

15-721 DB Sys. Design & Impl.

R-trees

Christos Faloutsos

www.cs.cmu.edu/~christos

Roadmap

- 1) Roots: System R and Ingres
- 2) **Implementation: buffering, indexing, q-opt**
- 3) Transactions: locking, recovery
- 4) Distributed DBMSs
- 5) Parallel DBMSs: Gamma, Alphasort
- 6) OO/OR DBMS
- 7) Data Analysis - data mining
- 8) Benchmarks
- 9) vision statements

extras (streams/sensors, graphs, multimedia, web, fractals)

15-721

C. Faloutsos

2

Detailed roadmap

- 1) Roots: System R and Ingres
- 2) Implementation: buffering, indexing, q-opt
 - OS support for DBMS
 - R-trees and GiST
 - Z-ordering
 - Buffering
 - ...
- 3) Transactions: locking, recovery

15-721

C. Faloutsos

3

Outline

- R-trees
 - Problem definition - Spatial Access Methods
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

15-721

C. Faloutsos

4

Spatial Access Methods - problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer spatial queries (like??)

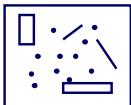
16.321

C. Faloutsos

6

Spatial Access Methods - problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)



15-721

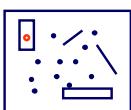
C. Faloutsos

6



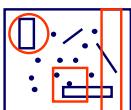
Spatial Access Methods - problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)



Spatial Access Methods - problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries
 - spatial joins ('all pairs' queries)

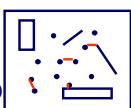


Spatial Access Methods - problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k-nn queries**
 - spatial joins ('all pairs' queries)

Spatial Access Methods - problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
 - point queries
 - range queries
 - k -nn queries
 - spatial joins** ('all pairs' within ϵ)

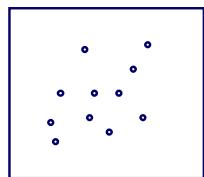


SAMs - motivation

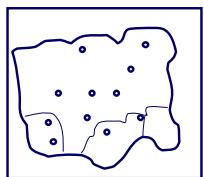
- Q: applications?

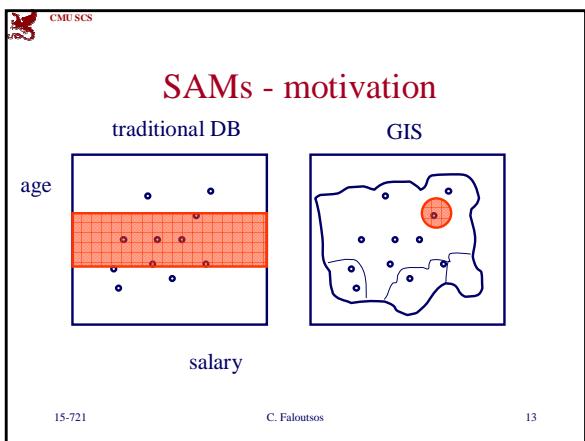
SAMs - motivation

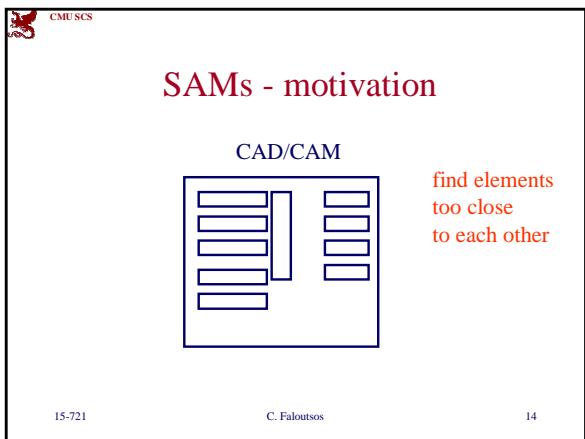
traditional DB

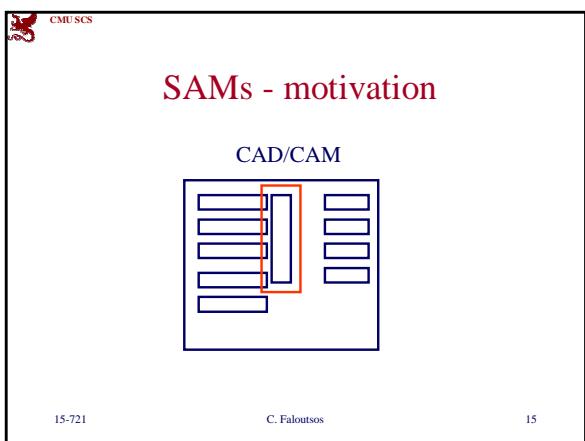


salary

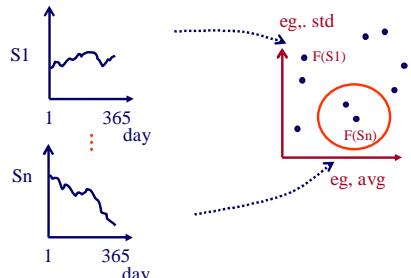








SAMs - motivation



15-721

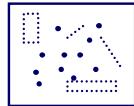
C. Faloutsos

16

SAMs: solutions

- z-ordering
- R-trees
- (grid files)

