15-721 Database Management Systems

Databases and Micro-Architecture

Instructor: Anastassia Ailamaki
http.//www.cs.cmu.edu/~natassa

Trends in processor performance

o Scaling # of transistors, innovative microarchitecture
o Higher performance, despite technological hurdles!

MOORE'S LAW Tramistors

Processor speed doubles every 18 months

Trends in DRAM Performance

o Memory capacity increases exponentially
o DRAM Fabrication primarily targets density
o Speed increases linearly

DRAM SPEED TRENDS

v 64 Kbit

10000 - i 250 T~ ~¥= CYCLE TIME (s)
DRAM size T et —®— SLOWESTRAS (ns)
1 S B FASTEST RAS (ns)
<y M
1000 ?zon o \i\‘ 2 CAS(ns)
2 gt
100 Y1501 e N
= s O N6 Mbit
10 & 10t e T
@ 100 e g
5] — ¥
] a 8 —e_
1 ot A s
64KB Sa Ay,
01%

T T T T T T | 0 ; ; ; ; .
1980 1983 1986 1989 1992 1995 2000 2005 1980 1982 1984 1986 1988 1990 1992 1994
'YEAR OF INTRODUCTION

Larger but not as much faster memories

The Memory Wall

1000

100 - 80

10 4

0.1 1 -=CPU(s)
-+ Memory 0.

processor cycles / instruction

0'01VAX/1980 PPro/1996 2010+
Trip to memory = thousands of instructions!

4

New Hardware

o Caches trade off capacity for speed § x
o Exploit instruction/data locality S éf .
o Demand fetch/wait for data | | W sax

)
<

[ADH99]:
o Running top 4 database systems
o At most 50% CPU utilization

-

32M

But wait a minute... 4GB

Isn’t I/O the bottleneck???

o

—_
o

1TB

Xy o
o i

Modern storage managers

o Several decades work to hide I/O
a Asynchronous I/O + Prefetch & Postwrite
o Overlap I/0O latency by useful computation
o Parallel data access
o Partition data on modern disk array [PAT88]
o Smart data placement / clustering
o Improve data locality
o Maximize parallelism
u Exploit hardware characteristics

...DB storgge mgrs efficiently hide I/O

data 1

Why should we (databasers)
care?

4 -

Cycles per instruction

0.8 -
033~~~

Theoretical Desktop/ Decision Online
minimum Engineering Support Transaction
(SPECInt) (TPC-H) Processing

Database workloads under-utilize hardware
New bottleneck: Processor-memory delays

DB Hitting Memory Wall ;e
On a modern computer (sans |/O)
Processor #Busy mIDLE

100%

80%
£

T 60%
8

3 40%
£

¢ 20%

0%

Ideal seq. DSS index OLTP
scan scan

DBMS can run MUCH faster if h/w
resources are used efficiently

Outline

o
o Where does time go?
o Background
o Experimental setup & methodology
o Results
a Conclusions #1

o Weaving Relations for Cache Performance

H/W Performance Evaluation

o

o Benchmarks: SPEC, SPLASH, LINPACK

o Enterprise servers run commercial apps

How do database systems perform?

The DBMS New Bottleneck

o Earlier bottleneck was 1/O, now memory and
compute intensive (e.g., data mining)

o Modern platforms:
- sophisticated execution hardware
- fast, non-blocking caches and memory

still...
DBMSs hardware behavior is suboptimal,
compared to scientific workloads. ﬂ

Ve

Prior Research

o Database research
- smart use of cache for isolated tasks
o Architecture performance studies
- analysis of hardware behavior shows problem

No coherent study across DBMSs and
workloads

The Works of a DBMS

tree

OPTIMIZER
Query

plan

Catalogs and
statistics

PROCESSOR

5 »
' Answer

An Execution Pipeline

INSTRUCTION
POOL
t]

i 4 | A 4 Y
FETCH/ DISPATCH RETIRE
DECODE EXECUTE ONIT

UNIT UNIT
'Y r'y I
|| 1 1
L11-CACHE L1 D-CACHE
\ L2 CACHE \
t 3
| MAIN MEMORY |

Ve

Where Does Time Go?

