data may be replicated. Dispersed data
means that tables T1,....Tn are uniquely stored at the various sites S1,.....8k; e.g., T1,T2 at S1; T3 at S2
etc. Replicated data means that copies of a table exist and are guaranteed to be identical at all times. All
copies are updated synchronously, using a two-phase commit protocol. Partitioned data is logically one
table, part of which is stored at one site, and another part(s) at another site(s). In horizontal partitioning
some rows (tuples) are stored at one site, some at another site according to some disjoint separation criteria
based on column values (e.g. store values 1 to 100 in site 1 and all the rest in site 2). In vertical partitioning,
some columns are stored at one site, some at another, according to some column scparation criteria. The
vertical fragmentation must be lossless so that the original relation can be created from the vertical
partitions(®) and therefore all partitions must have a set of common columns that determine the values of

all columns in the complete relation, or a virtual column created artificially by the DDBMS to enable a_

- one-to-one match of the fragmented tuples during reconstruction. Partitioned data can also be replicated.
The end-user of the database need not be aware of the data distribution for query execution or for
application programming. Data consistency, reassembly of partitions and access of remote data is performed
by the DDBMS itself and is transparent to the end-user.

The SIRIUS/DELTA DDBMS also allows partitioned and replicated data forms('9). The Polypheme
prototype went further and allowed for heterogeneous database systems in its design. The technique was
for all systems to employ a standard relational form for communications to other sites, and a mapping to
the internal form at each site () CICS supports distributed data processing through function shipping using
the Inter-Systems Communications feature®. Also using function shipping, TANDEM systems support
distributed data, with an emphasis on availability, but few technical papers exist on their systems(34),

In R*, some tables can be snapshots of other tables(. Snapshot data is a copy of a relation(s) in which
the data is consistent but not necessarily up-to-date. Snapshots are read-only and are intended to provide

a static copy of a database (e.g. Friday’s sales figures). They are not updated when the base relation is -

updated. They may however be periodically refreshed by recopying the data from the base relations (e.g:
every Friday at 6 p.m.). Programs that only need snapshot data might run more efficiently from snapshots
than from current relations. For example relations that are locally stored snapshots derived from a remote
operational database would allow local programs to run much faster from the snapshots than from the
operational data. Availability is increased also for transactions that use snapshot data.

331

—

332 CHAPTER 4 / Distributed Database Systems

| LOCAL DATA LOCAL DATA
T2 T7
R*
- CICs
CICSl——~——————-CICS CICs
R* | R¥* R*
LOCAL DATA ! | LOCAL DATA | LOCAL DATA
T1 TS5 T3
T3 : Té6 T4 (LOoC=NY)
T4 (LoC=cA)

T1, T2, TS5, T6, T7 . Dispersed Data
3 : Replicated Data

T4 Partitioned Data (by tuples with LOC=CA or LOC=NY)

Figure 1. R* Distributed Database Configuratjon.

: The BIRTH. SITE is the site in Whlch the Ob]';}"':{'

‘names and synonym mappmg“tables for each u

R*: An Overview of the Architecture

3. OBJECT NAMING

The narmng problem in d15tnbuted systems is to allow data sharmg but wlthout undue restnctlons”on an

We solve the problem by mappmg end-user names, whrch we call “print names”, to mtemal System Wide
Names, ’SWN" An SWN has thc form

USER @ USER_ SITE OBJECT NAME e BIRTH SITE

unique | outside of the system, .

example if BRUCE logs on in SAN_JOSE and accesscs a table he calls T ‘which was locally created and
storedeanJose,thentthWN TR TR e

BRUCE @ SAN_JOSE.T @ SAN_JOSE

This mapping mechanism allows different end-users to reference either the same object with different print
names or different objects with the same print names. Objects may be stored and moved without impacting
user code (see catalogs in section'4) and this location transparency mechamsm perrmts site autonomy A
more complete drscussron can be found m(22) :

t 4 DISTRIBUTED CATALOGS

In the SDD-1 systcm(”) 28, the catalog is logwa]ly a smgle table, whlch can be ﬁ'agmented and rephmted
. This allows catalog entries to be replicated and distributed: among the' data module sites. However, this

also implies that local objects may have their catalog entries at a remote site and that data: definition
operations may not be totally local. SDD-1 does cache catalog entries to aid performance but this also

