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15-721 Database Management Systems

Databases and Micro-Architecture

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa
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Trends in processor performance
� Scaling # of transistors, innovative microarchitecture
� Higher performance, despite technological hurdles!

Processor speed doubles every 18 months
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Trends in DRAM Performance
� Memory capacity increases exponentially

� DRAM Fabrication primarily targets density
� Speed increases linearly

Larger but not as much faster memories
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The Memory Wall

Trip to memory = thousands of instructions!
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100G

New Hardware
� Caches trade off capacity for speed
� Exploit instruction/data locality
� Demand fetch/wait for data

[ADH99]:
� Running top 4 database systems
� At most 50% CPU utilization

But wait a minute…
Isn’t I/O the bottleneck??? MemoryMemory
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Modern storage managers

� Several decades work to hide I/O
� Asynchronous I/O + Prefetch & Postwrite

� Overlap I/O latency by useful computation
� Parallel data access

� Partition data on modern disk array [PAT88]
� Smart data placement / clustering

� Improve data locality
� Maximize parallelism
� Exploit hardware characteristics

…and larger main memories fit more 
data
DB storage mgrs efficiently hide I/O 

latencies
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Why should we (databasers) 
care?
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New bottleneck: Processor-memory delays
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DB Hitting Memory Wall
On a modern computer (sans I/O)
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[VLDB99]
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Outline

� Introduction
� Where does time go?

� Background
� Experimental setup & methodology
� Results
� Conclusions #1

� Weaving Relations for Cache Performance
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H/W Performance Evaluation

� Benchmarks: SPEC, SPLASH, LINPACK

� Enterprise servers run commercial apps

How do database systems perform?
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The DBMS New Bottleneck
� Earlier bottleneck was I/O, now memory and 

compute intensive (e.g., data mining)
� Modern platforms:

• sophisticated execution hardware
• fast, non-blocking caches and memory

still...
DBMSs hardware behavior is suboptimal,
compared to scientific workloads.
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Prior Research

� Database research
- smart use of cache for isolated tasks

� Architecture performance studies
- analysis of hardware behavior shows problem

No coherent study across DBMSs and 
workloads
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The Works of a DBMS
Query

PARSER

OPTIMIZER

PROCESSOR

Answer

Query
tree

Query
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statistics

Data
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An Execution Pipeline

FETCH/
DECODE 

UNIT

DISPATCH 
EXECUTE

UNIT

RETIRE 
UNIT

INSTRUCTION 
POOL

L1 I-CACHE L1 D-CACHE

L2 CACHE

Branch prediction, non-blocking caches, out-of-order

MAIN MEMORY
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Where Does Time Go?

Time = TComputation+TMemory+TBranch+TResource-TOverlap

� Computation
� Stalls

• Cache misses
• Branch mispredictions
• Other execution pipeline stalls

✪ Stall time and computation overlap
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Setup and Methodology

� Four commercial DBMSs: A, B, C, D
� 6400 PII Xeon/MT running Windows NT 4
� Used PII counters

Range Selection
(sequential, indexed)

select avg (a3)
from R
where a2 > Lo and a2 < Hi

Equijoin
(sequential)

select avg (a3)
from R, S
where R.a2 = S.a1

WHY ME?
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Why Simple Queries?

� Easy to setup and run
� Fully controllable parameters
� Enable iterative hypotheses
� Allow to isolate behavior of basic loops
� Building blocks for complex workloads?
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Time Calculations

� Measured: Resource stalls, L1I stalls
� Estimated:

• L1 data stalls: # misses * penalty
• L2 stalls: # misses * measured memory latency
• Branch misprediction stalls: # mispr. * penalty

� Overlap: measured CPI / expected CPI
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Execution Time Breakdown (%)
Microbenchmarks
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• Stalls at least 50% of time
• Memory stalls are major bottleneck
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CPI (Clocks Per Instruction)
Microbenchmarks
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• CPI is high (compared to scientific workloads)
• Indexed access Õ more memory stalls per instruction
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Memory Stalls Breakdown (%)
Microbenchmarks
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• Role of L1 data cache unimportant
• L1 instruction and L2 data stalls dominate
• Different memory bottlenecks across DBMSs and queries
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Memory Stall CPI Breakdown
Microbenchmarks
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L1 Instruction / L2 Data Misses
L1 instruction misses / record
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• L1I and L2D increase as a function of record size
• Why???
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Memory Bottlenecks

