
1

15-721 Database Management Systems

Databases and Micro-Architecture

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2

Trends in processor performance
� Scaling # of transistors, innovative microarchitecture
� Higher performance, despite technological hurdles!

Processor speed doubles every 18 months

3

Trends in DRAM Performance
� Memory capacity increases exponentially

� DRAM Fabrication primarily targets density
� Speed increases linearly

Larger but not as much faster memories

16MB
4MB

1MB
64KB 256KB

64MB

4GB

512MB

0.1

1

10

100

1000

10000

1980 1983 1986 1989 1992 1995 2000 2005

DRAM size
D R A M S P E E D T R E N D S

YEAR OF INTRODUCTION
1980 1982 1984 1986 1988 1990 1992 1994

SP
EE

D(
n s)

0

50

100

150

200

250
SLOWEST RAS (ns)

FASTEST RAS (ns)
CAS (ns)

CYCLE TIME (ns)

1 Mbit

64 Mbit

16 Mbit

4 Mbit

256 Kbit

64 Kbit

A
C

C
ES

S 
TI

M
E 

(µ
s)



2

4

The Memory Wall

Trip to memory = thousands of instructions!

0.25

10 

0.042

80

6

0.01

0.1

1

10

100

1000

pr
oc

es
so

r 
cy

cl
es

 / 
in

st
ru

ct
io

n

0.01

0.1

1

10

100

1000

cy
cl

es
 / 

ac
ce

ss
 to

 D
R

A
M

CPU(s)
Memory 

VAX/1980 PPro/1996 2010+

5

100G

New Hardware
� Caches trade off capacity for speed
� Exploit instruction/data locality
� Demand fetch/wait for data

[ADH99]:
� Running top 4 database systems
� At most 50% CPU utilization

But wait a minute…
Isn’t I/O the bottleneck??? MemoryMemory

CC
PP
UU

10
00

cl
k

10
0 

cl
k

1 
cl

k
10

 c
lk

L2 2M

L1 64K

4GB
to

1TB

L3 32M 

6

Modern storage managers

� Several decades work to hide I/O
� Asynchronous I/O + Prefetch & Postwrite

� Overlap I/O latency by useful computation
� Parallel data access

� Partition data on modern disk array [PAT88]
� Smart data placement / clustering

� Improve data locality
� Maximize parallelism
� Exploit hardware characteristics

…and larger main memories fit more 
data
DB storage mgrs efficiently hide I/O 

latencies



3

7

Why should we (databasers) 
care?

0.33
0.8

1.4

DB

4

DB

Theoretical
minimum

Desktop/
Engineering

(SPECInt)

Decision
Support 
(TPC-H)

Online
Transaction
Processing 

(TPC-C)

C
yc

le
s 

pe
r i

ns
tr

uc
tio

n

Database workloads under-utilize hardware
New bottleneck: Processor-memory delays

8

DB Hitting Memory Wall
On a modern computer (sans I/O)

Processor 

0%

20%

40%

60%

80%

100%

Ideal seq.
scan

DSS index
scan

OLTP

ex
ec

ut
io

n 
tim

e

BUSY IDLE

DBMS can run MUCH faster if h/w
resources are used efficiently

[VLDB99]

9

Outline

� Introduction
� Where does time go?

� Background
� Experimental setup & methodology
� Results
� Conclusions #1

� Weaving Relations for Cache Performance



4

10

H/W Performance Evaluation

� Benchmarks: SPEC, SPLASH, LINPACK

� Enterprise servers run commercial apps

How do database systems perform?

11

The DBMS New Bottleneck
� Earlier bottleneck was I/O, now memory and 

compute intensive (e.g., data mining)
� Modern platforms:

• sophisticated execution hardware
• fast, non-blocking caches and memory

still...
DBMSs hardware behavior is suboptimal,
compared to scientific workloads.

