15-721 Database Management Systems

Dangers of replication

Instructor: Anastassia Ailamaki
http.//www.cs.cmu.edu/~natassa

Overview

Problem:

update anywhere-anytime-anyway transactional
replication has unstable behavior as workload
scales up

Motivation:
data is replicated for performance and availability

Options for distributed systems with replication?

Ve

Eager vs. Lazy Replication

o Eager replication:

keep all replicas synchronized by updating all
replicas in a single transaction (locking CC)

o Lazy replication:

asynchronously propagate replica updates to
other nodes after replicating transaction commits
(multiversion CC)

o Pros and cons?

Nirr

Transaction Reconciliation

o needed in lazy replication
o example: bank account with $1,000

o you and your spouse write two $1,000
checks

a reconciliation when bank receives checks

o would be nice to automate reconciliation
o bank: master copy

Ways to Regulate Updates

a Group replication scheme
a any node with a copy can update that copy

o Master replication scheme
a each object has a master node
o only master can update primary copy
a all other copies are read-only
o others wanting to update must request from master

bank account example: works only for bank!

The problem

o update anywhere-anytime-anyway transactional
replication is unstable.

o #checkbooks/account*10, reconciliations*1000
o plus disconnect or delay overhead

o scaleup pitfall: system delusion

simple replication vs. global serializability

Basic Analysis

o # concurrent transactions originating at a node:

#transactions = TPS x Actions x Action_Time
o N nodes => N x #transactions originate per sec.
o Eager system

o updates must be replicated to other N-1 nodes

o transaction size grows by a factor of N

o node update rate grows by N2
o Lazy system

o each user transaction generates N-1 lazy updates

a N nodes generate N x #transactions each, again N2.
o Non-linear growth! (=> unstable scaleup behavior)

Eager Replication

o Always consistent

a Mobile nodes cannot use eager when
disconnected => give stale data

a (simple eager: no disconnected updates)
o get updates from quorum or cluster

o Can still be killed by deadlocks

Eager Replication: Deadlocks

o #locked_objects_by_other_Xtion =
(Xtions*actions)/2 (half-way progress)

o P(Xtion requests locked object)= PRL =
(Xtions*actions)/(2*DBsize)

o P(Xtion waits) = PW =1 - (1 - PRL) * actions

a P(cycle of length 2) = PW2 / #Xtions

o P(deadlock) rises very quickly with transaction
size and number of nodes (model predicates
grows with third power of number of nodes, fifth
power of length of XACT — w/o message delays)

Lazy Group

XACT commit => send update Xact to all nodes

o Use timestamps to detect and reconcile updates:
o each object carries timestamp of its most recent update
o each replica update carries new value + old timestamp
o if local replica’s timestamp = update’s old timestamp are
equal, update is safe, advance local replica’s timestamp.
if local replica does not match update’s old timestamp,
update is “dangerous” and is sent for reconciliation
o Problem: far too many reconciliations, gives rise to
“system delusion” (inconsistent, no way to fix it!)

o

Lazy Master

Object owner propagates after update
o No reconciliation; deadlock instead.

o Looks like single node system with much higher
transaction rate (WRT deadlock rate).

o Still non-usable by mobile applications
o Requires contact with object masters
o Still way too many deadlocks (non-scalable)!

Ve

Non-Transactional Replication

Idea: Instead of serializability, “convergence property”

a if no new transactions arrive, and all nodes are
reconnected, they will all converge to the same replicated
state eventually

Example: Lotus Notes.

o Lazy group, two ways to update:
1. Append a timestamped note.
2. Timestamped replace a value.

o Works well if convergence is only goal; but loses
updates, may not be desirable (e.g., checkbook
example.)

Nirr

Two-Tier Replication: goals

For an ideal replication scheme:

1. Availability and scalability: use replication, but
avoid instability.

2. Mobility: Allow mobile nodes to read and update
the database while disconnected.

3. Serializability: provide single-copy serializable
transactions.

4.Convergence: avoid system delusion

Ve

Two-Tier Replication: ldea
Two kinds of nodes:

o Mobile nodes are disconnected
o have a replica of the database
o originate tentative XACTs
o Base nodes are always connected
o Store a replica of database
o (Most items are mastered at base nodes)

Two-Tier Replication (cont.)

o Versions of replicated items at mobile nodes
1. Master: most recent value received from master
2. Tentative: most recent value due to local updates.

a Two kinds of transactions

1. Base: work only on master data, produce new
master data

2. Tentative: work on local tentative data, produce
o new tentative versions
o base transaction to be run later on base nodes

Nirr

Two-Tier Replication (cont.)

o Base transaction generated by tentative
transaction may fail / produce different results

o Tentative transaction fails if base transaction
doesn’t meet acceptance criterion, e.g.
o The bank balance must not go negative
o The price quote can not exceed the tentative quote
o The seats must be aisle seats

Two-Tier Replication (cont.)

Q: How does this differ from reconciliation
mechanism of lazy-group replication?

A:
1. The master database is always converged

2. The originating node need only contact a
base node to check if tentative transaction
is acceptable

Mobile Node Actions

When mobile node connects to base node, it:

1. discards its tentative object versions
(they will be refreshed soon)

2. sends replica updates for any objects mastered at
mobile node to base node

3. sends all its tentative transactions to base node to
be executed

4. accepts replica updates from base node

5. accepts notice of success/failure for each
tentative transaction

Base Node Actions

When contacted by a mobile node, the base node:

sends delayed replica update to the mobile node
accepts delayed update from the mobile node
accepts list of tentative transactions, re-runs them

after it commits base transaction, propagates lazy
replica updates as transactions to all other replica
nodes

5. when all tentative transactions have been

reprocessed, mobile node’s state converges with
base state

Ao bd =

Summary: Properties of 2-tier

o Mobile nodes may make tentative database
updates

o Base transactions execute with single-copy
serializability

o Transaction becomes durable when base
transaction completes

o Replicas at connected nodes converge to the
base system state

o If all transactions commute, no reconciliations