o Computation
o Stalls
. Cache misses
- Branch mispredictions
- Other execution pipeline stalls

o Stall time and computation overlap

Time = TCompumﬁan +TMemory * TBranch * TResource - TOverI ap

15

Setup and Methodology

Range Selection Equijoin
(sequential, indexed) (sequential)

select avg (a3) select avg (a3)
from R from R, S
where a2 > Lo and a2 < Hi where R.a2 = S.al

a Four commercial DBMSs: A, B, C, D
o 6400 PIl Xeon/MT running Windows NT 4
o Used PII counters

Vel

Why Simple Queries?

o Easy to setup and run

a Fully controllable parameters

o Enable iterative hypotheses

a Allow to isolate behavior of basic loops
a Building blocks for complex workloads?

Ul

Time Calculations

o Measured: Resource stalls, L11 stalls

o Estimated:
- L1 data stalls: # misses * penalty
. L2 stalls: # misses * measured memory latency
. Branch misprediction stalls: # mispr. * penalty

a Overlap: measured CPI / expected CPI

f

Execution Time Breakdown (%)
Microbenchmarks

10% Sequential Scan 10% 2ary index selection Join (no index)
~100% 100% 100%

=

2 80% 80% 80%

5 60% 60% 60%

E

§ 40% 40% 40%

3

2 20% 20% 20%

3

9 0% 0% 0%

A B C D B c D A B C D
DBMS DBMS DBMS

O Computation ~ EMemory EBranch mispredictions B Resource

+ Stalls at least 50% of time
+ Memory stalls are major bottleneck

Mol

CPI (Clocks Per Instruction)
Microbenchmarks

10% Sequential Scan 10% 2ary index selection Join (no index)
4 4 4
» 3 3 3
2
L
% 2 2 2
o
o
1 1 1
0 0 0
A B [D B c D A B c D
DBMS bBMS DBMS

B Computation H Memory H Branch mispredictions W Resource

+ CPILis high (compared to scientific workloads)
+ Indexed access <= more memory stalls per instruction

o

Memory Stalls Breakdown (%)
Microbenchmarks

10% Sequential Scan 10% 2ary index selection Join (no index)
100% 100% 100%
S
3 80% 80% 80%
£
= 60% 60% 60%
s
o 40% 40% 0%
o
5 20% 20% 20%
=
0% 0% 0%
A B C D B c D A B C D
DBMS DBMS DBMS
mL1 Data m L1 Instruction mL2Data | L2 Instruction

* Role of L1 data cache unimportant
+ Llinstruction and L2 data stalls dominate
- . Different memory bottlenecks across DBMSs and queries

21

Clock ticks

Memory Stall CP| Breakdown

10% Sequential Scan 10% 2ary index selection Join (no index)
05 2 0.5
04 15 04
03 03
1
0.2 02
0.1 05 01
[0 0
A B c D B c D A B c D
DBMS bBMS DBMS
TL1 Data B L1 Instruction mL2Data B L2 Instruction
e

of events per record

L1 Instruction / L2 Data Misses

L1 instruction misses / record L2 data misses / record
25 8
20 6
15
4
10
0 0 — o o —
20 48 100 200 20 48 100 200
record size record size

—+-System A —-e-System B —+— System C & System D

+ L1T and L2D increase as a function of record size
- Why???

