Data Stream Management:
30,000 feet

* DBMS world:
— Static data, dynamic queries

« Data Stream Management world:
— Dynamic data, static queries

10,000 feet ...

* DBMS world:
— Data is stored, pre-indexed, ~static
— Queries are ad-hoc and arrive unexpectedly

» Data Stream Management world:
— Data arrives in continuous, unbounded streams
* Examples: sensor readings, stock tickers, ...

— Queries are ~static (multiple concurrent “standing
queries”)
* Example: alert me when any stock jumps by 5%

“DSMS” = Data Stream Management System

5000 feet: DSMS Architecture

i?

I Streamed
Register Result

Query I

Input streams

<>

Research Issues (1/2)

Languages & formal semantics for data streams and
continuous queries
(what is correct output?)

Memory requirements & constraints
(many queries require unbounded memory in worst case)

Timestamp management & heartbeats
(data sources tend to have differing latencies)

Load shedding & approximation
(keep up with data w/o having to overprovision system)

Research Issues (2/2)

Work sharing
(concurrent, standing queries --> opportunity to share work)

Adaptation
(data characteristics fluctuate, queries persist for long time)

Operator scheduling
(data is pushed, not pulled)

Distributed processing
(stream sources distributed; improve scalability)

Players

Berkeley [“Telegraph” project]
— Franklin, Hellerstein

MIT/Brown/Brandeis [“Aurora” project]
— Stonebraker, Zdonik, Cherniack
Stanford [‘'STREAM” project]

— Motwani, Widom

Wisconsin [“Niagara” project]
— DeWitt, Naughton

Players <--> Topics

/ Languages & formal semantics

@ « Memory requirements & constraints
\- Timestamp management & heartbeats

@ Load shedding & approximation

» Work sharing
E Adaptation
« Operator scheduling %
@ Distributed processing

The Stanford Data Stream
Management System

Jennifer Widom

Stanford University

anfordstreamdatamanager

Formula for a Database Research Project

* Pick a simple but fundamental assumption
underlying traditional database systems
— Drop it

* Reconsider all aspects of data management
and query processing
— Many Ph.D. theses
— Prototype from scratch

Following the Formula

* We followed this formula once before
— The LORE project

— Dropped assumption:
Data has a fixed schema declared in advance

— Semistructured data (— XML)

e The STREAM Project

— Dropped assumption:
First load data, then index it, then run queries

— Continuous data streams (+ continuous queries)

Data Streams

e Continuous, unbounded, rapid, time-varying
streams of data elements

e Occur in a variety of modern applications
— Network monitoring and traffic engineering
— Sensor networks, RFID tags
— Telecom call records
— Financial applications
— Web logs and click-streams
— Manufacturing processes

* DSMS = Data Stream Management System

DBMS versus DSMS

Persistent relations Transient streams (and
persistent relations)

One-time queries Continuous queries
Random access Sequential access

Access plan Unpredictable data
determined by query characteristics and
processor and arrival patterns
physical DB design

The (Simplified) Big Picture

I Streamed Stored
Register I Result Result

Input streams

Relations

(Simplified) Network Monitoring

Intrusion
H Warnings

a Online
Register Performance
Monitoring Metrics
Queries

— — m— —

Network measurements,
Packet traces

@A-—W

Using Conventional DBMS

« Data streams as relation inserts, continuous
queries as triggers or materialized views

* Problems with this approach
— Inserts are typically batched, high overhead

— Expressiveness: simple conditions (triggers), no
built-in notion of sequence (views)

— No notion of approximation, resource allocation
— Current systems don't scale to large # of triggers
— Views don't provide streamed results

The STREAM System

Data streams and stored relations

Declarative language for registering
continuous queries

Flexible query plans and execution strategies

Textual, graphical, and application interfaces

Relational, centralized (for now)

STREAM System Challenges

* Must cope with:
— Stream rates that may be high,variable, bursty
— Stream data that may be unpredictable, variable
— Continuous query loads that may be high, variable

STREAM System Challenges

* Must cope with:
— Stream rates that may be high ,variable, bursty
— Stream data that may be unpredictable, variable
— Continuous query loads that may be high, variable

Overload

STREAM System Challenges

Must cope with:

— Stream rates that may be high,variable , bursty

— Stream data that may be unpredictable, variable
— Continuous query loads that may be high, variable

Overload

Changing conditions

STREAM System Features

Aggressive sharing of state and computation
Careful resource allocation and use
Continuous self-monitoring and reoptimization

Graceful approximation as necessary

Rest of This Talk

Query language

Query plans and execution issues
Coping with overload

Coping with changing conditions

Live system demonstration

Continuous Query Language — CQL

Start with SQL
Then add...

