g CMU SCS

15-721 DB Sys. Design & Impl.
R-trees

Christos Faloutsos
WWW.cs.cmu.edu/~christos

g CMU SCS
Roadmap

1) Roots: System R and Ingres
q 2) Implementation: buffering, indexing, q-opt
3) Transactions: locking, recovery
4) Distributed DBMSs
5) Parallel DBMSs: Gamma, Alphasort
6) OO/OR DBMS
7) Data Analysis - data mining
8) Benchmarks
9) vision statements
extras (streams/sensors, graphs, multimedia, web, Bactal

15-721 C. Faloutsos

g CMU SCS
Detailed roadmap

1) Roots: System R and Ingres
2) Implementation: buffering, indexing, g-opt
— OS support for DBMS
q — R-treesand GiST
— Z-ordering
— Buffering

3) Transactions: locking, recovery

15-721 C. Faloutsos

g CMU SCS
Outline

* R-trees
— Problem definition - Spatial Access Methods
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-721 C. Faloutsos 4

g CMU SCS
Spatial Access Methods - problen;

¢ Given a collection of geometric objects
(points, lines, polygons, ...)

« organize them on disk, to answer spatial
queries (like??)

INEN

LI e |

15-721 C. Faloutsos 5

g CMUSCS
Spatial Access Methods - problen

« Given a collection of geometric objects
(points, lines, polygons, ...)

 organize them on disk, to answer
— point queries
—range queries [] « -
— k-nn queries - -\

— spatial joins (‘all pairs’ querieg) « ft——

15-721 C. Faloutsos 6

g CMU SCS
Spatial Access Methods - problem

« Given a collection of geometric objects
(points, lines, polygons, ...)

e organize them on disk, to answer
— point queries
— range queries E] P
— k-nn queries . e
— spatial joins (‘all pairs’ queries) * —

15-721 C. Faloutsos 7

g CMU SCS
Spatial Access Methods - problen;

¢ Given a collection of geometric objects
(points, lines, polygons, ...)

e organize them on disk, to answer
— point queries
—range queries @ s
— k-nn queries ° oo
— spatial joins (‘all pairs’ querie§) * EE:

15-721 C. Faloutsos 8

g CMUSCS
Spatial Access Methods - problen

« Given a collection of geometric objects
(points, lines, polygons, ...)

 organize them on disk, to answer
— point queries

—range queries [] « -
— k-nn queries . e \
— spatial joins (‘all pairs’ querieg) * S

15-721 C. Faloutsos 9

g CMU SCS
Spatial Access Methods - problen;

« Given a collection of geometric objects
(points, lines, polygons, ...)

e organize them on disk, to answer
— point queries
— range queries [] .
—k-nn queries -—-'_\

— spatial joing‘all pairs’ withing)| % —

15-721 C. Faloutsos 10

g CMU SCS
SAMS - motivation

* Q: applications?

15-721 C. Faloutsos 11
g CMU SCS
SAMs - motivation
traditional DB GIS
age o o
salary

15-721 C. Faloutsos 12

g CMU SCS

SAMSs - motivation

traditional DB GIS
age o °

salary

15-721 C. Faloutsos 13

SAMSs - motivation
CAD/CAM
find elements

— — too close
:]:] :]:] to each other
— —
—

15-721 C. Faloutsos 14

15-721

SAMSs - motivation

CAD/CAM
—1 —
—1 —
—1 —
— —
—

C. Faloutsos 15

g CMU SCS

SAMSs - motivation

15-721 C. Faloutsos 16

g CMU SCS
SAMs: solutions

 z-ordering

* R-trees

* (grid files)

Q: how would you organize, e.g-dim
points, on disk? points per disk page)

15-721 C. Faloutsos 17
Outline
* R-trees

— Problem definition

— main idea; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

15-721 C. Faloutsos 18

CMU SCS

R-trees

» How to group nearby points/shapes
together?

« |dea: try to extend/merge B-trees and k-d
trees

15-721 C. Faloutsos 19

CMUSCS

(first attempt: k-d-B-trees)

 [Robinson, 81]: iffis the fanout, split point-
set inf parts; and so on, recursively

15-721 C. Faloutsos 20

CMU SCS

(first attempt: k-d-B-trees)

 But: insertions/deletions are tricky (splits
may propagate downwardad upwards)

* no guarantee on space utilization

15-721 C. Faloutsos 21

g CMUSCS
R-trees

 [Guttman 84] Main idea: allow parents to
overlap!
— => guaranteed 50% utilization
— => easier insertion/split algorithms.