Q: how would you organize, e.g., n -dim points, on disk? (C points per disk page)



15-721

C. Faloutsos

17

Outline

- R-trees
 - Problem definition
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

15-721

C. Faloutsos

18

R-trees

- How to group nearby points/shapes together?
- Idea: try to extend/merge B-trees and k-d trees

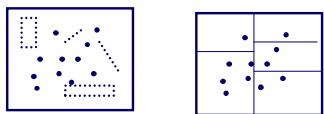
15-721

C. Faloutsos

19

(first attempt: k-d-B-trees)

- [Robinson, 81]: if f is the fanout, split point-set in f parts; and so on, recursively



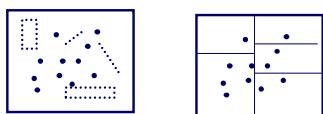
15-721

C. Faloutsos

20

(first attempt: k-d-B-trees)

- But: insertions/deletions are tricky (splits may propagate downwards **and** upwards)
- no guarantee on space utilization



15.721

C. Faloutsos

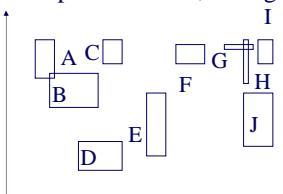
21

R-trees

- [Guttman 84] Main idea: allow parents to overlap!
 - => guaranteed 50% utilization
 - => easier insertion/split algorithms.
 - (only deal with Minimum Bounding Rectangles - **MBRs**)

R-trees

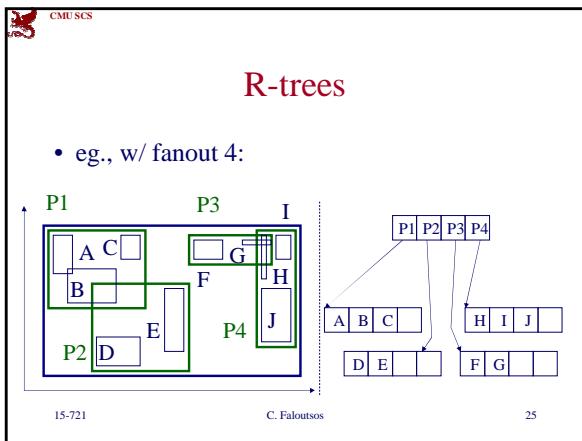
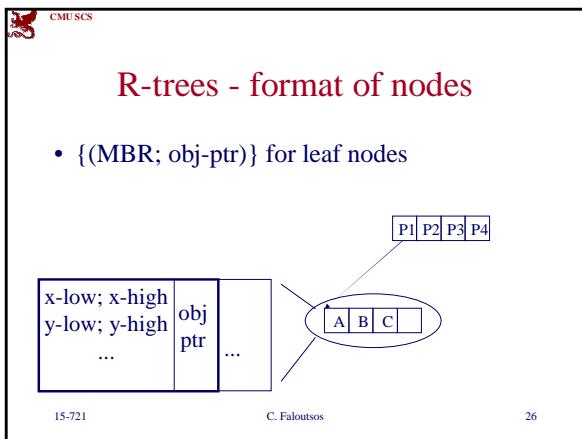
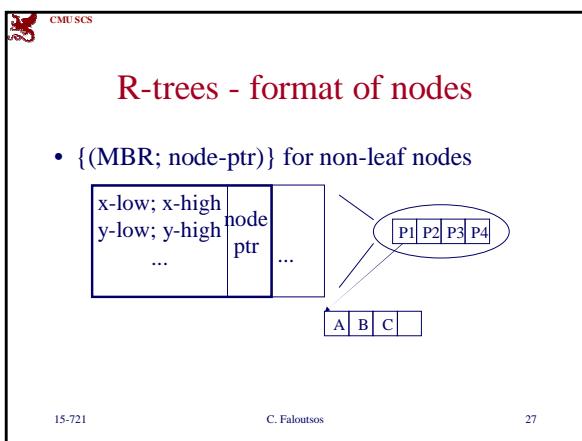
- e.g., w/ fanout 4: group nearby rectangles to parent MBRs; each group \rightarrow disk page