Streams as new data type

Continuous instead of one-time semantics
Windows on streams (derived from SQL-99)
Sampling on streams (basic)

Three relation-to-stream operators
Istream, Dstream Rstream

CQL (cont'd)

e Syntactic shortcuts and defaults
— So easy queries are easy to write

¢ Equivalences
— Basis for query-rewrite optimizations
— Includes all relational equivalences, plus new
stream-based ones

« Based on formally-defined abstract semantics

CQL Example Query 1

Two streams, contrived for ease of examples:
Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

CQL Example Query 1

Two streams, contrived for ease of examples:
Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by
clerk “Sue” for customer “Joe”

Select Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]

Where O.orderID = F.orderID And F.clerk = “Sue”
And O.customer = “Joe”

CQL Example Query 1

Two streams, contrived for ease of examples:
Orders (orderlD, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by
clerk “Sue” for customer “Joe”

Select Sum(O.cost)

From Orders O, Fulfillments F [Range 1 Day]

Where O.orderID = F.orderID And F.clerk = “Sue”
And O.customer = “Joe”

CQL Example Query 1

Two streams, contrived for ease of examples:
Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by
clerk “Sue” for customer “Joe”

Select Sum(O.cost)
From Orders O , Fulfillments F [Range 1 Day]

Where O.orderID = F.orderID And F.clerk = “Sue”
And O.customer = “Joe”

CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by
clerk “Sue” for customer “Joe”

Select Sum(O.cost)

From Orders O, Fulfillments F [Range 1 Day]

Where O.orderID = F.orderID And F.clerk = *
And O.customer = “Joe”

CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderlD, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by
clerk “Sue” for customer “Joe”

Select Sum(O.cost)

From Orders O, Fulfillments F [Range 1 Day]

Where O.orderID = F.orderID And F.clerk = “Sue”
And O.customer = “Joe”

CQL Example Query 2

Using a 10% sample of the Fulfillments stream,
take the 5 most recent fulfillments for each clerk
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,
Fulfilments F [Partition By clerk Rows 5] 10% Samp le
Where O.orderID = F.orderlD
Group By F.clerk

CQL Example Query 2

Using a 10% sample of the Fulfillments stream,
take the 5 most recent fulfillments for each clerk
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,
Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk

CQL Example Query 2

Using a 10% sample of the Fulfillments stream,
take the 5 most recent fulfillments for each clerk
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,
Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk

CQL Example Query 2

Using a 10% sample of the Fulfillments stream,
take the 5 most recent fulfillments for each clerk
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,
Fulfilments F [Partition By clerk Rows 5] 10% Samp le
Where O.orderID = F.orderlD
Group By F.clerk

CQL Example Query 2

Using a 10% sample of the Fulfillments stream,
take the 5 most recent fulfillments for each clerk
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O,
Fulfillments F [Partition By clerk Rows 5] 10% Samp
Where O.orderID = F.orderID
Group By F.clerk

CQL Example: Result Type

Simpler version of Example Query 2:
Select F.clerk, Max(O.cost)
From O, F [Rows 100]
Where O.orderID = F.orderID
Group By F.clerk

¢ Result is a relation, updated as stream
elements arrive

CQL Example: Result Type

Simpler version of Example Query 2:
Select Istream (F.clerk, Max(O.cost))
From O, F [Rows 100]

Where O.orderID = F.orderID
Group By F.clerk

e Streamed result: Emits <clerk,max> stream
element whenever max changes for a clerk
(or new clerk)

12

CQL Example Query 4

Relation CurPrice(stock, price)