Memory Bottlenecks

o Stalls due to L2 cache data misses
- Compulsory or repeated
- L2 grows (8MB), but will be slower
o Stalls due to L1 I-cache misses
- Possible causes: invalidations, OS, page code
- L1 I-cache not likely to grow as much as L2

___ (lots of) further research needed in area

Branch Mispredictions

25% 25%
H —
2 S
g 20% % 20%
<
2 £
2 15% s 15%
° =
a 3
2 10% 2 10%
H s
=
2 5% S 5%
& N I s [

0% = 0%

A B c D A B c D
DBMS DBMS
W Sequential Scan M 2ary index scan @ Join (no index)

+ Branch misprediction stall time always significant
+_Larger BTB will reduce mispredictions

ik

Branch Mispredictions Vs.
L1 I-cache Misses

10% Sequential Scan 10% 2ary index selection Join (no index)
12 50 20
%
£ 9 40 15
g
S 30
< 6 10
® 20
£
g : " ’_I :
fri h
0 0 0
A B c D B c D A B c D
DBMS DBMS DBMS
B Branch mispredictions HL1I-cache misses

*+ More branch mispredictions incur more L1I misses
.+ Index code more complicated - needs optimization

ik

Resource-related Stalls

Dependency-related stalls (Tpg) — Functional Unit-related stalls (Tgy)

25% 25%
o
£
s 20% 20%
<
L
3 15% 15%
9
x
3
> 10% 10%
s
&
2 H - H m -
R i
0% 0%
A B Cc D A B c D
DBMS DBMS
W Sequential Scan M 2ary index scan @ Join (no index)

+ High Tyep for all systems : Low ILP opportunity
A'S Sequential scan: Memory unit load buffers?

CPI Breakdown (B, D)
(All Benchmarks)

System B System D
3.5 35
3 3
w 25 25 .
£ —_
2 2 2
x C
S 15 15
© 1 1
0.5 - 0.5 i
0 a a . 0 L 7
mBench TPC-D mBench TPC-C mBench TPC-D mBench TPC-C
(seq) (idx) (seq) (idx)
benchmark benchmark

El Computation B Memory B Branch misprediction B Resource

+ Microbenchmark breakdown similar to TPC-D
&+TPC-C: higher CPI, much higher memory stalls

CPI Breakdown (A, C)
(All Benchmarks)

System A System C
25 5
2.0 4
P o
S 15 3
£ -
o 10 2
o
- r 1 E
0.0 0 Iy
mBench TPC-D mBench TPC-C mBench TPC-D mBench TPC-C
(seq) (idx) (seq) (idx)
benchmark benchmark

B Computation B Memory B Branch misprediction B Resource

+ Microbenchmark breakdown similar to TPC-D
&+1PC-C: higher CPI, much higher memory stalls

Summary of Results

o All stalls are significant
o Memory stalls dominate
- L1 data stalls negligible
- Instruction and L2 data stalls important
- Relative contribution varies
o Indices break the caches
o Sequential scan & TPC-D, index & TPC-C
o TPC-C workloads incur more memory stalls

e

Conclusions #1

o First in-depth analysis across DBMSs
o Execution time breakdown shows trends
o Common bottleneck characterization:
- Instruction misses on the first-level cache
. Data misses on the second-level cache
o Focus on index access code

o TPC may not be necessary to locate
bottlenecks

o

Outline

o Weaving Relations for Cache Performance
o What’s wrong with slotted pages?
o Partition Attributes Across (PAX)
a Performance results
a Conclusions #2

Data Placement on Disk Pages

o Commercial DBMSs use Slotted pages
v Store table records sequentially
© Intra-record locality (attributes of record r together)
® Doesn't work well on today’s memory hierarchies

o Alternative: Vertical partitioning [Copeland’85]
v Store n-attribute table as » single-attribute tables
© Inter-record locality, saves unnecessary I/O
® Destroys intra-record locality => expensive to reconstruct record

Q Contribution: Partition Attributes Across
© ... have the cake and eat it, too

w= Inter-record locality + low reconstruction cost

33

Current Scheme: Slotted Pages

Formal name: NSM (N-ary Storage Model)

1

R PAGE HEADER | RHI ‘ 1237 1

[z '

Jane |30 | RH2 |4322| John

RID | SSN | Name | Age I :

T 1237 Jare | 30 45 | RH3 | 1563 Jim‘ZO‘Rl—M X
X

2 |4322| John | 45 7(,5}# Susan 52‘ :

3 | 1563 | 3Jim | 20 2 > ,

4 | 7658 | susan | 52 » ! !