� Stalls due to L2 cache data misses
- Compulsory or repeated
- L2 grows (8MB), but will be slower

� Stalls due to L1 I-cache misses
- Possible causes: invalidations, OS, page code
- L1 I-cache not likely to grow as much as L2

(lots of) further research needed in area
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Branch Mispredictions
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• Branch misprediction stall time always significant
• Larger BTB will reduce mispredictions
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Branch Mispredictions Vs. 
L1 I-cache Misses
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• More branch mispredictions incur more L1I misses
• Index code more complicated - needs optimization
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Resource-related Stalls
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• High TDEP for all systems : Low ILP opportunity
• A’s sequential scan: Memory unit load buffers?

Dependency-related stalls (TDEP) Functional Unit-related stalls (TFU)
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CPI Breakdown (B, D)
(All Benchmarks)
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• Microbenchmark breakdown similar to TPC-D
• TPC-C: higher CPI, much higher memory stalls
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CPI Breakdown (A, C)
(All Benchmarks)
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• Microbenchmark breakdown similar to TPC-D
• TPC-C: higher CPI, much higher memory stalls
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Summary of Results

� All stalls are significant
� Memory stalls dominate

• L1 data stalls negligible
• Instruction and L2 data stalls important
• Relative contribution varies

� Indices break the caches 
� Sequential scan & TPC-D, index & TPC-C
� TPC-C workloads incur more memory stalls
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Conclusions #1
� First in-depth analysis across DBMSs
� Execution time breakdown shows trends
� Common bottleneck characterization:

• Instruction misses on the first-level cache
• Data misses on the second-level cache

� Focus on index access code
� TPC may not be necessary to locate 

bottlenecks
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Outline

� Introduction
� Where Does Time Go?
� Weaving Relations for Cache Performance

� What’s wrong with slotted pages?
� Partition Attributes Across (PAX)
� Performance results
� Conclusions #2

33

Data Placement on Disk Pages

� Commercial DBMSs use Slotted pages
9 Store table records sequentially
☺ Intra-record locality (attributes of record r together)
/ Doesn’t work well on today’s memory hierarchies

� Alternative: Vertical partitioning [Copeland’85]
9 Store n-attribute table as n single-attribute tables
☺ Inter-record locality, saves unnecessary I/O
/ Destroys intra-record locality => expensive to reconstruct record

� Contribution: Partition Attributes Across
☺… have the cake and eat it, too

Inter-record locality + low reconstruction cost
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1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 Susan 52

•

1563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

� Records are stored sequentially
� Offsets to start of each record at end of page

Formal name: NSM (N-ary Storage Model)

Current Scheme: Slotted Pages
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CACHE

MAIN MEMORY

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 52

•

1563

block 130Jane RH

52 2534 Leon block 4

Jim 20 RH4 block 3

45 RH3 1563 block 2

select name
from R
where age > 50

NSM pushes non-referenced data to the cache

2534 LeonSusan

Predicate Evaluation using NSM
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Need New Data Page Layout

� Eliminates unnecessary memory accesses
� Improves inter-record locality
� Keeps a record’s fields together
� Does not affect I/O performance

and, most importantly, is…

low-implementation-cost, high-impact
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1237RH1PAGE HEADER

30Jane RH2 4322 John

45

1563

RH3 Jim 20

•••

RH4

7658 Susan 52

•

PAGE HEADER 1237 4322

1563

7658

Jane John Jim Susan

30 45 2052

• •••

NSM PAGE PAX PAGE

Partition data within the page for spatial locality

Partition Attributes Across (PAX)
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CACHE

1563

PAGE HEADER 1237 4322

7658

Jane John Jim Suzan

30 45 2052
• •••

block 130 45 2052

MAIN MEMORY

select name
from R
where age > 50

Fewer cache misses, low reconstruction cost

Predicate Evaluation using PAX
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FIXED-LENGTH VALUES VARIABLE-LENGTH VALUESHEADER

offsets to variable-
length fields

null bitmap,
record length, etc

NSM: All fields of record stored together + slots

A Real NSM Record
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pid 3 2 4v4