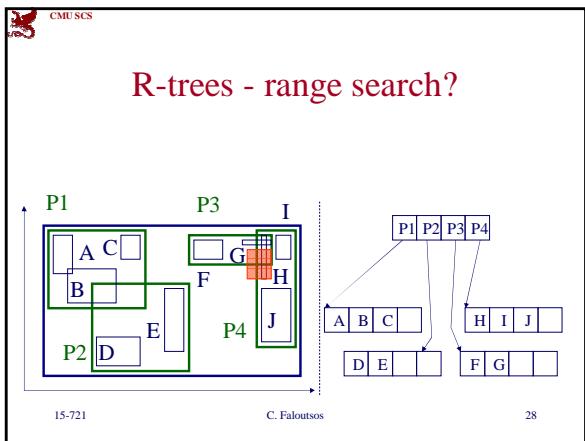
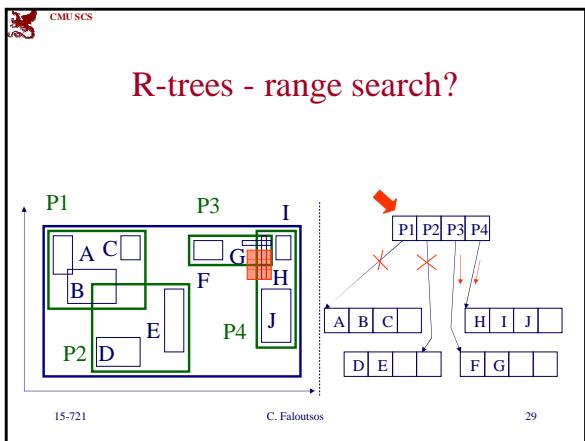
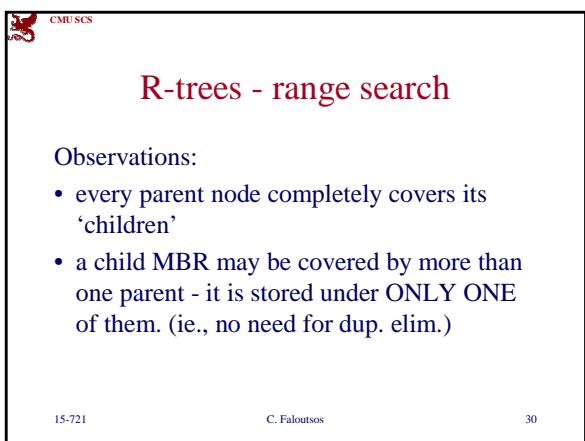


R-trees

- e.g., w/ fanout 4:







R-trees - range search

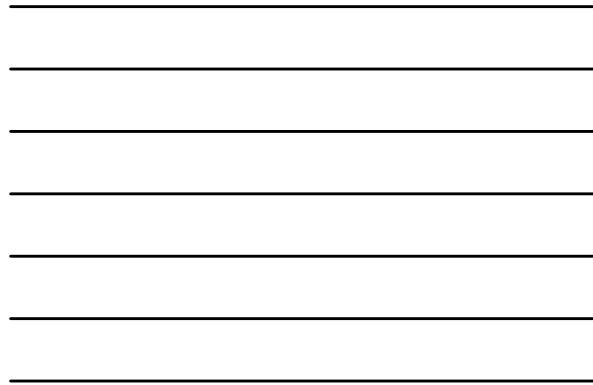
Observations - cont'd

- a point query may follow multiple branches.
- everything works for **any** dimensionality

15-721

C. Faloutsos

31



Outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

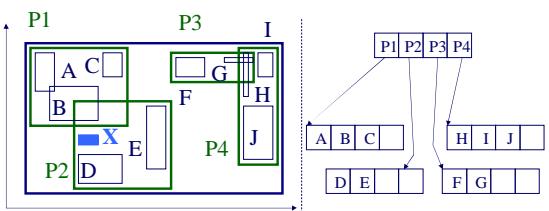
15-721

C. Faloutsos

32

R-trees - insertion

- eg., rectangle 'X'