S \/ 1

5 | 2534| Leon | 43 S A |

6 |8791| Dan 37 ! :

JIN N | ==

o Records are stored sequentially
~+ 0 Offsets to start of each record at end of page

block 1

RH3 | 1563 blcad

7658 | Susan

block 3

block 4

CACHE

select name
from R
where age > 50

... NSM pushes non-referenced data to the cache

Mol

35

Need New Data Page Layout

o Eliminates unnecessary memory accesses
o Improves inter-record locality

o Keeps a record’s fields together

o Does not affect I/O performance

and, most importantly, is...

« lOW-implementation-cost, high-impact

Partition Attributes Across (PAX)

NSM PAGE PAX PAGE
PAGE HEADER JRH1[[1237 PAGE HEADER 1237|4322
sane | 30 RH2 322 f yohn 1563 7658'
45 Rr3f 15630 Jim 20 RH4 P
7658' Susan 52' Jane ‘ John ‘Jim‘ Susan
30|52]45 20|
. . . . ml

S Partition data within the page for spatial locality

37

Predicate Evaluation using PAX

block 1

([T}
LI
CACHE
EEEE select name
from R

where age > 50

... Fewer cache misses, low reconstruction cost

Mol
38

A Real NSM Record

1
iy !
HEADER | FIXED-LENGTH VALUES l i l| VARIABLE-LENGITH VALUE:S
null bitmap, offsets to variable-

length fields

record length, etc

,_

. NSM: All fields of record stored together + slots

i
39

PAX: Detailed Design

records free space
attribute

attributes| .
sizes

v

1‘1

]2

4322
F - Minipage
presence bitsmz

Jane W John
V - Minipage

[
F - Minipage
presence bitsW

w+ PAX: Group fields + amortizes record headers

40

4| 7| } PageHeader

Outline

o Weaving Relations for Cache Performance
a
a
o Performance results
o Conclusions #2

Sanity Check: Basic Evaluation

Main-memory resident R, numeric fields
Query:

select avg (a)
from R
where a;>= Lo and a <= Hi

o PIl Xeon running Windows NT 4

a 16KB L1-I, 16KB L1-D, 512 KB L2, 512 MB RAM
a

a

[m]

[m]

Used processor counters
Implemented schemes on Shore Storage Manager
o Similar behavior to commercial Database Systems

e

Why Use Shore?

o Compare Shore query behavior with commercial DBMS
o Execution time & memory delays (range selection)

Execution time breakdown Memory stall time breakdown
100% 100%
80% X 80%
° <
£ 2
< 60% £ o0
5 60% = 60%
= o]
3 »
o 40% 2 40%
H g
= o
20% = 20%
0% 0%
A B c D Shore A B c D Shore
DBMS DBMS

Computation B Memory B Branchmispr. B Resource M L1 Data @L2 Data L1 Instruction ¥ L2 Instruction

froms We can use Shore to evaluate workload behavior

Effect on Accessing Cache Data

Cache data stalls Sensitivity to Selectivity
160 160
140 W L1 Data stalls 140 | —*—NSML2
g 120 L2 Data stalls T 120 | *-PAXL2
£100 E 100
8 80 8 80
% 60 S 60
3
5 40 3 40 ._.__.___./.——-
? 20 ® 20
0 0+ — - —
NSM PAX 1% 5% 10% 20% 50% 100%
page layout selectivity

o PAX saves 70% of NSM’s data cache penalty
o PAX reduces cache misses at both L1 and L2
wee 0 Selectivity doesn’t matter for PAX data stalls

