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Data Stream Management: Data Stream Management: 
30,000 feet30,000 feet

• DBMS world:
– Static data, dynamic queries

• Data Stream Management world:
– Dynamic data, static queries
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10,000 feet 10,000 feet ……

• DBMS world:
– Data is stored, pre-indexed, ~static

– Queries are ad-hoc and arrive unexpectedly

• Data Stream Management world:
– Data arrives in continuous, unbounded streams

• Examples: sensor readings, stock tickers, …

– Queries are ~static (multiple concurrent “standing 
queries”)

• Example: alert me when any stock jumps by 5%

“DSMS” = Data Stream Management System
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DSMS

Scratch Store

5000 feet: DSMS Architecture5000 feet: DSMS Architecture

Input streams

Register
Query

Streamed
Result
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Research Issues (1/2)Research Issues (1/2)

• Languages & formal semantics for data streams and 
continuous queries
(what is correct output?)

• Memory requirements & constraints
(many queries require unbounded memory in worst case)

• Timestamp management & heartbeats
(data sources tend to have differing latencies)

• Load shedding & approximation
(keep up with data w/o having to overprovision system)
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Research Issues (2/2)Research Issues (2/2)

• Work sharing
(concurrent, standing queries --> opportunity to share work)

• Adaptation
(data characteristics fluctuate, queries persist for long time)

• Operator scheduling
(data is pushed, not pulled)

• Distributed processing
(stream sources distributed; improve scalability)
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PlayersPlayers

• Berkeley [“Telegraph” project]
– Franklin, Hellerstein

• MIT/Brown/Brandeis [“Aurora” project]
– Stonebraker, Zdonik, Cherniack

• Stanford [“STREAM” project]
– Motwani, Widom

• Wisconsin [“Niagara” project]
– DeWitt, Naughton
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STREAM

STREAM

Players <Players <----> Topics> Topics

• Languages & formal semantics

• Memory requirements & constraints

• Timestamp management & heartbeats

• Load shedding & approximation

• Work sharing

• Adaptation

• Operator scheduling

• Distributed processing

Aurora

Telegraph
Niagara

Telegraph

STREAM
Aurora

STREAM

Aurora

The Stanford Data Stream The Stanford Data Stream 
Management SystemManagement System

Jennifer Widom

Stanford University

stanfordstreamdatamanager
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Formula for a Database Research ProjectFormula for a Database Research Project

• Pick a simple but fundamental assumption 
underlying traditional database systems
– Drop it

• Reconsider all aspects of data management 
and query processing
– Many Ph.D. theses

– Prototype from scratch
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Following the FormulaFollowing the Formula

• We followed this formula once before
– The LORE project

– Dropped assumption:                                         
Data has a fixed schema declared in advance

–– Semistructured Semistructured data (data ( ջջ XML)XML)

• The STREAM Project
– Dropped assumption:                                         

First load data, then index it, then run queries

–– Continuous data streams (+ continuous queries)Continuous data streams (+ continuous queries)
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Data StreamsData Streams

• Continuous, unbounded, rapid, time-varying 
streams of data elements

• Occur in a variety of modern applications
– Network monitoring and traffic engineering
– Sensor networks, RFID tags
– Telecom call records
– Financial applications
– Web logs and click-streams
– Manufacturing processes

•• DSMSDSMS = Data Stream Management System
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DBMS    versus    DSMSDBMS    versus    DSMS

• Persistent relations

• One-time queries

• Random access

• Access plan 
determined by query 
processor and 
physical DB design

• Transient streams (and 
persistent relations)

• Continuous queries

• Sequential access

• Unpredictable data 
characteristics and 
arrival patterns
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DSMS

Scratch Store

The (Simplified) Big PictureThe (Simplified) Big Picture

Input streams

Register
Query

Streamed
Result

Stored
Result

Archive

Stored
Relations
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(Simplified) Network Monitoring(Simplified) Network Monitoring

Register
Monitoring

Queries

DSMS

Scratch Store

Network measurements,
Packet traces

Intrusion
Warnings

Online
Performance

Metrics

Archive

Lookup
Tables
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Using Conventional DBMSUsing Conventional DBMS

