
1

CMU SCS

15-721 DB Sys. Design & Impl.

R-trees

Christos Faloutsos

www.cs.cmu.edu/~christos

15-721 C. Faloutsos 2

CMU SCS

Roadmap
1) Roots: System R and Ingres

2) Implementation: buffering, indexing, q-opt

3) Transactions: locking, recovery

4) Distributed DBMSs

5) Parallel DBMSs: Gamma, Alphasort

6) OO/OR DBMS

7) Data Analysis - data mining

8) Benchmarks

9) vision statements

extras (streams/sensors, graphs, multimedia, web, fractals)

15-721 C. Faloutsos 3

CMU SCS

Detailed roadmap

1) Roots: System R and Ingres

2) Implementation: buffering, indexing, q-opt
– OS support for DBMS

– R-trees and GiST

– Z-ordering

– Buffering

– ...

3) Transactions: locking, recovery



2

15-721 C. Faloutsos 4

CMU SCS

Outline

• R-trees
– Problem definition - Spatial Access Methods
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-721 C. Faloutsos 5

CMU SCS

Spatial Access Methods - problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• organize them on disk, to answer spatial 
queries (like??)

15-721 C. Faloutsos 6

CMU SCS

Spatial Access Methods - problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• organize them on disk, to answer
– point queries
– range queries
– k-nn queries
– spatial joins (‘all pairs’ queries)



3

15-721 C. Faloutsos 7

CMU SCS

Spatial Access Methods - problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• organize them on disk, to answer
– point queries
– range queries
– k-nn queries
– spatial joins (‘all pairs’ queries)

15-721 C. Faloutsos 8

CMU SCS

Spatial Access Methods - problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• organize them on disk, to answer
– point queries
– range queries
– k-nn queries
– spatial joins (‘all pairs’ queries)

15-721 C. Faloutsos 9

CMU SCS

Spatial Access Methods - problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• organize them on disk, to answer
– point queries
– range queries
– k-nn queries
– spatial joins (‘all pairs’ queries)



4

15-721 C. Faloutsos 10

CMU SCS

Spatial Access Methods - problem

• Given a collection of geometric objects 
(points, lines, polygons, ...)

• organize them on disk, to answer
– point queries
– range queries
– k-nn queries
– spatial joins(‘all pairs’ within ˾ )

15-721 C. Faloutsos 11

CMU SCS

SAMs - motivation

• Q: applications?

15-721 C. Faloutsos 12

CMU SCS

SAMs - motivation

salary

age

traditional DB GIS



5

15-721 C. Faloutsos 13

CMU SCS

SAMs - motivation

salary

age

traditional DB GIS

15-721 C. Faloutsos 14

CMU SCS

SAMs - motivation

CAD/CAM
find elements
too close
to each other

15-721 C. Faloutsos 15

CMU SCS

SAMs - motivation

CAD/CAM



6

15-721 C. Faloutsos 16

CMU SCS

day
1 365

day
1 365

S1

Sn

F(S1)

F(Sn)

SAMs - motivation

eg, avg

eg,. std

15-721 C. Faloutsos 17

CMU SCS

SAMs: solutions

• z-ordering
• R-trees
• (grid files)
Q: how would you organize, e.g., n-dim 

points, on disk? (C points per disk page)

15-721 C. Faloutsos 18

CMU SCS

Outline

• R-trees
– Problem definition
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)



7

15-721 C. Faloutsos 19

CMU SCS

R-trees

• How to group nearby points/shapes 
together?

• Idea: try to extend/merge B-trees and k-d 
trees

15-721 C. Faloutsos 20

CMU SCS

(first attempt: k-d-B-trees)

• [Robinson, 81]: if f is the fanout, split point-
set in f parts; and so on, recursively

15-721 C. Faloutsos 21

CMU SCS

(first attempt: k-d-B-trees)

• But: insertions/deletions are tricky (splits 
may propagate downwards and upwards)

• no guarantee on space utilization



8

15-721 C. Faloutsos 22

CMU SCS

R-trees

• [Guttman 84] Main idea: allow parents to 
overlap!
– => guaranteed 50% utilization

– => easier insertion/split algorithms.