~ adds overhead for updating purposes. A distributed version of INGRES(Y drstmguashes between local

333

334

CHAPTER 4 / Distributed Database Systems

relations (accessible from a single site) and global relations (accessible from all sites). The name of every
global relation is stored at every site. Creation of a global relation involves broadcasting its name (and
location) to all sites of the network, but cached catalog entries are supported. Thus both SDD-1 and
INGRES implement a global catalog and therefore restrict site autonomy and complicate system growth.
For a large network any operation requiring unanimous participation will create difficulties, and may
require complex recovery mechanisms.

R* uses a distributed catalog architecture. Catalogs at each site keep and maintain information about
objects in the database, including replicas or fragments, stored at that site. In addition the catalog at the
birth site of an object keeps information indicating where the object is currently stored and this entry is
updated if an object is moved. Cataloging of objects is done in this totally distributed manner to preserve
site autonomy. An object can be located by the system from its SWN and no centralization is necessary.

For performance reasons, a catalog entry can be cached at another site so that a reference to it can be as
efficient as a local reference e.g., for compiling (see section 6). A cached entry may become out-of-date if
another transaction has changed the structure of or the access paths to the object after the cached entry
is made; this fact is discovered during a later processing step and then the cached entry is updated from
the correct catalog entry and the initial processing must be restarted. This discovery is made because
entries have version numbers which are checked during subsequent processing against version numbers
store in the real catalog entries to determine if the cached entry used at an earlier stage was valid. Restarting
in this way is not expected to occur very often because catalog entries are relatively static.

The catalog entry for an object includes the object SWN, type and format, the access paths available, a
mapping in the case of a view to lower level objects, and various statistics that assist query optimization.
Each entry is identified by the SWN of an object. To find an object’s catalog entry, first the local catalog,
(plus the local cache), then the birth-site catalog and then the site indicated by the birth-site catalog are
checked in that order, stopping when the catalog entry is found. This gives the best efficiency together

with site autonomy.

5. TRANSACTION MANAGEMENT AND COMMIT PROTOCOL

5.1. Transaction Number

The DDBMS must support the notion of a transaction. A transaction is a recoverable sequence of
database actions that either commits or aborts. If the transaction commits, all of its changes to the database
take effect, but if the transaction aborts, none of its actions have any effect upon the database state. In
SDD-1 and in INGRES each statement is a transaction whereas in System R one can define a transaction
to be any number of SQL statements. :

R*: An Overview of the Arciitectu

A transaction starts at the site where it is entered. Subsequently agents may be created at other sites to
do work on behalf of the transaction. Both synchronous and asynchronous execution can be performed
to take advantage of parallelism or pipelining during the compilation and execution of the transaction.

Any request to the DDBMS is given a transaction number that is made up from the site name and a
sequence number (local time of day may be better) Each site is unique and the sequence is increased for
each new transaction. Therefore the transaction number is both unique and ordered in the R* network.
Uniqueness is necessary for identification purposcs, for acquiring resources, breaking deadlocks etc. For
example if a transaction starts at site A, sends work to site B, which in turn sends work to site A then it
is necessary for A to know that both pieces of work are on behalf of the same transaction so that locks
on data objects can be shared.If such locks could not be shared a deadlock would occur and make
processing the query impossible. Ordering is used to provide a means of knowing which transaction to
abort in the case of 2 deadlock between different transactions. R* aborts the youngest, largest numbered,
transaction. '

5.2. Transaction Commit Protocol

Whenever a transaction’s actions involve more that one database site, the DDBMS must take special care
in order to insure that the transaction termination is uniform: either all of the sites commit or all sites
abort the effects of the transaction.