12

Prior Research

� Database research
- smart use of cache for isolated tasks

� Architecture performance studies
- analysis of hardware behavior shows problem

No coherent study across DBMSs and 
workloads



5

13

The Works of a DBMS
Query

PARSER

OPTIMIZER

PROCESSOR

Answer

Query
tree

Query
planCatalogs and

statistics

Data

14

An Execution Pipeline

FETCH/
DECODE 

UNIT

DISPATCH 
EXECUTE

UNIT

RETIRE 
UNIT

INSTRUCTION 
POOL

L1 I-CACHE L1 D-CACHE

L2 CACHE

Branch prediction, non-blocking caches, out-of-order

MAIN MEMORY

15

Where Does Time Go?

Time = TComputation+TMemory+TBranch+TResource-TOverlap

� Computation
� Stalls

• Cache misses
• Branch mispredictions
• Other execution pipeline stalls

✪ Stall time and computation overlap



6

16

Setup and Methodology

� Four commercial DBMSs: A, B, C, D
� 6400 PII Xeon/MT running Windows NT 4
� Used PII counters

Range Selection
(sequential, indexed)

select avg (a3)
from R
where a2 > Lo and a2 < Hi

Equijoin
(sequential)

select avg (a3)
from R, S
where R.a2 = S.a1

WHY ME?

17

Why Simple Queries?

� Easy to setup and run
� Fully controllable parameters
� Enable iterative hypotheses
� Allow to isolate behavior of basic loops
� Building blocks for complex workloads?

18

Time Calculations

� Measured: Resource stalls, L1I stalls
� Estimated:

• L1 data stalls: # misses * penalty
• L2 stalls: # misses * measured memory latency
• Branch misprediction stalls: # mispr. * penalty

� Overlap: measured CPI / expected CPI



7

19

Execution Time Breakdown (%)
Microbenchmarks

10% Sequential Scan

0%

20%

40%

60%

80%

100%

A B C D
DBMS

Q
ue

ry
 e

xe
cu

tio
n 

tim
e 

(%
)

10% 2ary index selection

0%

20%

40%

60%

80%

100%

B C D
DBMS

Computation Memory Branch mispredictions Resource

Join (no index)

0%

20%

40%

60%

80%

100%

A B C D
DBMS

• Stalls at least 50% of time
• Memory stalls are major bottleneck

20

CPI (Clocks Per Instruction)
Microbenchmarks

10% Sequential Scan

0

1

2

3

4

A B C D
DBMS

C
lo

ck
 ti

ck
s

10% 2ary index selection

0

1

2

3

4

B C D
DBMS

Computation Memory Branch mispredictions Resource

Join (no index)

0

1

2

3

4

A B C D
DBMS

• CPI is high (compared to scientific workloads)
• Indexed access Õ more memory stalls per instruction

21

Memory Stalls Breakdown (%)
Microbenchmarks

10% Sequential Scan

0%

20%

40%

60%

80%

100%

A B C D
DBMS

M
em

or
y 

st
al

l t
im

e 
(%

)

10% 2ary index selection

0%

20%

40%

60%

80%

100%

B C D
DBMS

L1  Data L1 Instruction L2 Data L2 Instruction

Join (no index)

0%

20%

40%

60%

80%

100%

A B C D
DBMS

• Role of L1 data cache unimportant
• L1 instruction and L2 data stalls dominate
• Different memory bottlenecks across DBMSs and queries



8

22

Memory Stall CPI Breakdown
Microbenchmarks

10% Sequential Scan

0

0.1

0.2

0.3

0.4

0.5

A B C D
DBMS

C
lo

ck
 ti

ck
s

10% 2ary index selection

0

0.5

1

1.5

2

B C D
DBMS

L1  Data L1 Instruction L2 Data L2 Instruction

Join (no index)

0

0.1

0.2

0.3

0.4

0.5

A B C D
DBMS

23

L1 Instruction / L2 Data Misses
L1 instruction misses / record

0

5

10

15

20

25

20 48 100 200
record size

# 
of

 e
ve

nt
s 

pe
r r

ec
or

d

System A System B System C System D

L2 data misses / record

0

2

4

6

8

20 48 100 200
record size

• L1I and L2D increase as a function of record size
• Why???