– (only deal with Minimum Bounding 
Rectangles -MBRs)

15-721 C. Faloutsos 23

CMU SCS

R-trees

• eg., w/ fanout 4: group nearby rectangles to 
parent MBRs; each group -> disk page

A

B

C

D
E

F
G

H

I

J

15-721 C. Faloutsos 24

CMU SCS

R-trees

• eg., w/ fanout 4:

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

F GD E

H I JA B C



9

15-721 C. Faloutsos 25

CMU SCS

R-trees

• eg., w/ fanout 4:

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-721 C. Faloutsos 26

CMU SCS

R-trees - format of nodes

• {(MBR; obj-ptr)} for leaf nodes

P1 P2 P3 P4

A B C
x-low; x-high
y-low; y-high

...

obj
ptr ...

15-721 C. Faloutsos 27

CMU SCS

R-trees - format of nodes

• {(MBR; node-ptr)} for non-leaf nodes

P1 P2 P3 P4

A B C

x-low; x-high
y-low; y-high

...

node
ptr ...



10

15-721 C. Faloutsos 28

CMU SCS

R-trees - range search?

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-721 C. Faloutsos 29

CMU SCS

R-trees - range search?

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

15-721 C. Faloutsos 30

CMU SCS

R-trees - range search

Observations:

• every parent node completely covers its 
‘children’

• a child MBR may be covered by more than 
one parent - it is stored under ONLY ONE 
of them. (ie., no need for dup. elim.)



11

15-721 C. Faloutsos 31

CMU SCS

R-trees - range search

Observations - cont’d

• a point query may follow multiple branches.

• everything works for any dimensionality

15-721 C. Faloutsos 32

CMU SCS

Outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-721 C. Faloutsos 33

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘X’

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX



12

15-721 C. Faloutsos 34

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘X’

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CX

X

15-721 C. Faloutsos 35

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘Y’

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY

15-721 C. Faloutsos 36

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘Y’: extend suitable parent.

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B CY

Y



13

15-721 C. Faloutsos 37

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘Y’: extend suitable parent.

• Q: how to measure ‘suitability’?

15-721 C. Faloutsos 38

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘Y’: extend suitable parent.

• Q: how to measure ‘suitability’?

• A: by increase in area (volume) (more 
details: later, under ‘performance analysis’)

• Q: what if there is no room? how to split?

15-721 C. Faloutsos 39

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘W’

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F GD E

H I JA B C

W

K

K



14

15-721 C. Faloutsos 40

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘W’ - focus on ‘P1’ - how to 
split?

A

B

C

P1

W

K

15-721 C. Faloutsos 41

CMU SCS

R-trees - insertion

• eg.,  rectangle ‘W’ - focus on ‘P1’ - how to 
split?

A

B

C

P1

W

K • (A1: plane sweep, 

until 50% of rectangles)

• A2: ‘linear’ split

• A3: quadratic split

• A4: exponential split

15-721 C. Faloutsos 42

CMU SCS

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’
‘seed’

seed1

seed2

R



15

15-721 C. Faloutsos 43

CMU SCS

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’
‘seed’

• Q: how to measure ‘closeness’?

15-721 C. Faloutsos 44

CMU SCS

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’
‘seed’

• Q: how to measure ‘closeness’?

• A: by increase of area (volume)

15-721 C. Faloutsos 45

CMU SCS

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’
‘seed’

seed1

seed2

R



16

15-721 C. Faloutsos 46

CMU SCS

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’
‘seed’

seed1

seed2

R

15-721 C. Faloutsos 47

CMU SCS

R-trees - insertion & split

• pick two rectangles as ‘seeds’;

• assign each rectangle ‘R’ to the ‘closest’
‘seed’

• smart idea: pre-sort rectangles according to 
delta of closeness (ie., schedule easiest 
choices first!)

15-721 C. Faloutsos 48

CMU SCS

R-trees - insertion - pseudocode

• decide which parent to put new rectangle 
into (‘closest’ parent)

• if overflow, split to two, using (say,) the 
quadratic split algorithm
– propagate the split upwards, if necessary

• update the MBRs of the affected parents.