The so called “two phase” commit protocolf-’),(“),m), (29 is used in order to insure uniform transaction
commitment or abortion. The two phase commit protocol allows multiple sites to coordinate transaction
commit in such a way that all participating sites come to the same conclusion despite site and communication
failures. There arc many variations of the two phase commit protocol. In all variations there is one site,
called the coordinator, which makes the commit or abort decision after all the other sites involved in the
transaction are known to be recoverably prepared to commit or abort, and all the other sites are awaiting
the coordinator’s decision. '

When the non-coordinator sites are prepared to commit and awaiting the coordinator’s decision, they are
not allowed to unilaterally abandon or commit the transaction. This has the effect of sequestering the
transaction’s TesOUrces, making them unavailable until the coordinator’s decision is received. Before entering
the prepared state, however, any site can unilaterally abort its portion of a transaction. The rest of the
sites will also abort eventually. While a site is prepared to commit, local control (autonomy) over the
resources held by the transaction is surrendered to the commit coordinator.

Some variations of the two phase commit protocol sequester resources longer than other variations.
Rosenkrantz, Stearns, and Lewis(® require all sites other than the single active site of the transaction to
be prepared at all times. The linear commit protocols described in(1® and@ have a commit phase with

duration proportional to the number of sites involved.

R* actually uses a presumed—to-commit protocol. The number of messages required in the usual two
phase commit protocol is 4(N-1), where N is the number of sites involved in the transaction, but by
assuming the commit succeeds the number of messages can be reduced to 3(N-1). If a failure requiring
transaction abort occurs, then all 4(N-1) messages are needed. The improvement is obtained by removing

336 CHAPTER 4 / Distributed Database Systems

This presumed-to-commit protocol minimizes the duration of the
notably those Proposed for SDD.}a %), provide mechanisms for circumventing
dinator failure, by sending extra messages (to nominate a backup coordina

phase in the nommal case, It does ot appear possible to completely elimj

6. QUERY PREPARATION

6.1. Name Resolution

When an SQL statement i first seen by R*, it is parsed and then under,
SQL print names are resolved into SWN. en it j

authenticate op 5 site-to-site basis when responding to a request
validated its owp users. If this breaks down the damage is limited
the users at that sjte,

remote, and that person can pass on access rights to other users if the original grant permitted subsequent
grants (included the grant option). This is the same as in System R (149, For site to site authentication in
networks see encryption techniques(29,(16),

6.3. Compilation and Plan Generation

Just as with programming languages, it is possible to compile rather than interpret the database language.
Compilation offloads from execution time to compile time much of the overhead of operations needed to
set up the data request and thus improves the performance of repetitively executed data access requests.

For conventional programming languages, compilation is a binding process in which high level constructs
are mapped to a low level instruction set, which is fixed by the machine on which the compiled code is
to be run. Analogously, in a database system access requests expressed in a very high-level database
language, such as SQL, can also be compiled into an access program which uses low level objects (6. This
compilation includes a binding process in which the requests are bound to required authorizations, data
objects, and the paths to access them. However, one of the primary differences between the compilation
of programs written in conventional programming languages and the compilation of programs written in
database languages lies in the fact that the latter depends on objects that are subject to change. Between
compile time and execution time, a relation may be deleted or moved, an access path may be dropped,
or a required privilege may be revoked. Recompilation or invalidation is necessary when such items change.

In 2 DDBMS data objects accessed and access paths used may reside at a remote site and the question
as to where binding should be done arises.

The approaches can be grouped into three classes:

e All binding for every request can be done at a chosen site;
* All binding can be done at the site where the request originates;
® Binding can be done in a distributed way,

at the sites where data objects are accessed.