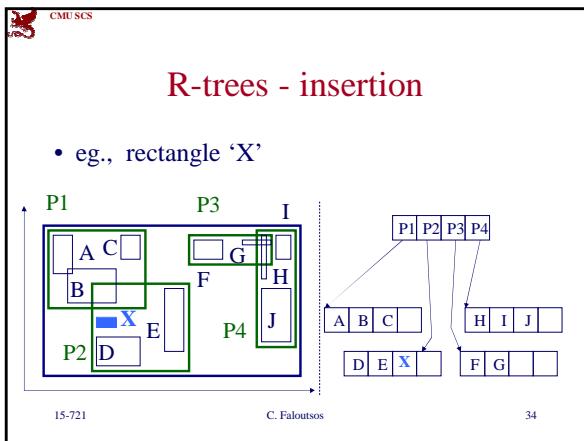
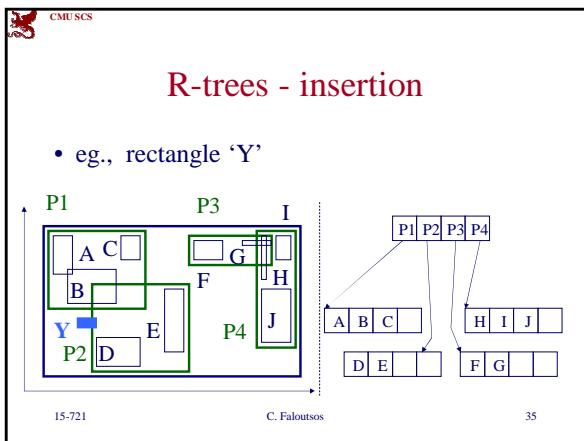
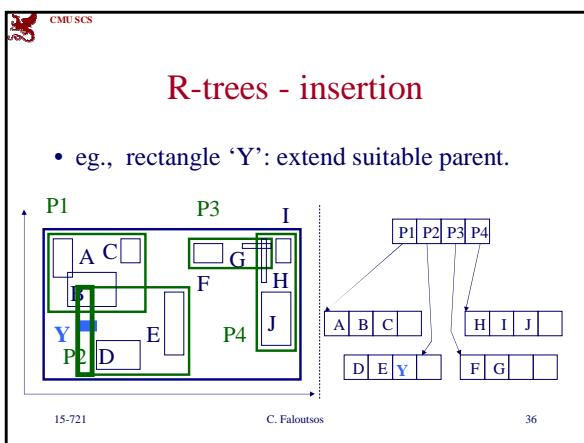


15-721

C. Faloutsos

33





R-trees - insertion

- e.g., rectangle ‘Y’: extend suitable parent.
- Q: how to measure ‘suitability’?

15-721

C. Faloutsos

37

R-trees - insertion

- eg., rectangle ‘Y’: extend suitable parent.
- Q: how to measure ‘suitability’?
- A: by increase in area (volume) (more details: later, under ‘performance analysis’)
- Q: what if there is no room? how to split?

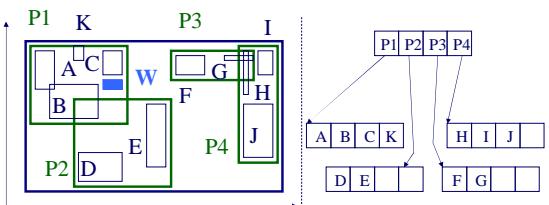
15-721

C. Faloutsos

38

R-trees - insertion

- eg., rectangle ‘W’



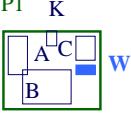
15-721

C. Faloutsos

39

R-trees - insertion

- eg., rectangle 'W' - focus on 'P1' - how to split?



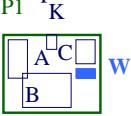
15 721

C. Faloutsos

40

R-trees - insertion

- eg., rectangle 'W' - focus on 'P1' - how to split?



15 721

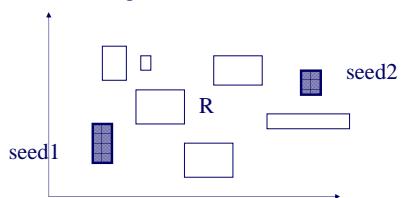
C. Faloutsos

41

- (A1: plane sweep,
until 50% of rectangles)
- A2: ‘linear’ split
- A3: quadratic split
- A4: exponential split

R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’ \uparrow



15-721

C. Faloutsos

42

R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’
- Q: how to measure ‘closeness’?

15-721

C. Faloutsos

43

R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’
- Q: how to measure ‘closeness’?
- A: by increase of area (volume)

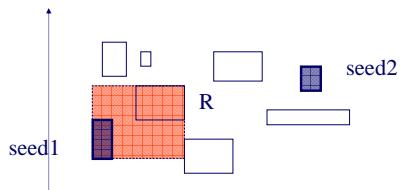
15-721

C. Faloutsos

44

R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’ \uparrow



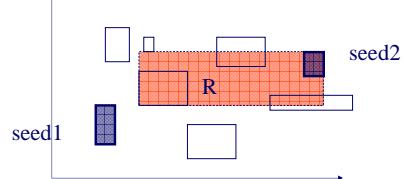
15-721

C. Faloutsos

45

R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’



15-721

C. Faloutsos

46

R-trees - insertion & split

- pick two rectangles as ‘seeds’;
- assign each rectangle ‘R’ to the ‘closest’ ‘seed’
- smart idea: pre-sort rectangles according to delta of closeness (ie., schedule easiest choices first!)