• Data streams as relation insertsrelation inserts, continuous 
queries as triggers triggers or materialized viewsmaterialized views

• Problems with this approach
– Inserts are typically batched, high overhead

– Expressiveness: simple conditions (triggers), no 
built-in notion of sequence (views)

– No notion of approximation, resource allocation

– Current systems don’t scale to large # of triggers

– Views don’t provide streamed results
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The STREAM SystemThe STREAM System

• Data streams and stored relations

• Declarative language for registering 
continuous queries

• Flexible query plans and execution strategies

• Textual, graphical, and application interfaces

• Relational, centralized (for now)
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STREAM System ChallengesSTREAM System Challenges

• Must cope with:
–– Stream ratesStream rates that may be high,variable, bursty

–– Stream dataStream data that may be unpredictable, variable

–– Continuous query loadsContinuous query loads that may be high, variable
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STREAM System ChallengesSTREAM System Challenges

• Must cope with:
–– Stream ratesStream rates that may be high ,variable, bursty

–– Stream dataStream data that may be unpredictable, variable

–– Continuous query loadsContinuous query loads that may be high , variable

Ø Overload
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STREAM System ChallengesSTREAM System Challenges

• Must cope with:
–– Stream ratesStream rates that may be high,variable , bursty

–– Stream dataStream data that may be unpredictable, variable

–– Continuous query loadsContinuous query loads that may be high, variable

Ø Overload

Ø Changing conditions
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STREAM System FeaturesSTREAM System Features

• Aggressive sharingsharing of state and computation

• Careful resource allocation and useresource allocation and use

• Continuous selfself--monitoringmonitoring and reoptimizationreoptimization

• Graceful approximationapproximation as necessary

21

Rest of This TalkRest of This Talk

• Query language

• Query plans and execution issues

• Coping with overload

• Coping with changing conditions

• Live system demonstration
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Continuous Query Language Continuous Query Language –– CQLCQL

Start with SQL                                                
Then add…

•• StreamsStreams as new data type

•• Continuous Continuous instead of one-time semantics

•• WindowsWindows on streams (derived from SQL-99)

•• SamplingSampling on streams (basic)

• Three relationrelation--toto--stream operatorsstream operators
Istream, Dstream Rstream

23

CQL (contCQL (cont’’d)d)

•• Syntactic shortcuts and defaultsSyntactic shortcuts and defaults
– So easy queries are easy to write

•• EquivalencesEquivalences
– Basis for query-rewrite optimizations

– Includes all relational equivalences, plus new 
stream-based ones

• Based on formally-defined abstract semanticsabstract semantics

24

CQL Example Query 1CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)
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CQL Example Query 1CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by 
clerk “Sue” for customer “Joe”

Select  Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = “Sue”

And O.customer = “Joe”
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CQL Example Query 1CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by 
clerk “Sue” for customer “Joe”

Select  Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = “Sue”

And O.customer = “Joe”
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CQL Example Query 1CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by 
clerk “Sue” for customer “Joe”

Select  Sum(O.cost)
From Orders OFrom Orders O , Fulfillments F [Range 1 Day]
Where O.Where O.orderID orderID = F.= F.orderIDorderID And F.clerk = “Sue”

And O.customer = “Joe”
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CQL Example Query 1CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by 
clerk “Sue” for customer “Joe”

Select  Sum(O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = And F.clerk = ““ SueSue””

And O.customer = And O.customer = ““ JoeJoe””
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CQL Example Query 1CQL Example Query 1

Two streams, contrived for ease of examples:

Orders (orderID, customer, cost)
Fulfillments (orderID, clerk)

Total cost of orders fulfilled over the last day by 
clerk “Sue” for customer “Joe”

Select  Sum(Select  Sum( O.cost)O.cost)
From Orders O, Fulfillments F [Range 1 Day]
Where O.orderID = F.orderID And F.clerk = “Sue”

And O.customer = “Joe”
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CQL Example Query 2CQL Example Query 2