The first approach would not function well because it is a centralized approach and suffers from poor
efficiency and lack of resiliency to failure. It would require a centralized catalog and therefore an excessive
amount of communications in the network. The advantages offered by a DDBMS would be mostly lost
if a centralized compiler had to be used for all compilations; it would become a system bottleneck. Site
autonomy would be lost in this approach of course. :

The second approach is not good either. First, to preserve each site’s autonomy, it should not be necessary
to get agreement from all sites at which requests have been compiled before another site can change an
access path for its locally stored relation. Secondly, the compiling site should not need to remember and
record the physical details of data access paths at other sites since individual databases may be changed,
for example by adding a new access path. Thus if a program depends on a relation that has been changed
at a remote site we do not want to do a global recompilation for the whole program if we can avoid it
by doing a local recompilation at the remote site for part of the program. Also, to protect data in a high
level DDBMS, a user at a certain site may choose only to grant access to a view which is an abstraction

338

CHAPTER 4 / Distributed Database Systems

of underlying physical data objects, rather than granting access to the objects themselves, which means
that the entire compilation and binding cannot be done at the originating site. '

The third approach overcomes the drawbacks mentioned above and offers additional advantages. The
master site can decide inter-site issues and perform high-level binding and the local sites can decide local
issues and do a lower-level binding (e.g. for access path selection). When compilation is distributed and
the portion of program to access and manipulate a site’s data objects is generated at the same site, it
follows naturally that if recompilation has to be done due to changes of local objects, it can be done on
a local basis. Thus distributed compilation allows for local control in apprentice sites, which preserves site
autonomy. However, global optimality becomes more difficult to obtain after local changes have occurred
and it is desirable to be able to do a complete global recompilation, optionally, to improve execution
efficiency in some cases. Other advantages of distributed compilation are that failure resiliency is also
improved by limiting the scope of actions to a local site when possible. Also different versions or releases
of system code could exist at different sites and it would still work correctly.

The INGRES DDBMS (3 seems to be moving towards a compilation approach of preparing queries for
execution but most distributed systems still use interpretive methods. R*, using the third approach above,
performs distributed compilation),20. In R* the site where the SQL query enters becomes the master
site and to compile a request for data at mutiple sites, the overall global plan for executing the program
has to be created at the master and then communicated to the apprentices. The difficulty in the design
of distributed compilation arises because we want to compile programs to achieve global optimality for
execution but retain local site autonomy. The master site may not have complete and up-to-date knowledge
of the data objects and access paths available at the apprentice sites, therefore it may make poor decisions
and generate very inefficient code if it did the complete compilation. Incorrect decisions can be detected
by an apprentice site by checking the version number of the information on which the decision was based,
but the extra overhead of correct but distributed compilation is the cost incurred for site autonomy and
data protection. The overhead in this case is to redo the entire compilation. The solution is that the
master chooses the execution plan, join order, which sites do work etc. and apprentices choose how to
access local data.

The global plan is a structural skeleton of the access strategies and is generated at the master site using
the information available at the master site. If the master has insufficient catalog information about data
objects at other sites, it can request the necessary information and cache it for later use. The global plan
specifies the invocation sequence of the participating sites and the order of parameters. If the SQL
statement requires a join, the global plan would also specify the join order and join methods.

The global plan is a high level representation of the decisions made by the master site with regard to the
execution of the SQL statement. The optimal choice of access paths is discussed later in section 6.4. A
global plan should be globally optimal if the information used in access path selection is correct. In
addition to the global plan, the compiler at the master site also generates a set of local execution strategies
for the local data objects accessed. This includes, for example, which index to use and whether sorting is
done. The selection of the global plan and the local execution strategies is termed the “path selection” phase.

The global plan together with the SQL statement is sent to those remote databases that contain the data
needed for this SQL statement. This processing phase is termed the “plan distribution® phase. In the
global plan, references to data objects are made in terms of their relative positions in the SQL statement.
The use of the SQL statement for the expression of the action needed, together with the fact that the
global plan is a high level representation, solves the problem of version incompatibility of system code
among DBMS'’s at different sites.

