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Databases and Micro-Architecture
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Trends in processor performance

o Scaling # of transistors, innovative microarchitecture
o Higher performance, despite technological hurdles!

MOORE'S LAW Tramistors

Processor speed doubles every 18 months

Trends in DRAM Performance

o Memory capacity increases exponentially
o DRAM Fabrication primarily targets density
o Speed increases linearly
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Larger but not as much faster memories




The Memory Wall
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Trip to memory = thousands of instructions!
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New Hardware

o Caches trade off capacity for speed § x
o Exploit instruction/data locality S éf .
o Demand fetch/wait for data | | W sax

)
<

[ADH99]:
o Running top 4 database systems
o At most 50% CPU utilization

-
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But wait a minute... 4GB

Isn’t I/O the bottleneck???

o
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Modern storage managers

o Several decades work to hide I/O
a Asynchronous I/O + Prefetch & Postwrite
o Overlap I/0O latency by useful computation
o Parallel data access
o Partition data on modern disk array [PAT88]
o Smart data placement / clustering
o Improve data locality
o Maximize parallelism
u Exploit hardware characteristics

...DB storgge mgrs efficiently hide I/O

data 1




Why should we (databasers)
care?
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Theoretical Desktop/ Decision Online
minimum Engineering Support Transaction
(SPECInt) (TPC-H) Processing

Database workloads under-utilize hardware
New bottleneck: Processor-memory delays

DB Hitting Memory Wall ;e
On a modern computer (sans |/O)
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DBMS can run MUCH faster if h/w
resources are used efficiently

Outline

o
o Where does time go?
o Background
o Experimental setup & methodology
o Results
a Conclusions #1

o Weaving Relations for Cache Performance




H/W Performance Evaluation

o

o Benchmarks: SPEC, SPLASH, LINPACK

o Enterprise servers run commercial apps

How do database systems perform?

The DBMS New Bottleneck

o Earlier bottleneck was 1/O, now memory and
compute intensive (e.g., data mining)

o Modern platforms:
- sophisticated execution hardware
- fast, non-blocking caches and memory

still...
DBMSs hardware behavior is suboptimal,
compared to scientific workloads. ﬂ
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Prior Research

o Database research
- smart use of cache for isolated tasks
o Architecture performance studies
- analysis of hardware behavior shows problem

No coherent study across DBMSs and
workloads




The Works of a DBMS
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Where Does Time Go?

o Computation
o Stalls
. Cache misses
- Branch mispredictions
- Other execution pipeline stalls

o Stall time and computation overlap

Time = TCompumﬁan +TMemory * TBranch * TResource - TOverI ap
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Setup and Methodology

Range Selection Equijoin
(sequential, indexed) (sequential)

select avg (a3) select avg (a3)
from R from R, S
where a2 > Lo and a2 < Hi where R.a2 = S.al

a Four commercial DBMSs: A, B, C, D
o 6400 PIl Xeon/MT running Windows NT 4
o Used PII counters
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Why Simple Queries?

o Easy to setup and run

a Fully controllable parameters

o Enable iterative hypotheses

a Allow to isolate behavior of basic loops
a Building blocks for complex workloads?
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Time Calculations

o Measured: Resource stalls, L11 stalls

o Estimated:
- L1 data stalls: # misses * penalty
. L2 stalls: # misses * measured memory latency
. Branch misprediction stalls: # mispr. * penalty

a Overlap: measured CPI / expected CPI
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Execution Time Breakdown (%)
Microbenchmarks

10% Sequential Scan 10% 2ary index selection Join (no index)
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+ Stalls at least 50% of time
+ Memory stalls are major bottleneck
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CPI (Clocks Per Instruction)
Microbenchmarks
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+ CPILis high (compared to scientific workloads)
+ Indexed access <= more memory stalls per instruction
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Memory Stalls Breakdown (%)
Microbenchmarks

10% Sequential Scan 10% 2ary index selection Join (no index)
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* Role of L1 data cache unimportant
+ Llinstruction and L2 data stalls dominate
- . Different memory bottlenecks across DBMSs and queries
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Clock ticks

Memory Stall CP| Breakdown

10% Sequential Scan 10% 2ary index selection Join (no index)
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# of events per record

L1 Instruction / L2 Data Misses

L1 instruction misses / record L2 data misses / record
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record size record size

—+-System A —-e-System B —+— System C & System D

+ L1T and L2D increase as a function of record size
- Why???