15-721

C. Faloutsos

47

R-trees - insertion - pseudocode

- decide which parent to put new rectangle into ('closest' parent)
- if overflow, split to two, using (say,) the quadratic split algorithm
 - propagate the split upwards, if necessary
- update the MBRs of the affected parents.

15 721

C. Faloutsos

48

R-trees - insertion - observations

- **many** more split algorithms exist (next!)

15-721

C. Faloutsos

49

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

15-721

C. Faloutsos

50

R-trees - deletion

- delete rectangle
- if underflow
 - ??

15-721

C. Faloutsos

51

R-trees - deletion

- delete rectangle
- if underflow
 - temporarily delete all siblings (!);
 - delete the parent node and
 - re-insert them

15-721

C. Faloutsos

52

R-trees - deletion

- variations: later (eg. Hilbert R-trees w/ 2-to-1 merge)

15-721

C. Faloutsos

53

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

15-721

C. Faloutsos

54

R-trees - range search

pseudocode:

check the root

for each branch,

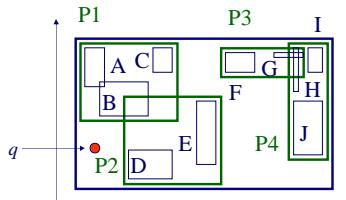
if its MBR intersects the query rectangle
 apply range-search (or print out, if this
 is a leaf)

15-721

C. Faloutsos

55

R-trees - nn search



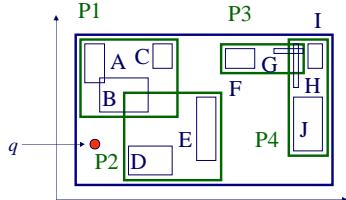
15-721

C. Faloutsos

56

R-trees - nn search

- Q: How? (find near neighbor; refine...)



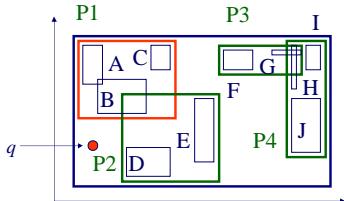
15-721

C. Faloutsos

57

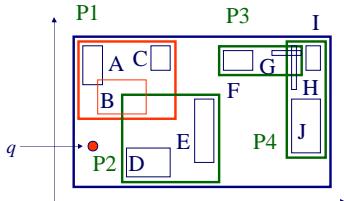
R-trees - nn search

- A1: depth-first search; then, range query



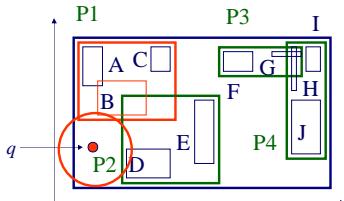
R-trees - nn search

- A1: depth-first search; then, range query



R-trees - nn search

- A1: depth-first search; then, range query



R-trees - nn search

- A2: [Roussopoulos+, sigmod95]:
 - priority queue, with promising MBRs, and their best and worst-case distance
- main idea:

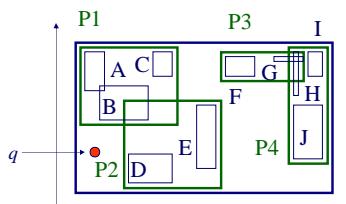
15-721

C. Faloutsos

61

R-trees - nn search

consider only P2 and P4, for illustration



15-721

C. Faloutsos

62

R-trees - nn search

best of P4

=> P4 is useless

for 1-*nn*

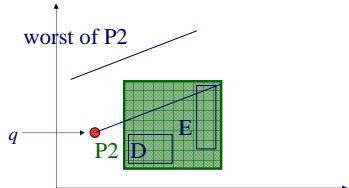
15-721

C. Faloutsos

63

R-trees - nn search

- what is really the worst of, say, P2?



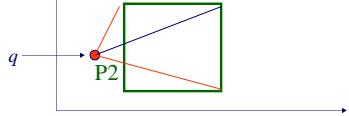
15-721

C. Faloutsos

64

R-trees - nn search

- what is really the worst of, say, P2?
- A: the smallest of the two red segments!



15-721

C. Faloutsos

65

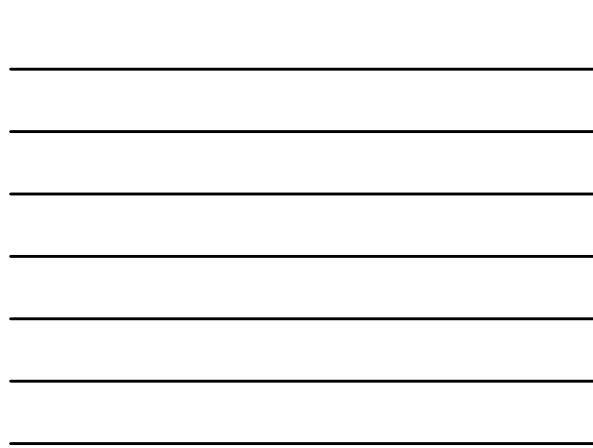
R-trees - nn search

- variations: [Hjaltason & Samet] incremental nn:
 - build a priority queue
 - scan enough of the tree, to make sure you have the k nn
 - to find the $(k+1)$ -th, check the queue, and scan some more of the tree
- ‘optimal’ (but, may need too much memory)