24

Memory Bottlenecks

� Stalls due to L2 cache data misses
- Compulsory or repeated
- L2 grows (8MB), but will be slower

� Stalls due to L1 I-cache misses
- Possible causes: invalidations, OS, page code
- L1 I-cache not likely to grow as much as L2

(lots of) further research needed in area



9

25

Branch Mispredictions

0%

5%

10%

15%

20%

25%

A B C D
DBMS

B
ra

nc
h 

m
is

pr
ed

ic
tio

n 
ra

te
s

Sequential Scan 2ary index scan Join (no index)

0%

5%

10%

15%

20%

25%

A B C D
DBMS

Q
ue

ry
 e

xe
cu

tio
n 

tim
e 

(%
)

• Branch misprediction stall time always significant
• Larger BTB will reduce mispredictions

26

Branch Mispredictions Vs. 
L1 I-cache Misses

10% Sequential Scan

0

3

6

9

12

A B C D
DBMS

Ev
en

ts
 / 

10
00

 in
st

r.

10% 2ary index selection

0

10

20

30

40

50

B C D
DBMS

Branch mispredictions L1 I-cache misses

Join (no index)

0

5

10

15

20

A B C D
DBMS

• More branch mispredictions incur more L1I misses
• Index code more complicated - needs optimization

27

Resource-related Stalls

0%

5%

10%

15%

20%

25%

A B C D
DBMS

%
 o

f q
ue

ry
 e

xe
cu

tio
n 

tim
e

Sequential Scan 2ary index scan Join (no index)

0%

5%

10%

15%

20%

25%

A B C D
DBMS

• High TDEP for all systems : Low ILP opportunity
• A’s sequential scan: Memory unit load buffers?

Dependency-related stalls (TDEP) Functional Unit-related stalls (TFU)



10

28

CPI Breakdown (B, D)
(All Benchmarks)

System B

0

0.5

1

1.5

2

2.5

3

3.5

mBench
(seq)

TPC-D mBench
(idx)

TPC-C

benchmark

C
lo

ck
 ti

ck
s

Computation Memory Branch misprediction Resource

System D

0

0.5

1

1.5

2

2.5

3

3.5

mBench
(seq)

TPC-D mBench
(idx)

TPC-C

benchmark

• Microbenchmark breakdown similar to TPC-D
• TPC-C: higher CPI, much higher memory stalls

29

CPI Breakdown (A, C)
(All Benchmarks)

System A

0.0

0.5

1.0

1.5

2.0

2.5

mBench
(seq)

TPC-D mBench
(idx)

TPC-C

benchmark

C
lo

ck
 ti

ck
s

Computation Memory Branch misprediction Resource

System C

0

1

2

3

4

5

mBench
(seq)

TPC-D mBench
(idx)

TPC-C

benchmark

• Microbenchmark breakdown similar to TPC-D
• TPC-C: higher CPI, much higher memory stalls

30

Summary of Results

� All stalls are significant
� Memory stalls dominate

• L1 data stalls negligible
• Instruction and L2 data stalls important
• Relative contribution varies

� Indices break the caches 
� Sequential scan & TPC-D, index & TPC-C
� TPC-C workloads incur more memory stalls



11

31

Conclusions #1
� First in-depth analysis across DBMSs
� Execution time breakdown shows trends
� Common bottleneck characterization:

• Instruction misses on the first-level cache
• Data misses on the second-level cache

� Focus on index access code
� TPC may not be necessary to locate 

bottlenecks

32

Outline

� Introduction
� Where Does Time Go?
� Weaving Relations for Cache Performance

� What’s wrong with slotted pages?
� Partition Attributes Across (PAX)
� Performance results
� Conclusions #2