R*: An Overview of the Architecture

At the remote apprentice sites the first task performed is to check the validity of the catalog information
that the master used. If an out-dated version was used, an error message is returned to the master site
and the global plan is re-generated by the master using updated information. Compilation in an apprentice
site follows the same pattern as at a master site except that no name resolution is needed. The decisions
made by the master site concerning the interfaces among sites to execute this SQL statement will be
followed. However, the apprentice is free to change the sequence of the local operations. For example,
if the SQL statement requires a join, then the apprentice site can change join orders and join methods for
local relations as long as the result tuples are presented in the order prescribed, if any, in the global plan.
The apprentice may also use access paths unknown to the master. The access path selector in the
apprentice site also generates a set of local execution strategies, which, in tum, undergo the code generation
phase to produce local subsections. Figure 2 shows the compilation process.

Just as in a programming language compiler, there is a code generation step. Code is generated at the
master site and at each apprentice site involved in the distributed compilation; each piece is called a
subsection. Each subsection contains code both for calling its local Research Storage System,RSS, which
performs local data management, and for passing data and control to other sites according to the overall
plan.

The whole compilation for a SQL program or query is processed itself as a transaction. After all the
subsections have been generated in the involved sites for every SQL statement in the program being
prepared and no errors are detected, the master commits the compilation transaction using the two phase
commit protocol. Upon receiving the “prepare” command, each apprentice stores the subsections into an
access module. Besides the access module, the SQL statements and the global plans are also stored for
recompilation purposes. During execution, subsections call one another as subroutines or coroutines, or
they may be executed in parallel.

6.4. Access Path Selection and Optimization

To execute a query cfficiently it is necessary to select access paths to data that minimize the total processing
time of the query. Epstein studied this problem for distributed INGRES® and Selinger for SYSTEM R
61, The SYSTEM R work has been extended for R*.

During compilation the access paths to data objects are selected and the access path selector in R* tries
to minimize total predicted execution time of a SQL statement by exploring 2 search tree of alternatives
and estimating the cost of each(®d, Three components are included to model the execution costs of SQL
statements for different access paths in R*: 1/O cost , CPU cost and message cost. The cost formulae
have the form:

TOTAL_COST = 1/0_COST + CPU_COST + MESSAGE_COST

1/0_COST = I/O_WEIGHT * NUMBER_OF_PAGES_FETCHED

CPU_COST = CPU_WEIGHT * NUMBER_OF_CALLS_TO_RSS

MESSAGE_COST = MESSAGE_COST * NUMBER_OF_MESSAGES_SENT +
BYTE_COST * NUMBER_OF_BYTES_SENT

339

!

340 CHAPTER 4 / Distributed Database Systems

Progra o;

Parsing and
Name'Rgsdiution'

SQL Statem'nt
to Apprentlce

Name Lookup B g
Authorization Check
View Comp051t10n -

from Master |

LocaluAccess
—Path
7 Selectlon

Global ~ Local
Plan" to | Execution Execution.
Apprentice' Strategies Strategies
(if protectio; :

views exist

R*: An Overview of the Architecture

As in System R, the cost of an access plan is calculated as the weighted sum of the components.
NUMBER_OF_CALLS_TO_RSS represents the estimated number of tuples retrieved; and
MESSAGE_COST consists of a per message cost and a per byte cost. Both the number of messages and
the amount of data moved are minimized together.

In order to take into account the added cost component and the variety of data forms (partitoned and
replicated data) that can be created, the access path selector in R* is considerably more complex than that
in System R. The cost of accessing a horizontally partitioned relation is the sum of the costs of accessing
its components. Note that not all of the components need to be accessed if the path selector can exclude
some components by examining the partitioning criteria. The cost of accessing a vertically partitioned
relation is the cost of joining the components. Again, the partitioning criteria may reduce the cost. The

cost of accessing a replicated relation for read is the minimum of the costs of accessing the replicas. For
updates, it is the sum 2.