Memory Bottlenecks

o Stalls due to L2 cache data misses
- Compulsory or repeated
- L2 grows (8MB), but will be slower
o Stalls due to L1 I-cache misses
- Possible causes: invalidations, OS, page code
- L1 I-cache not likely to grow as much as L2

___ (lots of) further research needed in area




Branch Mispredictions

25% 25%
H —
2 S
g 20% % 20%
<
2 £
2 15% s 15%
° =
a 3
2 10% 2 10%
H s
=
2 5% S 5%
& N I s [

0% = 0%

A B c D A B c D
DBMS DBMS
W Sequential Scan M 2ary index scan @ Join (no index)

+ Branch misprediction stall time always significant
+_Larger BTB will reduce mispredictions
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Branch Mispredictions Vs.
L1 I-cache Misses

10% Sequential Scan 10% 2ary index selection Join (no index)
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*+ More branch mispredictions incur more L1I misses
.+ Index code more complicated - needs optimization
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Resource-related Stalls

Dependency-related stalls (Tpg) — Functional Unit-related stalls (Tgy)
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+ High Tyep for all systems : Low ILP opportunity
A'S Sequential scan: Memory unit load buffers?




CPI Breakdown (B, D)
(All Benchmarks)
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+ Microbenchmark breakdown similar to TPC-D
&+TPC-C: higher CPI, much higher memory stalls

CPI Breakdown (A, C)
(All Benchmarks)
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+ Microbenchmark breakdown similar to TPC-D
&+1PC-C: higher CPI, much higher memory stalls

Summary of Results

o All stalls are significant
o Memory stalls dominate
- L1 data stalls negligible
- Instruction and L2 data stalls important
- Relative contribution varies
o Indices break the caches
o Sequential scan & TPC-D, index & TPC-C
o TPC-C workloads incur more memory stalls
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Conclusions #1

o First in-depth analysis across DBMSs
o Execution time breakdown shows trends
o Common bottleneck characterization:
- Instruction misses on the first-level cache
. Data misses on the second-level cache
o Focus on index access code

o TPC may not be necessary to locate
bottlenecks

o

Outline

o Weaving Relations for Cache Performance
o What’s wrong with slotted pages?
o Partition Attributes Across (PAX)
a Performance results
a Conclusions #2

Data Placement on Disk Pages

o Commercial DBMSs use Slotted pages
v Store table records sequentially
© Intra-record locality (attributes of record r together)
® Doesn't work well on today’s memory hierarchies

o Alternative: Vertical partitioning [Copeland’85]
v Store n-attribute table as » single-attribute tables
© Inter-record locality, saves unnecessary I/O
® Destroys intra-record locality => expensive to reconstruct record

Q Contribution: Partition Attributes Across
© ... have the cake and eat it, too

w= Inter-record locality + low reconstruction cost

33




Current Scheme: Slotted Pages

Formal name: NSM (N-ary Storage Model)

1

R PAGE HEADER | RHI ‘ 1237 1
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o Records are stored sequentially
~+ 0 Offsets to start of each record at end of page

block 1

RH3 | 1563 blcad

7658 | Susan

block 3

block 4

CACHE

select name
from R
where age > 50

... NSM pushes non-referenced data to the cache

Mol
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Need New Data Page Layout

o Eliminates unnecessary memory accesses
o Improves inter-record locality

o Keeps a record’s fields together

o Does not affect I/O performance

and, most importantly, is...

« lOW-implementation-cost, high-impact




Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
PAGE HEADER JRH1[[1237 PAGE HEADER 1237|4322
sane | 30 RH2 322 f yohn 1563 7658'
45 Rr3f 15630 Jim 20 RH4 P
7658' Susan 52' Jane ‘ John ‘Jim‘ Susan
30|52]45 20|
. . . . ml

S Partition data within the page for spatial locality
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Predicate Evaluation using PAX

block 1

([T}
LI
CACHE
EEEE select name
from R

where age > 50

... Fewer cache misses, low reconstruction cost

Mol
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A Real NSM Record

1
iy !
HEADER | FIXED-LENGTH VALUES l i l| VARIABLE-LENGITH VALUE:S
null bitmap, offsets to variable-

length fields

record length, etc

,_

. NSM: All fields of record stored together + slots

i
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PAX: Detailed Design

# records free space
attribute

# attributes| .
sizes
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w+ PAX: Group fields + amortizes record headers
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4| 7| } PageHeader

Outline

o Weaving Relations for Cache Performance
a
a
o Performance results
o Conclusions #2

