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1 Algorithm Overview

Hash joins always operate in three phases:
1, Partition relation A into n buckets by hashing on the join attribute.
9. Partition relation B into n buckets by hashing on the join attribute.
3. Join buckets 4, and B; for: =1,2,...,n.

In our external join code, the buckets formed will reside in one of two places: (1) in memory,
if there is enough room; or (2) on disk in the Unix file system, if there is not room. In genéral
there will be a combination of (1) and (2), that is, as much as possible will stay in memory,
with the remainder of the buckets being written to the file system.

1.1 Which Hash Join?

There are a variety of hash join algorithms to select from including hybrid [DKO*84],
Grace [KTMo83], and Adaptive [ZG90]. Grace is the simplist to implement. However,
it always writes its buckets to disk. Hybrid and Adaptive attempt to keep the buckets for
the inner (smaller) relation in memory if possible. Hybrid depends on having a good estimate
of the size of the inner relation and how much mermory is available in the split server for
joining the tables. Adaptive is probably the best algorithm. It will keep as much of the inner
table in memory as possible and does not require as accurate estimates from the optimizer as
hybrid. In addition, it can adapt dynamically to changes in the amount of memory available.
It is also the most complicated to implement.

Here we describe a new algorithm that combines the best features of Adaptive with the
simplicity of Grace. Its detailed design is described in the following section; here we give a
very brief overview,

Hybrid hash works by keeping one bucket of the hash table in memeory and writing the
remaining buckets to disk. If there are few buckets (e.g., if this first bucket is a significant
fraction of the inner table) this is a huge benefit. Not only do we avoid writing this bucket
to disk; we also avoid writing the corresponding bucket of the outer table to disk, since it
can be “streamed” directly past this in memory bucket.

The problem, as we stated above, is that it is difficult to arrange things so that this first
bucket is the correct size. To do so you need to know the size of the inner table (difficult if
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Figure 1: Initial setup for adaptive hash.

it is an intermediate result of a complex query), and even if you know that, the algorithm is
sensitive to skew (the hash function may not partition the table into equal sized buckets.)

Our idea to solve this problem is to begin with far more buckets than we will need.
[nitially, we try to keep all buckets in memory. Figure 1 shows a configuration in which
there are four buckets (in reality there would be more, e.g. 100, but that is hard to draw!).
Furthermore, the figure assumes that we can fit two tuples to a page, and that we can allocate
8 pages to storing the inner table in the hash join. Each box in the figure is a page.

When we start running out of memory, we begin writing some of the buckets to disk.
Figure 2 illustrates how, In the figure, we have allocated 8 pages, all of which are full,
and an additional tuple arrives, tuple t17, bound for bucket zero. We need a new page for
bucket zero, but have already allocated eight pages to the hash table. So, to make space, we
“freeze” the last bucket (bucket 3, if we start numbering at zero.) This means that we write
all data that was in the chain for bucket three to disk (in a Unix file.) We retain one page
(the shaded page) as a buffer for new tuples inserted into bucket 3; whenever this buffer fills
1t is written out to disk and cleared. - ,

Later, suppose that enough new tuples have been inserted into buckets zero and one. In
this case we need to freeze bucket two. Figure 3 illustrates this case. Now any tuple mapped
to buckets two or three will be written to disk (after the corresponding buffer fills.)

If no more tuples arrive (the inner relation is completely processed) then the final state
will find all tuples for buckets zero and one in memory, and all tuples for buckets two and
three on disk. When the probing relation is processed, tuples for buckets two and three are
written to disk, while tuples for buckets zero and one probe an in-memory hash table built
out of the tuples of the inner relation that mapped to those buckets.

A final thing to notice is that after processing the inner we have complete knowledge
about the size of each of the buckets. This enables the join algorithm to always read in
about one memory’s worth of data (by reading the appropriate number of buckets.) The
next section gives some details of this approach.
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Figure 3: Freezing buckets two and three.
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2 Algorithm Details

In this section we describe the partitioning and joining steps in more detail. We assume that
the optimizer will pick the smaller.of the two relations.as the “inner” relation.
In designing these algorithms we had the following goals:

1. The algorithm should keep as much of the inner relation in memory as possible. This
is complicated by the fact that we may not know ahead of time how large the inner
relation will be, or how much memoty is available for buffers. However, the algorithm
should never thrash.

2. The algorithm should be robust in the presence of skew. That is, skew may degrade
performance somewhat, but it will not cause the algorithm to fail or thrash.