15-721

C. Faloutsos

66



Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

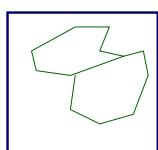
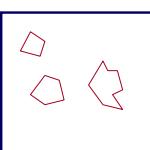
15 721

C. Faloutsos

67

R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes



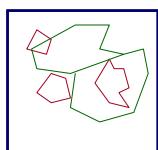
15-721

C. Faloutsos

68

R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes



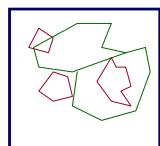
15-721

C. Faloutsos

69

R-trees - spatial joins

Spatial joins: find (quickly) all counties intersecting lakes



15 721

C. Faloutsos

70

R-trees - spatial joins

Assume that they are both organized in R-trees:

15-721

C. Faloutsos

71

R-trees - spatial joins

for each parent P1 of tree T1
 for each parent P2 of tree T2
 if their MBRs intersect,
 process them recursively (i.e., check their
 children)

15-721

C. Faloutsos

72

R-trees - spatial joins

Improvements - variations:

- [Seeger+, sigmod 92]: do some pre-filtering; do plane-sweeping to avoid $N1 * N2$ tests for intersection
- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees (FYI, many more papers on spatial joins, without R-trees: [Koudas+ Sevcik], e.t.c.)

15-721

C. Faloutsos

73

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

15-721

C. Faloutsos

74

Advanced - skin

R-trees - performance analysis

- How many disk (=node) accesses we'll need for
 - range
 - nn
 - spatial joins
- why does it matter?

15 721

C. Faloutsos

75

CMU SCS

Advanced - skip

R-trees - performance analysis

- How many disk (=node) accesses we'll need for
 - range
 - nn
 - spatial joins
- why does it matter?
- A: because we can design split etc algorithms accordingly; also, do query-optimization

15-721

C. Faloutsos

76

CMU SCS

Advanced - skip

R-trees - performance analysis

- A: because we can design split etc algorithms accordingly; also, do query-optimization
- motivating question: on, e.g., split, should we try to minimize the area (volume)? the perimeter? the overlap? or a weighted combination? why?

15-721

C. Faloutsos

77

CMU SCS

Advanced - skip

R-trees - performance analysis

CMU SCS

Advanced - skip

R-trees - performance analysis

- How many disk accesses for range queries?
 - query distribution wrt location? **uniform**; (**biased**)
 - “ “ “ wrt size? **uniform**

CMU SCS

Advanced - skip

R-trees - performance analysis

- easier case: we know the positions of parent MBRs, eg:

CMU SCS

Advanced - skip

R-trees - performance analysis

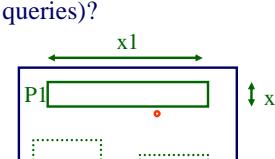
- How many times will P1 be retrieved (unif. queries)?

CMU SCS

Advanced - skip

R-trees - performance analysis

- How many times will P1 be retrieved (unif. POINT queries)?



x1

x2

P1

1

0

0

1

C. Faloutsos

CMU SCS

Advanced - skip

R-trees - performance analysis

- How many times will P1 be retrieved (unif. POINT queries)? A: $x1 * x2$

The diagram illustrates an R-tree node $P1$ with a bounding box spanning from $x1$ to $x2$ on the horizontal axis and 0 to 1 on the vertical axis. A red dot represents a point query. The node $P1$ contains a solid green rectangle representing a leaf node, which in turn contains the red dot. Below $P1$, there are two smaller dashed green rectangles representing internal nodes. A double-headed vertical arrow labeled $x2$ is positioned to the right of the node, indicating the search range for the point query. A double-headed horizontal arrow labeled $x1$ is positioned above the node, indicating the search range for the point query.

15-721

C. Faloutsos

83

CMU SCS

Advanced - skip

R-trees - performance analysis

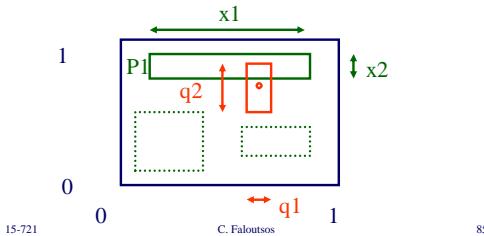
- How many times will P1 be retrieved (unif. queries of size $q_1 \times q_2$)?