The situation is more complex in choosing an optimal path for a join of relations which reside at different
databases. In addition to the join order, output tuple order, and join method, the join result location
becomes another parameter, thereby increasing the branching factor of the search tree. To join the inner
relation B residing at site N to the outer relation A residing or produced at site M, R* considers five
possibilities:

e All the qualified tuples of the inner relation B are sent to sitt M and stored in a temporary relation.
The join is performed at site M.

o Qualified tuples of the outer relation A are sent to site N.one at a time. Matching qualified inner relation
tuples are retrieved and joined to the outer relation tuple, at site N.

e Outer relation tuples are retrieved. For each qualified tuple, a request containing the values of the outer
relation’s join column(s) is sent to site N. Then matching qualified inner tuples are retrieved and sent
back to site M, where the join is performed. This way of obtaining inner relation tuples is termed
*fetching as needed.”

e All the qualified inner relation tuples are sent to a third site, site P, and stored in a temporary relation.
Then (matching) qualified outer relation tuples are sent to site P to perform the join using the temporary
relation. This is a combination of the first and second approaches above.

e Outer relation tuples are sent to a third site, site P, and for each of these outer relation tuples, a request
is sent to the inner relation site to retrieve the matching tuples. The join is performed at site P. This
is a combination of the second and third approaches above.

In executing a chosen join method, advantage is taken of the parallelism and pipelining available in
processing an SQL statement. For example, fetching tuples from site A and other tuples from site B can
be done in parallel. As another example while inner tuples from site A that match an outer tuple from
site B are joined at site A, the next outer tuple can be fetched from site B.

6.5. Views

A view in R*, as in System R, is a non-materialized virtual relation defined by an SQL statement. It is
defined in terms of one or more tables or previously defined views and during processing a view is
materialized from its component objects. Views can be used as shorthand notation for reducing the amount
of typing required when frequently executing complex queries, or they can be used as a protection
mechanism for hiding rows or columns in underlying tables from the user of the view.

341

342

CHAPTER 4 / Distributed Database Systems

7. QUERY EXECUTION

Queries are executed by running the compiled code generated during query preparation. The local subsection
is loaded and executed and it calls remote subsections as needed. Messages are sent to execute remote-
procedure-like calls. Local and remote sections of code call the Research Storage System RSS, which is
the same as in System R. The RSS returns one record at a time when jt is called; Joins and other. multiple

a transaction were covered in section.S.

7.1. Concuffency

The distributed deadlock detection algorithm in R * attempts to maximize site autonomy, minimize mes-
sages and minimize unnecessary processing or other bottlenecks (27, The basic idea is that each site does
periodic deadlock detection using transaction wait-for information gathered locally or received from other
sites. Real deadlock cycles are resolved and potential cycles are converted to transaction wait-for ‘strings’.,

R*: An Overview of the Architecture

Each ‘string’ is sent to the next site along the path of the (potential) multi-site deadlock cycle only if the
first transaction number in the string is less than the last transaction number in the string. This is an
optimization to reduce the number of messages sent. Note also that other orderings could be chosen. This
process continues until a cycle is found. The cycle will be found at one site only (due to the transaction
ordering) and only sites involved in the transaction will be involved in finding it. This is usually 2 or 3
sites only in what is potentially a very large network. When a deadlock cycle is discovered a standard
deadlock cycle breaker program is run and the deadlock is broken by aborting one of the transactions
(such as the one that has done the least work so far). The other sites involved in the chosen transaction
will be told subsequently to abort the transaction.

An example distributed deadlock is shown in Figure 3. There are three sites 1,2,3 and three transactions
X,Y,Z each of which has an agent waiting for resources at a remote gite. The algorithm for breaking the
deadlock can be understood by following the messages sent from site to site until the cycle is found at
site 3.

7.3. L_ogging and Recovery

The mechanisms used for logging are the same as in System R. As previously discussed each site involved
in a transaction has to log data changes and commit decisions during two phase commit. If a site or
communications link fails during query execution before two phase commit, time-outs will occur at the
calling site and the called sites and the transaction will be aborted at all sites. No resources will be
sequestered after time-outs have occurred. If a failure occurs after a site has entered phase one of the two
phase commit then its resources are held by that transaction until communications are re-established and
the in-doubt transaction status is resolved and the database made consistent.