33

Data Placement on Disk Pages

� Commercial DBMSs use Slotted pages
9 Store table records sequentially
☺ Intra-record locality (attributes of record r together)
/ Doesn’t work well on today’s memory hierarchies

� Alternative: Vertical partitioning [Copeland’85]
9 Store n-attribute table as n single-attribute tables
☺ Inter-record locality, saves unnecessary I/O
/ Destroys intra-record locality => expensive to reconstruct record

� Contribution: Partition Attributes Across
☺… have the cake and eat it, too

Inter-record locality + low reconstruction cost



12

34

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 Susan 52

•

1563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

� Records are stored sequentially
� Offsets to start of each record at end of page

Formal name: NSM (N-ary Storage Model)

Current Scheme: Slotted Pages

35

CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 52

•

1563

block 130Jane RH

52 2534 Leon block 4

Jim 20 RH4 block 3

45 RH3 1563 block 2

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM

36

Need New Data Page Layout

� Eliminates unnecessary memory accesses
� Improves inter-record locality
� Keeps a record’s fields together
� Does not affect I/O performance

and, most importantly, is…

low-implementation-cost, high-impact



13

37

1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

•••

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

• •••

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)

38

CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 2052
• •••

block 130 45 2052

MAIN MEMORY

select name
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX

39

FIXED-LENGTH VALUES VARIABLE-LENGTH VALUESHEADER

offsets to variable-
length fields

null bitmap,
record length, etc

NSM: All fields of record stored together + slots

A Real NSM Record



14

40

pid 3 2 4v4

43221237

Jane John

•

1 1

30 45

1 1

f }

}
Page Header

attribute 
sizes

free space# records

# attributes

F - Minipage

presence bits

presence bits

v-offsets

}
}

F - Minipage

V - Minipage

PAX: Detailed Design

PAX: Group fields + amortizes record headers

41

Outline

� Introduction
� Where Does Time Go?
� Weaving Relations for Cache Performance

� What’s wrong with slotted pages?
� Partition Attributes Across (PAX)
� Performance results
� Conclusions #2

42

� Main-memory resident R, numeric fields
� Query:

select avg (ai)
from R
where aj >= Lo and aj <= Hi

� PII Xeon running Windows NT 4
� 16KB L1-I, 16KB L1-D, 512 KB L2, 512 MB RAM
� Used processor counters
� Implemented schemes on Shore Storage Manager

� Similar behavior to commercial Database Systems

Sanity Check: Basic Evaluation



15

43

Execution time breakdown

0%

20%

40%

60%

80%

100%

A B C D Shore
DBMS

%
 e

xe
cu

tio
n 

tim
e

Computation Memory Branch mispr. Resource

Memory stall time breakdown 

0%

20%

40%

60%

80%

100%

A B C D Shore
DBMS

M
em

or
y 

st
al

l t
im

e 
(%

)

L1  Data L2 Data L1 Instruction L2 Instruction

We can use Shore to evaluate workload behavior

� Compare Shore query behavior with commercial DBMS
� Execution time & memory delays (range selection)

Why Use Shore?

44

Sensitivity to Selectivity

0

20

40

60

80

100

120

140

160

1% 5% 10% 20% 50% 100%
selectivity

st
al

l c
yc

le
s 

/ r
ec

or
d

NSM L2
PAX L2

� PAX saves 70% of NSM’s data cache penalty
� PAX reduces cache misses at both L1 and L2
� Selectivity doesn’t matter for PAX data stalls

Effect on Accessing Cache Data

Cache data stalls

0

20

40

60

80

100

120

140

160

NSM PAX
page layout

st
al

l c
yc

le
s 

/ r
ec

or
d

L1 Data stalls
L2 Data stalls

45

� PAX: 75% less memory penalty than NSM (10% of time)
� Execution times converge as number of attrs increases