17

15-721 C. Faloutsos 49

CMU SCS

R-trees - insertion - observations

• many more split algorithms exist (next!)

15-721 C. Faloutsos 50

CMU SCS

Indexing - more detailed outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-721 C. Faloutsos 51

CMU SCS

R-trees - deletion

• delete rectangle

• if underflow
– ??



18

15-721 C. Faloutsos 52

CMU SCS

R-trees - deletion

• delete rectangle

• if underflow
– temporarily delete all siblings (!);

– delete the parent node and

– re-insert them

15-721 C. Faloutsos 53

CMU SCS

R-trees - deletion

• variations: later (eg. Hilbert R-trees w/ 2-to-
1 merge)

15-721 C. Faloutsos 54

CMU SCS

Indexing - more detailed outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)



19

15-721 C. Faloutsos 55

CMU SCS

R-trees - range search

pseudocode:

check the root

for each branch, 

if its MBR intersects the query rectangle

apply range-search (or print out, if this 

is a leaf)

15-721 C. Faloutsos 56

CMU SCS

R-trees - nn search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-721 C. Faloutsos 57

CMU SCS

R-trees - nn search

• Q: How? (find near neighbor; refine...)

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q



20

15-721 C. Faloutsos 58

CMU SCS

R-trees - nn search

• A1: depth-first search; then, range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-721 C. Faloutsos 59

CMU SCS

R-trees - nn search

• A1: depth-first search; then, range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

15-721 C. Faloutsos 60

CMU SCS

R-trees - nn search

• A1: depth-first search; then, range query

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q



21

15-721 C. Faloutsos 61

CMU SCS

R-trees - nn search

• A2: [Roussopoulos+, sigmod95]:
– priority queue, with promising MBRs, and their 

best and worst-case distance

• main idea:

15-721 C. Faloutsos 62

CMU SCS

R-trees - nn search

A

B

C

D
E

F
G

H

I

J

P1

P2

P3

P4q

consider only P2 and P4, for illustration

15-721 C. Faloutsos 63

CMU SCS

R-trees - nn search

D
E

H

J

P2
P4q

worst of P2

best of P4
=> P4 is useless

for 1-nn



22

15-721 C. Faloutsos 64

CMU SCS

R-trees - nn search

D
E

P2
q

worst of P2

• what is really the worst of, say, P2?

15-721 C. Faloutsos 65

CMU SCS

R-trees - nn search

P2
q

• what is really the worst of, say, P2?

• A: the smallest of the two red segments!

15-721 C. Faloutsos 66

CMU SCS

R-trees - nn search

• variations: [Hjaltason & Samet] incremental 
nn:
– build a priority queue

– scan enough of the tree, to make sure you have 
the k nn

– to find the (k+1)-th, check the queue, and scan 
some more of the tree

• ‘optimal’ (but, may need too much memory)



23

15-721 C. Faloutsos 67

CMU SCS

Indexing - more detailed outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-721 C. Faloutsos 68

CMU SCS

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting      lakes

15-721 C. Faloutsos 69

CMU SCS

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting      lakes



24

15-721 C. Faloutsos 70

CMU SCS

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting      lakes

15-721 C. Faloutsos 71

CMU SCS

R-trees - spatial joins

Assume that they are both organized in R-trees:

15-721 C. Faloutsos 72

CMU SCS

R-trees - spatial joins

for each parent P1 of tree T1
for each parent P2 of tree T2

if their MBRs intersect,
process them recursively (ie., check their     

children)



25

15-721 C. Faloutsos 73

CMU SCS

R-trees - spatial joins

Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do 

plane-sweeping to avoid N1 * N2 tests for 
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees
(FYI, many more papers on spatial joins, without R-

trees: [Koudas+ Sevcik], e.t.c.)

15-721 C. Faloutsos 74

CMU SCS

Indexing - more detailed outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-721 C. Faloutsos 75

CMU SCS

R-trees - performance analysis

• How many disk (=node) accesses we’ll 
need for
– range
– nn
– spatial joins

• why does it matter?