Sanity Check: Basic Evaluation

Main-memory resident R, numeric fields
Query:

select avg (a)
from R
where a;>= Lo and a <= Hi

o PIl Xeon running Windows NT 4

a 16KB L1-I, 16KB L1-D, 512 KB L2, 512 MB RAM
a

a

[m]

[m]

Used processor counters
Implemented schemes on Shore Storage Manager
o Similar behavior to commercial Database Systems

e




Why Use Shore?

o Compare Shore query behavior with commercial DBMS
o Execution time & memory delays (range selection)

Execution time breakdown Memory stall time breakdown
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froms We can use Shore to evaluate workload behavior

Effect on Accessing Cache Data

Cache data stalls Sensitivity to Selectivity
160 160
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o PAX saves 70% of NSM’s data cache penalty
o PAX reduces cache misses at both L1 and L2
wee 0 Selectivity doesn’t matter for PAX data stalls

Mol

Time and Sensitivity Analysis

Execution time breakdown Sensitivity to # of attributes
1800 6
o 1500 B Hardware 5
5 Resource B
§ 1200 24
5 B Branch g
a 900 Mispredict s 3
o °
° @
% 600 ® Memory § 2
E 300 ° 1 —&—NSM
3 @ Computation ~8-PAX
0 0+ T T T T T 1
NSM PAX 2 4 8 16 32 64
page layout # of attributes in record

a PAX: 75% less memory penalty than NSM (10% of time)
o Execution times converge as number of attrs increases

e




Sensitivity Analysis (2)
o Elapsed time sensitivity to projectivity / # predicates
o Range selection queries, 1% selectivity
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projectivity # of attributes in predicate

PAX,NSM times converge as query covers entire tuple
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Evaluation Using DSS

o 100M, 200M, and 500M TPC-H DBs

o Queries:
1. Range Selections w/ variable parameters (RS)
2. TPC-H Q1 and Q6
o sequential scans
o lots of aggregates (sum, avg, count)
o grouping/ordering of results
3. TPC-HQ12 and Q14
o (Adaptive Hybrid) Hash Join
o complex ‘where’ clause, conditional aggregates

a.. 128MB buffer pool

Mol

TPC-H Queries: Speedup

PAX/NSM Speedup on PI/NT
60%
m100 MB
@200 MB
45% - @500 MB

30%

1

PAX/NSM Speedup
=

0%

RS Ql Q6 Q12 Q14
Query

o PAX improves performance even with 1/0
== 0 Speedup differs across DB sizes

ek




PAX vs. NSM across platforms

PAX/NSM Speedup on Unix (100MB database)
45%

@ PIl Xeon
@ UltraSparc-I1

0% | WA21164

15%

PAX/NSM Speedup

0%

RS (o)} Q6 Q12 Q14
Query

PAX improves performance across platforms
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Insertions

o Estimate average field sizes Elapsed Bulk Load Times

o Start inserting records

o If arecord doesn't fit,

o Reorganize page

o (move minipage boundaries)
o Adjust average field sizes

3001 ENSM

250 4 BPAX

time (seconds)
@
g

a 50% of reorganizations to
accommodate a single record

a Threshold 10%: penalty =0.8%

100 MB 200 MB

Database Size

500 MB

Initial load penalty: 2-10% for a TPC-H DB

Insertions (UPDATED Results)

Elapsed Bulk Load Times

o Follow described algorithm

o Use Histograms to Allocate
Optimal Page (as w/ NSM)

a 50% of reorganizations to
accommodate a single record

o Reorganizations do not
incur a measurable cost

PAX does not incur a penalty on insertions
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Updates

o Policy: Update in-place
a Variable-length: Shift when needed
a PAX only needs shift minipage data

o Update statement:
update R
seta,=a +b
where a;> Lo and ag < Hi

Updates: Speedup

PAX/NSM Speedup on PII/NT
18%

16%
%
12%

10%

PAX/NSM Speedup
a
*

oN s
SRRIE
N
<
IS

1 2 3 4 5 6 7
Number of updated attributes
o PAX always speeds queries up (7-17%)
o Lower selectivity => reads dominate speedup

=~ 0 High selectivity => write-backs dominate speedup
53

Conclusions #2
a PAX: a low-cost, high-impact DP technique

o Performance
o Eliminates unnecessary memory references
o High utilization of cache space/bandwidth
o Faster than NSM (does not affect 1/0O)

o Usability
o Orthogonal to other storage decisions
o “Easy” to implement in large existing DBMSs
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