Using a 10% sample of the Fulfillments stream, 
take the 5 most recent fulfillments for each  clerk 
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O, 

Fulfillments F [Partition By clerk Rows 5] 10% Samp le
Where O.orderID = F.orderID
Group By F.clerk
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CQL Example Query 2CQL Example Query 2

Using a 10% sample of the Fulfillments stream, 
take the 5 most recent fulfillments for each  clerk 
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O, 

Fulfillments F Fulfillments F [Partition By clerk Rows 5] 10% Sample10% Sample
Where O.orderID = F.orderID
Group By F.clerk
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CQL Example Query 2CQL Example Query 2

Using a 10% sample of the Fulfillments stream, 
take the 5 most recent fulfillments for each  clerk 
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O, 

Fulfillments F [Partition By clerk Rows 5] Fulfillments F [Partition By clerk Rows 5] 10% Sample
Where O.orderID = F.orderID
Group By F.clerk
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CQL Example Query 2CQL Example Query 2

Using a 10% sample of the Fulfillments stream, 
take the 5 most recent fulfillments for each  clerk 
and return the maximum cost

Select F.clerk, Max(O.cost)
From Orders O, From Orders O, 

Fulfillments F [Partition By clerk Rows 5] 10% Samp le
Where O.Where O.orderID orderID = F.= F.orderIDorderID
Group By F.clerk
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CQL Example Query 2CQL Example Query 2

Using a 10% sample of the Fulfillments stream, 
take the 5 most recent fulfillments for each  clerk 
and return the maximum cost

Select F.clerk, Max(O.cost)Select F.clerk, Max(O.cost)
From Orders O, 

Fulfillments F [Partition By clerk Rows 5] 10% Samp le
Where O.orderID = F.orderID
Group By F.clerkGroup By F.clerk
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CQL Example: Result TypeCQL Example: Result Type

Simpler version of Example Query 2:
Select F.clerk, Max(O.cost)
From O, F [Rows 100]
Where O.orderID = F.orderID
Group By F.clerk

• Result is a relation, updated as stream 
elements arrive
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CQL Example: Result TypeCQL Example: Result Type

Simpler version of Example Query 2:
Select IstreamIstream (( F.clerk, Max(O.cost) ))
From O, F [Rows 100]
Where O.orderID = F.orderID
Group By F.clerk

•• Streamed result:Streamed result: Emits <clerk,max> stream 
element whenever max changes for a clerk 
(or new clerk)
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CQL Example Query 4CQL Example Query 4

Relation  CurPrice(stock, price)

Select stock, Avg(price)
From Istream(CurPrice) [Range 1 Day]
Group By stock

• Average price over last day for each stock

• Istream provides history of CurPrice

• Window on history (back to relation), group 
and aggregate
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Query ExecutionQuery Execution

• When a continuous query is registered, 
generate a query planquery plan
– New plan merged with existing plans

– Users can also create & manipulate plans directly

• Plans composed of three main components:
–– OperatorsOperators

–– QueuesQueues (input and inter-operator)

–– State State (windows, operators requiring history)

• Global schedulerscheduler for plan execution
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Simple Query PlanSimple Query Plan

Q1 Q2

State4
�� ��

State3σσσσ

Stream1 Stream2

Stream3

State1 State2
�� ��SchedulerScheduler
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Memory Overhead in Query ProcessingMemory Overhead in Query Processing

• Queues + State

• Continuous queries keep state indefinitely

• Online requirements suggest using memory 
rather than disk
– But we realize this assumption is shaky

•• Goal: minimize memory use while providing Goal: minimize memory use while providing 
timely, accurate answerstimely, accurate answers
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Reducing Memory OverheadReducing Memory Overhead

1) Exploit constraints on streamsconstraints on streams to reduce statereduce state

2) Enable state sharing state sharing within and across 
queries

3) Specialized operator schedulingoperator scheduling to reduce reduce 
queue sizesqueue sizes
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Exploiting Stream ConstraintsExploiting Stream Constraints

• For many queries, large or unbounded state 
is required for arbitrary streams
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Exploiting Stream ConstraintsExploiting Stream Constraints