343

o “HAPIER 4 / Distributed Database Systems

SITE 1 SITE 2 SITE 3

(3-1)- z- X- (1-2) (1-2)- X- v- (2-3) (2-3)- Y- z- (3-1)

\ \
Z>X X<y \ Y<X
\
SHIP DO NOT SHIPN
\
\ \
\ N \
SAME (1-2)- X- v- (2-3) (2-3)- Y- 2z- (3-1)
PRODUCES
(3-1)- z- X- vy- (2-3)
>y
SHIP _
]
SAME

SAME (2-3)- Y- z- (3-1)

PRODUCES :Z- X- Y:

TRANSACTIONS X, Y, Z
-~ "WAITS FOR"

(1-J) = REMOTE CcALL FROM SITE | TO J

Fig. 3. Globaj Deadlock Detection.

DO NOT SHIP .

R*: An OVerview O1 uic sassuss=smss

8. SQL Additions and Changes

The SQL database language (& developed for System R has been extended for R* and some example
extensions are given below. These extensions are not the only ones needed, nor because of space limitations,
can each be fully explained. However it is hoped that they give the reader an idea of the kind of high-level
non-procedural language staternents needed in a distributed database system like R*.

DEFINE SYNONYM <relation-name> AS <System-w1de-Name>

DISTRIBUTE TABLE <table-name> HORIZONTALLY INTO
<name> WHERE <predicate> IN SEGMENT <segment-name@site>

<name> WHERE <predicate> IN SEGMENT <segment-name@site>

DISTRIBUTE TABLE <table-name> VERTICALLY INTO
<pame> <co1umn-name-1ist> IN SEGMENT <se_gment.-name@site>

<name> <column-name-11ist> IN SEGMENT <segment-name@site>

DISTRIBUTE TABLE <table-name> REPLICATED INTO
<name> IN SEGMENT <segment-name@site>

<name> IN SEGMENT <segment-name@site>

DEFINE SNAPSHOT <snapshot-name> (<attr1bute-1ist>)
AS <Euery>
REFRESHED EVERY <period>;

REFRESH SNAPSHOT <snapshot-name>

CREATE INDEX <pame> ON <table-name>
DROP INDEX <pame> FOR <table-name>

MIGRATE TABLE <table-name> TO <segment-name@s1te>

9. STATUS OF R* AND FUTURE PLANS

As of November 1981, when this paper was written, large sections of R* have been coded and tested as
an experimental prototype system. The transaction management, communications environment and system
interfaces for CICS running under VM or MVS have been coded and run in 2 single processor. The
compiler, optimizer and access path selector have also been written. Code generation from the R* compiler
is just beginning. R* has just started sending the first messages for remote catalog look-up and for
distributed compilation. The RSS data management, deadlock detection, commit/abort processing, logging

and recovery have been tested.

346 CHAPTER 4 / Distributed Database Systems

code from the compiler and the execution and testing of “distributed querjes” Tunning, at first, in a single
machine environment. Then we will bring up physically Separate machines and test actual distributed

overall behaviour of R+ and to make improvements to the optimizer and to the system code to improve
the performance and possibly the design too. R* js a large experimenta] project and we are under no
illusions that we have got it alf just right!

Unlike other DDBMS (e.2. INGRES 33 and SDD-1(29), R+ emphasis on site autonomy has led ys
away from shared control and globally managed or centralized catalog and name resolution structures, At

11. ACKNOWLEDGMENTS

The following people have contributed to the R* work also, and we would like to acknowledge their main
contributions: M. Adiba who developed snapshots, J. Gray who worked on the architecture, recovery and
commit, F. Putzolu who developed the RSS data management, and I. Traiger who worked on several
distributed systems issues and the RSS data management. '