26

15-721 C. Faloutsos 76

CMU SCS

R-trees - performance analysis

• How many disk (=node) accesses we’ll 
need for
– range
– nn
– spatial joins

• why does it matter?
• A: because we can design split etc 

algorithms accordingly; also, do query-
optimization

15-721 C. Faloutsos 77

CMU SCS

R-trees - performance analysis

• A: because we can design split etc 
algorithms accordingly; also, do query-
optimization

• motivating question: on, e.g., split, should 
we try to minimize the area (volume)? the 
perimeter? the overlap? or a weighted 
combination? why?

15-721 C. Faloutsos 78

CMU SCS

R-trees - performance analysis

• How many disk accesses for range queries?
– query distribution wrt location?
– “ “ wrt size?



27

15-721 C. Faloutsos 79

CMU SCS

R-trees - performance analysis

• How many disk accesses for range queries?
– query distribution wrt location? uniform; (biased)
– “ “ wrt size? uniform

15-721 C. Faloutsos 80

CMU SCS

R-trees - performance analysis

• easier case: we know the positions of parent 
MBRs, eg:

15-721 C. Faloutsos 81

CMU SCS

R-trees - performance analysis

• How many times will P1 be retrieved (unif. 
queries)?

P1

x1

x2



28

15-721 C. Faloutsos 82

CMU SCS

R-trees - performance analysis

• How many times will P1 be retrieved (unif. 
POINT queries)?

P1

x1

x2

0 1
0

1

15-721 C. Faloutsos 83

CMU SCS

R-trees - performance analysis

• How many times will P1 be retrieved (unif. 
POINT queries)? A: x1*x2

P1

x1

x2

0 1
0

1

15-721 C. Faloutsos 84

CMU SCS

R-trees - performance analysis

• How many times will P1 be retrieved (unif. 
queries of size q1xq2)? 

P1

x1

x2

0 1
0

1

q1

q2



29

15-721 C. Faloutsos 85

CMU SCS

R-trees - performance analysis

• How many times will P1 be retrieved (unif. 
queries of size q1xq2)? A: (x1+q1)*(x2+q2)

P1

x1

x2

0 1
0

1

q1

q2

15-721 C. Faloutsos 86

CMU SCS

R-trees - performance analysis

• Thus, given a tree with N nodes (i=1, ... N) we 
expect 
#DiskAccesses(q1,q2) =

sum ( xi,1 + q1) * (xi,2 + q2)
= sum ( xi,1 * x i,2 )  +

q2 * sum ( xi,1 ) +
q1* sum ( xi,2 )
q1* q2 * N 

15-721 C. Faloutsos 87

CMU SCS

R-trees - performance analysis

• Thus, given a tree with N nodes (i=1, ... N) we 
expect 
#DiskAccesses(q1,q2) =

sum ( xi,1 + q1) * (xi,2 + q2)
= sum ( xi,1 * x i,2 )  +

q2 * sum ( xi,1 ) +
q1* sum ( xi,2 )
q1* q2 * N 

‘volume’

surface area

count



30

15-721 C. Faloutsos 88

CMU SCS

R-trees - performance analysis

Observations:
• for point queries: only volume matters
• for horizontal-line queries: (q2=0): vertical 

length matters
• for large queries (q1, q2 >> 0): the count N 

matters

15-721 C. Faloutsos 89

CMU SCS

R-trees - performance analysis

Observations (cont’ed)
• overlap: does not seem to matter
• formula: easily extendible to n dimensions
• (for even more details: [Pagel +, PODS93],  

[Kamel+, CIKM93])

15-721 C. Faloutsos 90

CMU SCS

R-trees - performance analysis

Conclusions:
• splits should try to minimize area and 

perimeter
• ie., we want few, small, square-like parent 

MBRs
• rule of thumb: shoot for queries with q1=q2 = 

0.1 (or =0.5 or so).



31

15-721 C. Faloutsos 91

CMU SCS

R-trees - performance analysis

• How many disk (=node) accesses we’ll 
need for
– range
– nn
– spatial joins

15-721 C. Faloutsos 92

CMU SCS

R-trees - performance analysis

Range queries - how many disk accesses, if we 
just now that we have

- N points in n-d space?
A: ?