2.1 Data structures

We assume the following variables, constants, and data structures. In the actual implementa-
tion, these variables will be attributes of a “hashJoin” structure. There will be one instance
of this structure for each concurrently executing join. This structure has been omitted to
simplify the presentation.

int maxBufs; // # of page size buffers available to execute
// the partiticning and joining phases. Set by the optimizer
// on a join by jein basis '

int curBufs: // # of buffers currently in use. Initialized to )

int numBuckets; // number of buckets. Set by the optimizer. Value
// must be set low enough to avoid running out of file
// descripters. A default value of 100 would be reasonable

enum BucketState {empty, expanding, frozen};

typedef struct bucket
{
BucketState state; // empty, expanding, or frozen
int tupCnt; // number of tuples currently in bucket.
int pageCnt; // number of pages currently in bucket;
int resPageCnt; // number of memory resident pages;
char* firstPage; // pointer to first buffer page in memory
char+ lastPage; // pointer to last buffer page in memory
File* file; // file descriptor (may be NULL)
char fileName[MAXNAME]; // name of file for disk resident pages
T

2.2 Partitioning the Inner Table

The following two data structures are used while partitioning the innet relation into buckets:
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bucket innerRelation[numBuckets]; // bucket table for inner relation
int frozen; // number of buckets that have been '"frozen".

This phase begins by dynamically allocating the innerRelation table. The “state” of each
entry is set to empty. The variables tupCnt, pageCnt, and resPageCnt are all set to 0. Also,
firstPage is set to NULL as is file. Finally, frozen is set to 0.

As tuples arrive, they get partitioned into one of the numBuckets buckets. This is done

as follows:
1. Extract join attribute from input buffer.

9. Hash join attribute to produce a hash value. Take numBuckets mod hash value to
produce a bucket identifier z.

Finally, increment innerRelatien[i].tupCnt.

3. Bucket 7 can be in one of 3 states: empty, frozen, expanding. Next,

o If (state == empty) perform the following actions:
- dynamically allocate a new buffer page, setting firstPage and lastPage ap-
propriately.

— set pageCnt = 1; resPageCnt = 1;
— increment curBufs;
— If (curBufs > MaxBufs invoke purge();
— copy tuple from input stream to the buffer page.
o If (state == expanding)
— examine buffer page pointed to by innerRelation[i].lastPage. If sufficient
room exists, copy tuple from input stream to the buffer page
— otherwise,
allocate a new buffer page
+ add page to the end of the linked list of buffer pages for this bucket

+*

ES

* pageCnt++; resPageCnt++

* increment curBufs;

+ If (curBufs > MaxBufs) invoke purge();

* copy tuple from input stream to the buffer page.

o If (state = frozen)
— examine buffer page pointed to by innerRelation[il.firstPage; if sufficient
room exists, copy tuple from input stream to the buffer page
— otherwise, write current page to disk file (if file is NULL at this point, an error
has occurred); increment pageCnt; copy tuple from input stream to the now
empty buffer page.

While the state of a bucket is “expanding”, new memory-resident buffer pages are added
in a linked list as tuples are added to the bucket. This partitioning process continues until
either the entire inner relation has been processed or until curBufs > maxBufs. If the former
occurs first, the inner relation will be totally memory resident and no disk I/Os will have
occurred. Otherwise, when (curBufs > maxBufs), purge() will be invoked.
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purge() picks one bucket to freeze. While there are a number of possible ways to pick the
victim (we intend to study these later), initially we will do this by simply incrementing the
variable frozen. When a bucket is frozen the following operations are performed:

1. Create a temporary Unix file to hold pages of the bucket.

2. Open the file, saving the file descriptor in the bucket’s entry in the innerRelation struc-
ture.

Write all the memory resident buffer pages for the bucket to its associated Unix file.
Release all buffer pages except the first one,

set curBufs to ¢curBufs - (resPageCnt-1).

> oop W

Adjust firstPage and lastPage appropriately. Set resPageCnt to 1. Mark the re-
maining page empty.

7. set bucket state to frozen.

The process of “freezing” a bucket releases a bunch of buffer pages for other buckets to
use. Once a bucket has been “frozen” the bucket is allowed to use only a single buffer page.
As this page fills, it is written to disk.

After a bucket has been frozen, the partitioning process continues until the entire inner
relation has been consumed. At this point all buckets 1, for 0 < : < frozen —1, are frozen.
Buckets j, frozen < j < numBuckets, will be entirely memory resident.

The partitioning of the inner relation finishes with the two following steps:

1. Flush the remaining memory-resident buffer page of each frozen bucket to disk. For
each such bucket, release the buffer page to the free list, decrement curBufs by 1, close
the associated file, set file to NULL, adjust all pointers, etc.

