
1

15-721 Database Management Systems

Dangers of replication

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2

Overview

Problem:
update anywhere-anytime-anyway transactional
replication has unstable behavior as workload
scales up

Motivation:
data is replicated for performance and availability

Options for distributed systems with replication?

3

Eager vs. Lazy Replication

Eager replication:
keep all replicas synchronized by updating all
replicas in a single transaction (locking CC)

Lazy replication:
asynchronously propagate replica updates to
other nodes after replicating transaction commits
(multiversion CC)

Pros and cons?

2

4

Transaction Reconciliation

needed in lazy replication
example: bank account with $1,000
you and your spouse write two $1,000
checks
reconciliation when bank receives checks

would be nice to automate reconciliation
bank: master copy

5

Ways to Regulate Updates

Group replication scheme
any node with a copy can update that copy

Master replication scheme
each object has a master node
only master can update primary copy
all other copies are read-only
others wanting to update must request from master

bank account example: works only for bank!

6

The problem

update anywhere-anytime-anyway transactional
replication is unstable.

#checkbooks/account*10, reconciliations*1000
plus disconnect or delay overhead

scaleup pitfall: system delusion

simple replication vs. global serializability

3

7

Basic Analysis
concurrent transactions originating at a node:
#transactions = TPS x Actions x Action_Time

N nodes => N × #transactions originate per sec.
Eager system

updates must be replicated to other N-1 nodes
transaction size grows by a factor of N
node update rate grows by N2

Lazy system
each user transaction generates N-1 lazy updates
N nodes generate N × #transactions each, again N2.

Non-linear growth! (=> unstable scaleup behavior)

8

Eager Replication
Always consistent

Mobile nodes cannot use eager when
disconnected => give stale data

(simple eager: no disconnected updates)
get updates from quorum or cluster

Can still be killed by deadlocks

9

Eager Replication: Deadlocks
#locked_objects_by_other_Xtion =
(Xtions*actions)/2 (half-way progress)
P(Xtion requests locked object)= PRL =
(Xtions*actions)/(2*DBsize)
P(Xtion waits) = PW = 1 - (1 - PRL) * actions
P(cycle of length 2) = PW2 / #Xtions

P(deadlock) rises very quickly with transaction
size and number of nodes (model predicates
grows with third power of number of nodes, fifth
power of length of XACT – w/o message delays)

4

10

Lazy Group
XACT commit => send update Xact to all nodes

Use timestamps to detect and reconcile updates:
each object carries timestamp of its most recent update
each replica update carries new value + old timestamp
if local replica’s timestamp = update’s old timestamp are
equal, update is safe, advance local replica’s timestamp.
if local replica does not match update’s old timestamp,
update is “dangerous” and is sent for reconciliation

Problem: far too many reconciliations, gives rise to
“system delusion” (inconsistent, no way to fix it!)

11

Lazy Master

Object owner propagates after update

No reconciliation; deadlock instead.

Looks like single node system with much higher
transaction rate (WRT deadlock rate).

Still non-usable by mobile applications
Requires contact with object masters

Still way too many deadlocks (non-scalable)!

12

Non-Transactional Replication

Idea: Instead of serializability, “convergence property”
if no new transactions arrive, and all nodes are
reconnected, they will all converge to the same replicated
state eventually

Example: Lotus Notes.
Lazy group, two ways to update:
1. Append a timestamped note.
2. Timestamped replace a value.
Works well if convergence is only goal; but loses
updates, may not be desirable (e.g., checkbook
example.)

5

13

Two-Tier Replication: goals

For an ideal replication scheme:

1.Availability and scalability: use replication, but
avoid instability.

2.Mobility: Allow mobile nodes to read and update
the database while disconnected.

3.Serializability: provide single-copy serializable
transactions.

4.Convergence: avoid system delusion

14

Two-Tier Replication: Idea

Two kinds of nodes:

Mobile nodes are disconnected
have a replica of the database
originate tentative XACTs

Base nodes are always connected
Store a replica of database
(Most items are mastered at base nodes)

15

Two-Tier Replication (cont.)

Versions of replicated items at mobile nodes
1.Master: most recent value received from master
2.Tentative: most recent value due to local updates.

Two kinds of transactions
1.Base: work only on master data, produce new

master data
2.Tentative: work on local tentative data, produce

new tentative versions
base transaction to be run later on base nodes

6

16

Two-Tier Replication (cont.)

Base transaction generated by tentative
transaction may fail / produce different results

Tentative transaction fails if base transaction
doesn’t meet acceptance criterion, e.g.

The bank balance must not go negative
The price quote can not exceed the tentative quote
The seats must be aisle seats

17

Two-Tier Replication (cont.)

Q: How does this differ from reconciliation
mechanism of lazy-group replication?

A:
1. The master database is always converged

2. The originating node need only contact a
base node to check if tentative transaction
is acceptable

18

Mobile Node Actions

When mobile node connects to base node, it:
1. discards its tentative object versions

(they will be refreshed soon)
2. sends replica updates for any objects mastered at

mobile node to base node
3. sends all its tentative transactions to base node to

be executed
4. accepts replica updates from base node
5. accepts notice of success/failure for each

tentative transaction

7

19

Base Node Actions

When contacted by a mobile node, the base node:
1. sends delayed replica update to the mobile node
2. accepts delayed update from the mobile node
3. accepts list of tentative transactions, re-runs them
4. after it commits base transaction, propagates lazy

replica updates as transactions to all other replica
nodes

5. when all tentative transactions have been
reprocessed, mobile node’s state converges with
base state

20

Summary: Properties of 2-tier

Mobile nodes may make tentative database
updates
Base transactions execute with single-copy
serializability
Transaction becomes durable when base
transaction completes
Replicas at connected nodes converge to the
base system state
If all transactions commute, no reconciliations