15-721 C. Faloutsos 93

CMU SCS

R-trees - performance analysis

Range queries - how many disk accesses, if we 
just now that we have

- N points in n-d space?
A: can not tell! need to know distribution



32

15-721 C. Faloutsos 94

CMU SCS

R-trees - performance analysis
What are obvious and/or realistic distributions?

15-721 C. Faloutsos 95

CMU SCS

R-trees - performance analysis
What are obvious and/or realistic distributions?
A: uniform
A: Gaussian / mixture of Gaussians
A: self-similar / fractal. Fractal dimension ~ 

intrinsic dimension

15-721 C. Faloutsos 96

CMU SCS

R-trees - performance analysis
Formulas for range queries and k-nn queries: use 

fractal dimension [Kamel+, PODS94], [Korn+ 
ICDE2000] [Kriegel+, PODS97]

Formulas for spatial joins of regions: open 
research question



33

15-721 C. Faloutsos 97

CMU SCS

Indexing - more detailed outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)

15-721 C. Faloutsos 98

CMU SCS

R-trees - variations
Guttman’s R-trees sparked much follow-up 

work
• can we do better splits?
• what about static datasets (no ins/del/upd)?
• what about other bounding shapes?

15-721 C. Faloutsos 99

CMU SCS

R-trees - variations
Guttman’s R-trees sparked much follow-up work
• can we do better splits? 

– i.e, defer splits? 



34

15-721 C. Faloutsos 100

CMU SCS

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]
• defer splits, by forced-reinsert, i.e.: instead 

of splitting, temporarily delete some entries, 
shrink overflowing MBR, and re-insert 
those entries

• Which ones to re-insert?
• How many?

15-721 C. Faloutsos 101

CMU SCS

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]
• defer splits, by forced-reinsert, i.e.: instead 

of splitting, temporarily delete some entries, 
shrink overflowing MBR, and re-insert 
those entries

• Which ones to re-insert?
• How many? A: 30%

15-721 C. Faloutsos 102

CMU SCS

R-trees - variations

Q: Other ways to defer splits?



35

15-721 C. Faloutsos 103

CMU SCS

R-trees - variations

Q: Other ways to defer splits?
A: Push a few keys to the closest sibling node

(closest = ??)

15-721 C. Faloutsos 104

CMU SCS

R-trees - variations

R*-trees: Also try to minimize area AND 
perimeter, in their split.

Performance: higher space utilization; faster 
than plain R-trees. One of the most
successful R-tree variants.

15-721 C. Faloutsos 105

CMU SCS

R-trees - variations
Guttman’s R-trees sparked much follow-up 

work
• can we do better splits?
• what about static datasets (no ins/del/upd)?

– Hilbert R-trees

• what about other bounding shapes?



36

15-721 C. Faloutsos 106

CMU SCS

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?

15-721 C. Faloutsos 107

CMU SCS

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep

great for queries on ‘x’;
terrible for ‘y’

15-721 C. Faloutsos 108

CMU SCS

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep

great for queries on ‘x’;
bad for ‘y’



37

15-721 C. Faloutsos 109

CMU SCS

R-trees - variations
• what about static datasets (no ins/del/upd)?
• Q: Best way to pack points?
• A1: plane-sweep

great for queries on ‘x’;
terrible for ‘y’

• Q: how to improve?

15-721 C. Faloutsos 110

CMU SCS

R-trees - variations
• A: plane-sweep on HILBERT curve!

15-721 C. Faloutsos 111

CMU SCS

R-trees - variations
• A: plane-sweep on HILBERT curve!
• In fact, it can be made dynamic (how?), as 

well as to handle regions (how?)



38

15-721 C. Faloutsos 112

CMU SCS

R-trees - variations
• Dynamic (‘Hilbert R-

tree):
– each point has an ‘h’-

value (hilbert value)
– insertions: like a B-tree 

on the h-value
– but also store MBR, for 

searches

15-721 C. Faloutsos 113

CMU SCS

R-trees - variations
Guttman’s R-trees sparked much follow-up 

work
• can we do better splits?
• what about static datasets (no ins/del/upd)?
• what about other bounding shapes?