• For many queries, large or unbounded state 
is required for arbitraryarbitrary streams

• But streams may exhibit constraintsconstraints that 
reduce, bound, or even eliminate state
– Clustered
– Ordered
– Stream-based referential integrity

Relaxed version: kk--constraintsconstraints

44

Stream Constraints: Simple ExampleStream Constraints: Simple Example

Orders (orderID, customer, cost)
Fulfillments (orderID, portion, clerk)

If Fulfillments is kk--clusteredclustered on orderID , can 
infer when to discard Orders
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Exploiting ConstraintsExploiting Constraints

• Continuously monitor streams to identify        
k-constraints relevant to queries

• Query execution plans reduce or eliminate 
state based on k-constraints

•• If constraints violated, get approximate resultIf constraints violated, get approximate result
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State SharingState Sharing

• Baseline: Input streams shared by all queries
– Maintain maximum window

• Subplans and synopses also can be shared
– Currently must hook up manually

• Sophisticated techniques for sharing and 
memory minimization in sliding-window 
aggregates
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Reminder: Query PlansReminder: Query Plans

Q1 Q2

State4
�� ��

State3σσσσ

Stream1 Stream2

Stream3

State1 State2
�� ��SchedulerScheduler
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Operator SchedulingOperator Scheduling

• Global scheduler invokes run method of query 
plan operators with “timeslice” parameter

• Many possible scheduling objectives: minimize 
latency, memory use, computation, inaccuracy, 
starvation, …
1)  Round-robin

2)  Minimize queue sizes

3)  Minimize combination of queue sizes and latency

4)  Parallel versions of above



17

49

Coping with OverloadCoping with Overload

• “Load-shedding” ≈ discarding tuples

•• Goal: deliver best possible approximate Goal: deliver best possible approximate 
answer while not falling behindanswer while not falling behind

• What is definition of “best”?
– Maximum subset

– Maximum random sample

• We have techniques with provable guarantees 
for specific query types
– Extremely hard problem for general plans
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Coping with Changing ConditionsCoping with Changing Conditions

• Continuous queries are long-running; 
conditions may change
– Data characteristics, arrival characteristics, query 

load, available resources, system conditions, …

• Solution: selfself--monitoring monitoring and adaptivityadaptivity
– We already saw one example (what was it?)

– Other results:
• Adaptive operator reordering
• Adaptive caching
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A Note on TimeA Note on Time

• All stream elements have timestampstimestamps
– Necessary for timetime--based windowsbased windows

– Necessary for consistent wellwell--defined semanticsdefined semantics
over multiple streams and updatable relations

• Basic correctness requirement: query 
processor must see stream elements in 
timestamp order

• Easy when time is centralized system clock
– Stream elements timestamped on entry to system
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ApplicationApplication--Defined TimeDefined Time

• Streams may contain application timestamps
– Sensor readings, financial transactions, etc.

• Elements may arrive out of order at DSMS
– Distributed streams with time skew among them

– Latency reaching DSMS

– Reordering on transmission channel

• Our solution: heartbeatsheartbeats
– Provided by application or deduced from measured 

parameters (skew, latency, etc.)
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The Stream Systems LandscapeThe Stream Systems Landscape

• (At least) three general-purpose DSMS 
prototypes underway
–– STREAMSTREAM (Stanford)

–– Aurora Aurora -- BorealisBorealis (Brown, Brandeis, MIT)

–– TelegraphCQ TelegraphCQ -- HiFi HiFi (Berkeley)

•• Stream system benchmark Stream system benchmark 
– Main goal: demonstrate that conventional systems 

are far inferior for data stream applications

http://wwwhttp://www--db.db.stanfordstanford..edu/stream/edu/stream/

Google: Google: ““stanford streamstanford stream””

Contributors: Arvind Arasu, Brian Babcock, 
Shivnath Babu, John Cieslewicz, Mayur 
Datar, Keith Ito, Rajeev Motwani, Itaru 
Nishizawa, Utkarsh Srivastava, Justin 

Rosenstein, Zubin Wang