Execution time breakdown

0

300

600

900

1200

1500

1800

NSM PAX

page layout

cl
oc

k 
cy

cl
es

 p
er

 re
co

rd

Hardware
Resource

Branch
Mispredict

Memory

Computation

Sensitivity to # of attributes

0

1

2

3

4

5

6

2 4 8 16 32 64
# of attributes in record

el
ap

se
d 

tim
e 

(s
ec

)

NSM
PAX

Time and Sensitivity Analysis



16

46

PAX,NSM times converge as query covers entire tuple

0

1

2

3

4

5

6

1 2 3 4 5 6 7

projectivity

se
co

nd
s

NSM
PAX

0

1

2

3

4

5

6

1 2 3 4 5 6 7

# of attributes in predicate

se
co

nd
s

NSM
PAX

Sensitivity Analysis (2)
� Elapsed time sensitivity to projectivity / # predicates
� Range selection queries, 1% selectivity

47

� 100M, 200M, and 500M TPC-H DBs
� Queries:

1. Range Selections w/ variable parameters (RS)
2. TPC-H Q1 and Q6

� sequential scans
� lots of aggregates (sum, avg, count)
� grouping/ordering of results

3. TPC-H Q12 and Q14
� (Adaptive Hybrid) Hash Join 
� complex ‘where’ clause, conditional aggregates

� 128MB buffer pool

Evaluation Using DSS

48

PAX/NSM Speedup on PII/NT

0%

15%

30%

45%

60%

RS Q1 Q6 Q12 Q14
Query

PA
X/

N
SM

 S
pe

ed
up

100 MB
200 MB
500 MB

� PAX improves performance even with I/O
� Speedup differs across DB sizes

TPC-H Queries: Speedup



17

49

PAX/NSM Speedup on Unix (100MB database)

0%

15%

30%

45%

RS Q1 Q6 Q12 Q14
Query

P
A

X
/N

S
M

 S
pe

ed
up

PII Xeon
UltraSparc-II
A21164

PAX improves performance across platforms

PAX vs. NSM across platforms

50

� Estimate average field sizes
� Start inserting records
� If a record doesn’t fit,

� Reorganize page
� (move minipage boundaries)

� Adjust average field sizes

� 50% of reorganizations to 
accommodate a single record

� Threshold 10%: penalty =0.8%

Elapsed Bulk Load Times

0

50

100

150

200

250

300

350

100 MB 200 MB 500 MB
Database Size

tim
e 

(s
ec

on
ds

)

NSM

PAX

Initial load penalty: 2-10% for a TPC-H DB

Insertions

51

� Follow described algorithm
� Use Histograms to Allocate 

Optimal Page (as w/ NSM)

� 50% of reorganizations to 
accommodate a single record

� Reorganizations do not 
incur a measurable cost

Elapsed Bulk Load Times

0

50

100

150

200

250

300

350

100 MB 200 MB 500 MB
Database Size

tim
e 

(s
ec

on
ds

)

NSM

PAX

PAX does not incur a penalty on insertions

Insertions (UPDATED Results)



18

52

Updates

� Policy: Update in-place
� Variable-length: Shift when needed
� PAX only needs shift minipage data

� Update statement:
update R
set ap=ap + b
where aq > Lo and aq < Hi

53

PAX/NSM Speedup on PII/NT

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1 2 3 4 5 6 7
Number of updated attributes

PA
X/

N
SM

 S
pe

ed
up

2%
10%
20%
50%
100%

� PAX always speeds queries up (7-17%)
� Lower selectivity => reads dominate speedup
� High selectivity => write-backs dominate speedup

Updates: Speedup

54

� PAX: a low-cost, high-impact DP technique

� Performance
� Eliminates unnecessary memory references
� High utilization of cache space/bandwidth
� Faster than NSM (does not affect I/O)

� Usability
� Orthogonal to other storage decisions
� “Easy” to implement in large existing DBMSs

Conclusions #2