CMU SCS

Advanced - skip

R-trees - performance analysis

- How many times will P1 be retrieved (unif. queries of size $q_1 \times q_2$)? A: $(x_1+q_1)*(x_2+q_2)$



15-721

C. Faloutsos

85

CMU SCS

Advanced - skip

R-trees - performance analysis

- Thus, given a tree with N nodes ($i=1, \dots, N$) we expect

$$\begin{aligned} \#DiskAccesses(q_1, q_2) &= \\ &\sum (x_{i,1} + q_1) * (x_{i,2} + q_2) \\ &= \sum (x_{i,1} * x_{i,2}) + \\ &\quad q_2 * \sum (x_{i,1}) + \\ &\quad q_1 * \sum (x_{i,2}) \\ &\quad q_1 * q_2 * N \end{aligned}$$

15-721

C. Faloutsos

86

CMU SCS

Advanced - skip

R-trees - performance analysis

- Thus, given a tree with N nodes ($i=1, \dots, N$) we expect

$$\begin{aligned} \#DiskAccesses(q_1, q_2) &= \\ &\sum (x_{i,1} + q_1) * (x_{i,2} + q_2) \\ &= \sum (x_{i,1} * x_{i,2}) + \quad \xrightarrow{\text{'volume'}} \\ &\quad q_2 * \sum (x_{i,1}) + \quad \xrightarrow{\text{surface area}} \\ &\quad q_1 * \sum (x_{i,2}) \quad \xrightarrow{\text{count}} \\ &\quad q_1 * q_2 * N \end{aligned}$$

15-721

C. Faloutsos

87

R-trees - performance analysis

Observations:

- for point queries: only volume matters
- for horizontal-line queries: ($q_2=0$): vertical length matters
- for large queries ($q_1, q_2 \gg 0$): the count N matters

15-721

C. Faloutsos

88

R-trees - performance analysis

Observations (cont'd)

- overlap: does not seem to matter
- formula: easily extendible to n dimensions
- (for even more details: [Pagel +, PODS93], [Kamel+, CIKM93])

15-721

C. Faloutsos

89

R-trees - performance analysis

Conclusions:

- splits should try to minimize area and perimeter
- ie., we want few, small, square-like parent MBRs
- rule of thumb: shoot for queries with $q_1 = q_2 = 0.1$ (or ≈ 0.5 or so).

15-721

C. Faloutsos

90

CMU SCS

CMU SCS

CMU SCS

Advanced - skip

R-trees - performance analysis

Range queries - how many disk accesses, if we just now that we have

- N points in n -d space?

A: can not tell! need to know distribution

15-721

C. Faloutsos

93

CMU SCS

CMU SCS

Advanced - skip

R-trees - performance analysis

What are obvious and/or realistic distributions?

A: uniform

A: Gaussian / mixture of Gaussians

A: self-similar / fractal. Fractal dimension ~
intrinsic dimension

15-721

C. Faloutsos

95

CMU SCS

Indexing - more detailed outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)

15-721

C. Faloutsos

97

R-trees - variations

Guttman's R-trees sparked **much** follow-up work

- can we do better splits?
 - what about static datasets (no ins/del/upd)?
 - what about other bounding shapes?

15-721

C. Faloutsos

98

R-trees - variations

Guttman's R-trees sparked much follow-up work

- can we do better splits?
 - i.e, defer splits?

15-721

C. Faloutsos

99

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]

- defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
- Which ones to re-insert?
- How many?

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]

- defer splits, by forced-reinsert, i.e.: instead of splitting, temporarily delete some entries, shrink overflowing MBR, and re-insert those entries
- Which ones to re-insert?
- How many? A: 30%

R-trees - variations

Q: Other ways to defer splits?

R-trees - variations

Q: Other ways to defer splits?

A: Push a few keys to the closest sibling node
(closest = ???)

15-721

C. Faloutsos

103

R-trees - variations

R*-trees: Also try to minimize area AND perimeter, in their split.

Performance: higher space utilization; faster than plain R-trees. One of the **most successful** R-tree variants.

15-721

C. Faloutsos

104

R-trees - variations

Guttman's R-trees sparked **much** follow-up work

- can we do better splits?
- what about static datasets (no ins/del/upd)?
 - Hilbert R-trees
- what about other bounding shapes?

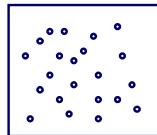
15-721

C. Faloutsos

105

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?



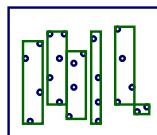
15-721

C. Faloutsos

106

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep
great for queries on 'x';
terrible for 'y'



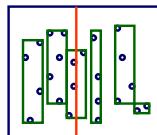
15-721

C. Faloutsos

107

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep



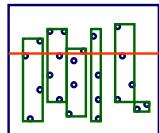
15-721

C. Faloutsos

108

R-trees - variations

- what about static datasets (no ins/del/upd)?
- Q: Best way to pack points?
- A1: plane-sweep
 - great for queries on 'x';
 - terrible for 'y'
- Q: how to improve?