Mol

Time and Sensitivity Analysis

Execution time breakdown Sensitivity to # of attributes
1800 6
o 1500 B Hardware 5
5 Resource B
§ 1200 24
5 B Branch g
a 900 Mispredict s 3
o °
° @
% 600 ® Memory § 2
E 300 ° 1 —&—NSM
3 @ Computation ~8-PAX
0 0+ T T T T T 1
NSM PAX 2 4 8 16 32 64
page layout # of attributes in record

a PAX: 75% less memory penalty than NSM (10% of time)
o Execution times converge as number of attrs increases

e

Sensitivity Analysis (2)
o Elapsed time sensitivity to projectivity / # predicates
o Range selection queries, 1% selectivity

6 6
5 5
4 : ﬁ : 4
@ @
E E
g3 g3
&]
2 2
1 —&—NSM 1 —4—=NSM
—8—PAX —8—PAX
0+ T T 0+ T T T T
1 2 3 4 5 6 7 1 2 3 4 5 6 7
projectivity # of attributes in predicate

PAX,NSM times converge as query covers entire tuple

46

Evaluation Using DSS

o 100M, 200M, and 500M TPC-H DBs

o Queries:
1. Range Selections w/ variable parameters (RS)
2. TPC-H Q1 and Q6
o sequential scans
o lots of aggregates (sum, avg, count)
o grouping/ordering of results
3. TPC-HQ12 and Q14
o (Adaptive Hybrid) Hash Join
o complex ‘where’ clause, conditional aggregates

a.. 128MB buffer pool

Mol

TPC-H Queries: Speedup

PAX/NSM Speedup on PI/NT
60%
m100 MB
@200 MB
45% - @500 MB

30%

1

PAX/NSM Speedup
=

0%

RS Ql Q6 Q12 Q14
Query

o PAX improves performance even with 1/0
== 0 Speedup differs across DB sizes

ek

PAX vs. NSM across platforms

PAX/NSM Speedup on Unix (100MB database)
45%

@ PIl Xeon
@ UltraSparc-I1

0% | WA21164

15%

PAX/NSM Speedup

0%

RS (o)} Q6 Q12 Q14
Query

PAX improves performance across platforms

Vel

Insertions

o Estimate average field sizes Elapsed Bulk Load Times

o Start inserting records

o If arecord doesn't fit,

o Reorganize page

o (move minipage boundaries)
o Adjust average field sizes

3001 ENSM

250 4 BPAX

time (seconds)
@
g

a 50% of reorganizations to
accommodate a single record

a Threshold 10%: penalty =0.8%

100 MB 200 MB

Database Size

500 MB

Initial load penalty: 2-10% for a TPC-H DB

Insertions (UPDATED Results)

Elapsed Bulk Load Times

o Follow described algorithm

o Use Histograms to Allocate
Optimal Page (as w/ NSM)

a 50% of reorganizations to
accommodate a single record

o Reorganizations do not
incur a measurable cost

PAX does not incur a penalty on insertions

{ntmeic

350 4

300

N
S
3

a
3

time (seconds)

@
3

o

=)
3

ENSM

B PAX

100 MB 200 MB

Database Size

500 MB

Updates

o Policy: Update in-place
a Variable-length: Shift when needed
a PAX only needs shift minipage data

o Update statement:
update R
seta,=a +b
where a;> Lo and ag < Hi

Updates: Speedup

PAX/NSM Speedup on PII/NT
18%

16%
%
12%

10%

PAX/NSM Speedup
a
*

oN s
SRRIE
N
<
IS

1 2 3 4 5 6 7
Number of updated attributes
o PAX always speeds queries up (7-17%)
o Lower selectivity => reads dominate speedup

=~ 0 High selectivity => write-backs dominate speedup
53

Conclusions #2
a PAX: a low-cost, high-impact DP technique

o Performance
o Eliminates unnecessary memory references
o High utilization of cache space/bandwidth
o Faster than NSM (does not affect 1/0O)

o Usability
o Orthogonal to other storage decisions
o “Easy” to implement in large existing DBMSs

e