2. From the non-frozen buckets (buckets 7, for frozen < j < numBucketsg) form a memory
resident hash table (called HashTable and implemented using chained. bucket hashing).
It may be the case that there are no such buckets. Each bucket is processed in turn,
hashing on the join attribute of each tuple in the bucket. The size of the hash table
(HashTblSize) can be determined by adding the tupCnt values of each bucket. No
tuples need to be copied. Rather, allocate little hash chain entries consisting of simply
a pointer to the tuple and a link to the next entry in the hash chain.

Once the inner relation has been partitioned, we are left:
1. Some frozen partitions completely on disk
2. A memory resident hash table for the remaining buckets (if any)
3. A innerRelation structure describing all the buckets in detail.

4. The value of frozen, which acts as an important dividing line during the next phase of
the algorithm.
At this point we can check several things including whether there is skew, whether any of
the buckets are bigger than the amount of memory allo¢ated to the join, etc. and take the
necessary corrective action.
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2.3 Partitioning the Outer Table

As with the inner table, we need an instance of the bucket structure to keep track of the
buckets formed during partitioning the outer relation:

bucket outerRelation[numBuckets]; // bucket table for outer relation

As before this array is allocated dynamically at the beginning of the phase. As with the
inner table, the “state” of each entry is set to empty, the variables tupCnt, pageCnt, and
resPageCnt are all set to 0, and firstPage, lastPage, and file are set to NULL.

As tuples arrive, they get partitioned into one of the numBuckets buckets. This is done

as follows:
1. Extract the join attribute from the next tuple in the input buffer

2. Hash the join attribute to produce a hash value (JHV). Mod JHV by numBuckets to
produce a bucket identifier 1.

3. If (i < frozen) the tuple will be added to a bucket whose corresponding bucket for the
outer relation is frozen. The state of the ith bucket of the outer relation will either be
empty or frozen. The following operations are performed next.

o If (state = empty) perform the following actions:
- dynamically allocate a new buffer page, setting firstPage and lastPage ap-
propriately.
— Set pagaCnt = 1; tt resPageCnt = 1;
—~ increment curBufs
— copy tuple from input stream to the buffer page.
— mark bucket state as frozen
— Create a temporary Unix file to hold pages of the bucket.
— Open the file, saving the file descriptor
Notice that there is no check for whether curBufs > MaxBufs. We have no choice
but to allocate a page to the buffer. If things are really tight, the initial value of
MaxBufs should be adjusted appropriately.
o If (state == frozen)
— examine buffer page pointed to by outerRelation[i].firstPage if sufficient
room exists, copy tuple from input stream to the buffer page
— otherwise,
+ write current page to the Unix file associated with the bucket. (if file is
NULL at this point, an error has occurred). -
x increment pageCnt;
+ copy tuple from input stream to the now empty buffer page.
e If ( > frozen and 1 < maxBufs) the tuple can be joined immediately with the
inner table. This is done as following.
(a) First take JHV (see step 2) mod HashTblSize to produce a value j between 0
and HashTblSize - 1.
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(b) Search hash chain starting at HashTable[j] for tuples from the inner relation
with matching join attribute values.
(c) When a matching tuple is found materialize a result tuple from the inner and
" outer tuples (we are going to need some Navigator help here) and send the
result tuple on its merry way (either off to another Split Server or back into the
local SQL Server).
Once all the tuples of the outer relation have been processed, flush the memory-
resident buffer page of each frozen bucket to disk. For each such bucket, release the
buffer page to the free list, decrement curBufs by 1, close the associated file, set
file to NULL, adjust all pointers, etc.

At this point,
(a) buckets 0 to frozen-1 for both the inner and outer relation are on disk

(b) the join of buckets frozen to maxBufs have been completed.
(c) the innerRelation and outerRelation bucket structure remain in memory.

Joining the Frozen buckets

All that is left to do at this point is to join the frozen buckets, This process operates as

follows:
For 2 = 0 to frozen-1 do

compare innerRelation[i].pageCnt and outerRelation[i].pageCnt
pick the smaller to be the “inner” bucket

use the tupCnt information of the inner bucket to create an appropriately sized hash
table

open the Unix file associated with the inner bucket.

read the pages of the inner bucket from the file, inserting the tuples into the memory
resident hash table by hashing on their join attribute.

close the inner file
open the Unix file associated with the outer bucket.

read the pages of the inner bucket from the file. As each page is read, examine the
tuples one at a time, extract the join attribute, hash it, and then probe the hash table
for matches. Process result tuples in the normal way.

close the outer file.

destroy the inner and outer files

At this point we are done, Release the épace occupied by the innerRelation and outerRelation
arrays and do general cleanup.
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