Select stock, Avg(price)
From Istream(CurPrice) [Range 1 Day]
Group By stock

* Average price over last day for each stock
« |stream provides history of CurPrice

* Window on history (back to relation), group
and aggregate

Query Execution

* When a continuous query is registered,
generate a query plan

— New plan merged with existing plans
— Users can also create & manipulate plans directly

* Plans composed of three main components:
— Operators
— Queues (input and inter-operator)
— State (windows, operators requiring history)

* Global scheduler for plan execution

Simple Query Plan

Scheduler

Stream; Stream,

13

Memory Overhead in Query Processing

Queues + State
Continuous queries keep state indefinitely

Online requirements suggest using memory
rather than disk
— But we realize this assumption is shaky

Goal: minimize memory use while providing
timely, accurate answers

Reducing Memory Overhead

1) Exploit constraints on streams to reduce state

2) Enable state sharing within and across
queries

3) Specialized operator scheduling to reduce
queue sizes

Exploiting Stream Constraints

« For many queries, large or unbounded state
is required for arbitrary streams

14

Exploiting Stream Constraints

« For many queries, large or unbounded state
is required for arbitrary streams

« But streams may exhibit constraints that
reduce, bound, or even eliminate state
— Clustered
— Ordered
— Stream-based referential integrity

Relaxed version: k-constraints

Stream Constraints: Simple Example

Orders (orderlD, customer, cost)
Fulfillments (orderID, portion, clerk)

If Fulfillments is k-clustered on orderlD , can
infer when to discard Orders

Exploiting Constraints

e Continuously monitor streams to identify
k-constraints relevant to queries

* Query execution plans reduce or eliminate
state based on k-constraints

« If constraints violated, get approximate result

15

State Sharing

» Baseline: Input streams shared by all queries
— Maintain maximum window

¢ Subplans and synopses also can be shared
— Currently must hook up manually

» Sophisticated techniques for sharing and
memory minimization in sliding-window
aggregates

Reminder: Query Plans

Scheduler

Stream,

Stream; Stream,

Operator Scheduling

¢ Global scheduler invokes run method of query
plan operators with “timeslice” parameter

* Many possible scheduling objectives: minimize
latency, memory use, computation, inaccuracy,
starvation, ...

1) Round-robin
2) Minimize queue sizes

3) Minimize combination of queue sizes and latency
4) Parallel versions of above

16

Coping with Overload

* “Load-shedding” = discarding tuples

» Goal: deliver best possible approximate
answer while not falling behind

* What is definition of “best"?
— Maximum subset
— Maximum random sample

* We have techniques with provable guarantees
for specific query types
— Extremely hard problem for general plans

Coping with Changing Conditions

e Continuous queries are long-running;
conditions may change
— Data characteristics, arrival characteristics, query
load, available resources, system conditions, ...
 Solution: self-monitoring and adaptivity
— We already saw one example (what was it?)
— Other results:

« Adaptive operator reordering
« Adaptive caching

A Note on Time

¢ All stream elements have timestamps
— Necessary for time-based windows

— Necessary for consistent well-defined semantics
over multiple streams and updatable relations

* Basic correctness requirement: query
processor must see stream elements in
timestamp order

» Easy when time is centralized system clock
— Stream elements timestamped on entry to system

17

Application-Defined Time

e Streams may contain application timestamps
— Sensor readings, financial transactions, etc.

* Elements may arrive out of order at DSMS
— Distributed streams with time skew among them
— Latency reaching DSMS
— Reordering on transmission channel

¢ Our solution: heartbeats

— Provided by application or deduced from measured
parameters (skew, latency, etc.)

The Stream Systems Landscape

(At least) three general-purpose DSMS
prototypes underway

— STREAM (Stanford)

— Aurora - Borealis (Brown, Brandeis, MIT)
— TelegraphCQ - HiFi (Berkeley)

¢ Stream system benchmark

— Main goal: demonstrate that conventional systems
are far inferior for data stream applications

http://mwww-db.stanford.edu/stream/
Google: “stanford stream”

Contributors: Arvind Arasu, Brian Babcock,
Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Itaru
Nishizawa, Utkarsh Srivastava, Justin
Rosenstein, Zubin Wang

18