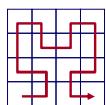
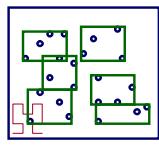
15-721

C. Faloutsos

109

R-trees - variations

- A: plane-sweep on HILBERT curve!



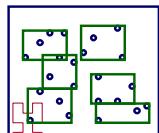
15-721

C. Faloutsos

110

R-trees - variations

- A: plane-sweep on HILBERT curve!
- In fact, it can be made dynamic (how?), as well as to handle regions (how?)



15-721

C. Faloutsos

111

CMU SCS

Advanced - skip

R-trees - variations

- Dynamic ('Hilbert R-tree):
 - each point has an 'h'-value (hilbert value)
 - insertions: like a B-tree on the h-value
 - but also store MBR, for searches

 CMU SCS

R-trees - variations

Guttman's R-trees sparked **much** follow-up work

- can we do better splits?
- what about static datasets (no ins/del/upd)?

→ what about other bounding shapes?

15-721

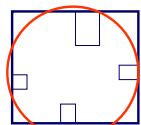
C. Faloutsos

113

CMU SCS

R-trees - variations

- A3: L-shapes; holes (hB-tree)
- A4: TV-trees [Lin+, VLDB-Journal 1994]
- A5: SR-trees [Katayama+, SIGMOD97] (used in Informedia)



15-721

C. Faloutsos

115

Outline

- R-trees
 - Problem definition - Spatial Access Methods
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)
 - GiST

15-721

C. Faloutsos

116

GiST: unifying the variants

- ``Generalized Search Tree''
- common API for all these variants? (why?)

15-721

C. Faloutsos

117

GiST: unifying the variants

- ``Generalized Search Tree''
- API:
 - consistent(n, q) // returns NO or MAYBE
 - union(r_1, \dots, r_n) // finds, e.g., MBR
 - penalty(p, n) // cost to put p in n
 - pickSplit(r_1, \dots, r_n) // split set of objects

15-721

C. Faloutsos

118

GiST

- source code at <http://gist.cs.berkeley.edu>, with
 - R-trees
 - R*-trees
 - etc

15-721

C. Faloutsos

119

Outline

- R-trees
 - main idea; file structure
 - algorithms: insertion/split
 - deletion
 - search: range, nn, spatial joins
 - performance analysis
 - variations (packed; hilbert;...)
 - Conclusions

15-721

C. Faloutsos

120

R-trees - conclusions

- Popular method; like multi-d B-trees
- guaranteed utilization
- good search times (for low-dim. at least)
- Informix (-> IBM) ships DataBlade with R-trees

15-721

C. Faloutsos

121

References

- • Guttmann, A. (June 1984). *R-Trees: A Dynamic Index Structure for Spatial Searching*. Proc. ACM SIGMOD, Boston, Mass.
- • Joseph M. Hellerstein, Jeffrey F. Naughton, Avi Pfeffer: *Generalized Search Trees for Database Systems*. VLDB 1995: 562-573

15-721

C. Faloutsos

122

References cont'd

- Edgar Chávez, Gonzalo Navarro, Ricardo A. Baeza-Yates, José L. Marroquín: *Searching in metric spaces*. ACM Comp. Surveys, 33,3, Sept. 2001, pp. 273-321
- Christian Böhm, Stefan Berchtold, Daniel A. Keim: *Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases*. ACM Comp. Surveys, 33,3, Sept. 2001, pp. 322-373

15-721

C. Faloutsos

123

References cont'd

- Volker Gaede, Oliver Günther: Multidimensional Access Methods. ACM Comp. Surveys, 30,2, June 1998, pp.170-231
- Jagadish, H. V. (May 23-25, 1990). *Linear Clustering of Objects with Multiple Attributes*. ACM SIGMOD Conf., Atlantic City, NJ.

15-721

C. Faloutsos

124

References, cont'd

- Lin, K.-I., H. V. Jagadish, et al. (Oct. 1994). *"The TV-tree - An Index Structure for High-dimensional Data."* VLDB Journal 3: 517-542.
- Pagel, B., H. Six, et al. (May 1993). *Towards an Analysis of Range Query Performance.* Proc. of ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), Washington, D.C.
- Robinson, J. T. (1981). *The k-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes.* Proc. ACM SIGMOD.

15-721

C. Faloutsos

125

References, cont'd

- Roussopoulos, N., S. Kelley, et al. (May 1995). *Nearest Neighbor Queries*. Proc. of ACM-SIGMOD, San Jose, CA.

15-721

C. Faloutsos

126