43221237

Jane John

•

1 1

30 45

1 1

f }

}
Page Header

attribute 
sizes

free space# records

# attributes

F - Minipage

presence bits

presence bits

v-offsets

}
}

F - Minipage

V - Minipage

PAX: Detailed Design

PAX: Group fields + amortizes record headers
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Outline

� Introduction
� Where Does Time Go?
� Weaving Relations for Cache Performance

� What’s wrong with slotted pages?
� Partition Attributes Across (PAX)
� Performance results
� Conclusions #2
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� Main-memory resident R, numeric fields
� Query:

select avg (ai)
from R
where aj >= Lo and aj <= Hi

� PII Xeon running Windows NT 4
� 16KB L1-I, 16KB L1-D, 512 KB L2, 512 MB RAM
� Used processor counters
� Implemented schemes on Shore Storage Manager

� Similar behavior to commercial Database Systems

Sanity Check: Basic Evaluation
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Execution time breakdown
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We can use Shore to evaluate workload behavior

� Compare Shore query behavior with commercial DBMS
� Execution time & memory delays (range selection)

Why Use Shore?
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Sensitivity to Selectivity
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� PAX saves 70% of NSM’s data cache penalty
� PAX reduces cache misses at both L1 and L2
� Selectivity doesn’t matter for PAX data stalls

Effect on Accessing Cache Data

Cache data stalls
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� PAX: 75% less memory penalty than NSM (10% of time)
� Execution times converge as number of attrs increases

Execution time breakdown
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Time and Sensitivity Analysis
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PAX,NSM times converge as query covers entire tuple
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Sensitivity Analysis (2)
� Elapsed time sensitivity to projectivity / # predicates
� Range selection queries, 1% selectivity
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� 100M, 200M, and 500M TPC-H DBs
� Queries:

1. Range Selections w/ variable parameters (RS)
2. TPC-H Q1 and Q6

� sequential scans
� lots of aggregates (sum, avg, count)
� grouping/ordering of results

3. TPC-H Q12 and Q14
� (Adaptive Hybrid) Hash Join 
� complex ‘where’ clause, conditional aggregates

� 128MB buffer pool

Evaluation Using DSS

48

PAX/NSM Speedup on PII/NT
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� PAX improves performance even with I/O
� Speedup differs across DB sizes

TPC-H Queries: Speedup
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PAX/NSM Speedup on Unix (100MB database)

0%

15%

30%

45%

RS Q1 Q6 Q12 Q14
Query

P
A

X
/N

S
M

 S
pe

ed
up

PII Xeon
UltraSparc-II
A21164

PAX improves performance across platforms

PAX vs. NSM across platforms
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� Estimate average field sizes
� Start inserting records
� If a record doesn’t fit,

� Reorganize page
� (move minipage boundaries)

� Adjust average field sizes

� 50% of reorganizations to 
accommodate a single record

� Threshold 10%: penalty =0.8%

Elapsed Bulk Load Times
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Initial load penalty: 2-10% for a TPC-H DB

Insertions
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� Follow described algorithm
� Use Histograms to Allocate 

Optimal Page (as w/ NSM)

� 50% of reorganizations to 
accommodate a single record

� Reorganizations do not 
incur a measurable cost

Elapsed Bulk Load Times
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PAX does not incur a penalty on insertions

Insertions (UPDATED Results)
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Updates

� Policy: Update in-place
� Variable-length: Shift when needed
� PAX only needs shift minipage data

� Update statement:
update R
set ap=ap + b
where aq > Lo and aq < Hi
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PAX/NSM Speedup on PII/NT
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� PAX always speeds queries up (7-17%)
� Lower selectivity => reads dominate speedup
� High selectivity => write-backs dominate speedup

Updates: Speedup
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� PAX: a low-cost, high-impact DP technique

� Performance
� Eliminates unnecessary memory references
� High utilization of cache space/bandwidth
� Faster than NSM (does not affect I/O)

� Usability
� Orthogonal to other storage decisions
� “Easy” to implement in large existing DBMSs

Conclusions #2