15-721 C. Faloutsos 114

CMU SCS

R-trees - variations
• what about other bounding shapes? (and why?)
• A1: arbitrary-orientation lines (cell-tree, 

[Guenther]
• A2: P-trees (polygon trees) (MB polygon: 0, 

90, 45, 135 degree lines)



39

15-721 C. Faloutsos 115

CMU SCS

R-trees - variations
• A3: L-shapes; holes (hB-tree)
• A4: TV-trees [Lin+, VLDB-Journal 1994]
• A5: SR-trees [Katayama+, SIGMOD97] (used 

in Informedia)

15-721 C. Faloutsos 116

CMU SCS

Outline

• R-trees
– Problem definition - Spatial Access Methods
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)
– GiST

15-721 C. Faloutsos 117

CMU SCS

GiST: unifying the variants
• ``Generalized Search Tree’’
• common API for all these variants? (why?)



40

15-721 C. Faloutsos 118

CMU SCS

GiST: unifying the variants
• ``Generalized Search Tree’’
• API: 

– consistent(n,q)      //returns NO or MAYBE
– union(r1, ... rn)     // finds, e.g., MBR
– penalty(p, n)        //cost to put p in n
– pickSplit(r1, ... rn) //split set of objects

15-721 C. Faloutsos 119

CMU SCS

GiST

• source code at http://gist.cs.berkeley.edu, with
– R-trees
– R*-trees
– etc

15-721 C. Faloutsos 120

CMU SCS

Outline

• R-trees
– main idea; file structure
– algorithms: insertion/split
– deletion
– search: range, nn, spatial joins
– performance analysis
– variations (packed; hilbert;...)
– Conclusions



41

15-721 C. Faloutsos 121

CMU SCS

R-trees - conclusions
• Popular method; like multi-d B-trees
• guaranteed utilization
• good search times (for low-dim. at least)
• Informix (-> IBM) ships DataBlade with R-

trees

15-721 C. Faloutsos 122

CMU SCS

References

• Guttman, A. (June 1984). R-Trees: A Dynamic Index 
Structure for Spatial Searching. Proc. ACM SIGMOD, 
Boston, Mass.

• Joseph M. Hellerstein, Jeffrey F. Naughton, Avi 
Pfeffer: Generalized Search Trees for Database Systems. 
VLDB 1995: 562-573

15-721 C. Faloutsos 123

CMU SCS

References cont’d

• Edgar Chávez, Gonzalo Navarro, Ricardo A. Baeza-Yates,
José L. Marroquín:  Searching in metric spaces. ACM 
Comp. Surveys, 33,3, Sept. 2001, pp. 273-321

• Christian Böhm, Stefan Berchtold, Daniel A. Keim: 
Searching in high-dimensional spaces: Index structures for 
improving the performance of multimedia databases. ACM 
Comp. Surveys, 33,3, Sept. 2001, pp. 322-373



42

15-721 C. Faloutsos 124

CMU SCS

References cont’d

• Volker Gaede, Oliver Günther: Multidimensional Access 
Methods. ACM Comp. Surveys, 30,2,  June 1998, pp.170-
231

• Jagadish, H. V. (May 23-25, 1990). Linear Clustering of 
Objects with Multiple Attributes. ACM SIGMOD Conf., 
Atlantic City, NJ.

15-721 C. Faloutsos 125

CMU SCS

References, cont’d

• Lin, K.-I., H. V. Jagadish, et al. (Oct. 1994). “The TV-tree 
- An Index Structure for High-dimensional Data.” VLDB 
Journal 3: 517-542.

• Pagel, B., H. Six, et al. (May 1993). Towards an Analysis 
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database 
Systems (PODS), Washington, D.C.

• Robinson, J. T. (1981). The k-D-B-Tree: A Search 
Structure for Large Multidimensional Dynamic Indexes. 
Proc. ACM SIGMOD.

15-721 C. Faloutsos 126

CMU SCS

References, cont’d

• Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest 
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, 
CA.