— (only deal with Minimum Bounding
Rectangles MBRs)

-2 |

15-721 C. Faloutsos 22

g CMU SCS
R-trees

 eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

I
Jact DTl
E'ED F

15-721 C. Faloutsos 23

g CMU SCS
R-trees

* eg., w/ fanout 4:

P1 P3

|
acll [EOgil
F

B[] _a
ED b3 || [AEIE] (RO

P2
D] DERRIGEER

15-721 C. Faloutsos 24

g CMU SCS

R-trees

* eg., w/ fanout 4:

P1 P3|
aclll [CO&]
B[DF ‘ Ny
|
e pallo |l A | TS
VAR
P2
D elel T Tele]

15-721 C. Faloutsos

25

g CMU SCS
R-trees - format of nodes

* {(MBR; obj-ptr)} for leaf nodes

s

x-low; x-high| . /
y-low; y-high ?)?rj [Alelc]]

15-721

C. Faloutsos

g CMU SCS
R-trees - format of nodes

* {(MBR; node-ptr)} for non-leaf nodes

x-low; x-high S

y-low; y-high“gfje mms

[a[B]c] |

15-721 C. Faloutsos

g CMU SCS

R-trees - range search?

P1 P3|
A CL] il
B[: . \ \./
ED (alsle[) | [0
P2D | ole[] [elal 1]
g

R-trees - range search?

P1 P3

A cl]
B[] D
PZEE

15-721 C. Faloutsos 29

[
=N
H

NN
R \ ‘\Z
I Lalslel) [[n[i]a] |

[ofel [] [Fle[[]

g CMU SCS
R-trees - range search
Observations:
 every parent node completely covers its
‘children’

« a child MBR may be covered by more than
one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

15-721 C. Faloutsos 30

10

g CMU SCS

R-trees - range search

Observations - cont’d

* a point query may follow multiple branches.
« everything works foany dimensionality

15-721 C. Faloutsos

g CMU SCS

Outline

¢ R-trees

— main idea,; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

15-721

C. Faloutsos

g CMU SCS

R-trees - insertion

* eg., rectangle ‘X’

P1 P3
aclll [TciD
F |'H
B[] N |
=X ED pa|2 || [Alelel] | W[
P2p_| [olel 1] [ele[1]

15-721 C. Faloutsos 33

11

g CMU SCS

R-trees - insertion

* eg., rectangle ‘X’
P1

[alelc]| |

|
P2

,/
NN

VARRY
[ole[X] | [Flel []

15-721 C. Faloutsos

34

g CMU SCS

R-trees - insertion

e eg., rectangle ‘Y’

P1
|

[P1 P2 Pp Fe

A CL] DG:ﬁD] /
B " SRRy
A ||

Y ED p4 [alB[c[]| [[Hla]a]]
P2D |

L\
(ole[[] [Flel []

15-721

C. Faloutsos 35

g CMU SCS

R-trees - insertion

* eg., rectangle ‘Y’: extend suitable parent.

P3

p1 |
acll] &t

L

YPF E P4l
D |

C. Faloutsos

R \H\l'
[als[c] J| [[Hli[o] |

y
(o[elv] | [Flel []

15-721

36

12

g CMU SCS
R-trees - insertion

* eg., rectangle ‘Y’: extend suitable parent.
* Q: how to measure ‘suitability’?

15-721 C. Faloutsos

g CMU SCS
R-trees - insertion

* eg., rectangle 'Y’: extend suitable parent.

* Q: how to measure ‘suitability’?

e A: by increase in area (volume) (more
details: later, under ‘performance analysis’)

* Q: what if there is no room? how to split?

15-721 C. Faloutsos 38

g CMU SCS
R-trees - insertion

* eg., rectangle ‘W’
P1 k P3

|

0J ==
acll,, [T&T]
=W =G

B[]
ED AL
P2D |

¥
[o[e[[] [Flel]

15-721 C. Faloutsos 39

13

g CMU SCS

R-trees - insertion

* eg., rectangle ‘W’ - focus on ‘P1’ - how to
split?
1k

=)
JECH
B

15-721

C. Faloutsos 40

g CMU SCS

R-trees - insertion

e eg., rectangle ‘W’ - focus on ‘P1’ - how to
split?
1 k * (Al: plane sweep,

P

l Alcl] until 50% of rectangle
W
u * A2: ‘linear’ split

=) + A3: quadratic split

* Ad: exponential split

15-721 C. Faloutsos 41

g CMU SCS
R-trees - insertion & split

* pick two rectangles as ‘seeds’;

 assign each rectangle ‘R’ to the ‘closest’
‘seed’

DD |:|] seed2

R

seedl I |:|

15-721 C. Faloutsos 42

1

CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’
‘seed’

* Q: how to measure ‘closeness’?

15-721 C. Faloutsos 43

CMUSCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’
‘seed’

¢ Q: how to measure ‘closeness’?
* A: by increase of area (volume)

15-721 C. Faloutsos 44

CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

 assign each rectangle ‘R’ to the ‘closest’
‘seed’

DD |:|] seed2

R
1
seedl

15-721 C. Faloutsos 45

15

CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;
« assign each rectangle ‘R’ to the ‘closest’

‘seed’
R

seedl I |:|

15-721 C. Faloutsos 46

CMUSCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’
‘seed’

e smart idea: pre-sort rectangles according to
delta of closeness (ie., schedule easiest
choices first!)

15-721 C. Faloutsos a7

CMU SCS

R-trees - insertion - pseudocode

» decide which parent to put new rectangle
into (‘closest’ parent)

« if overflow, split to two, using (say,) the
quadratic split algorithm
— propagate the split upwards, if necessary

» update the MBRs of the affected parents.

15-721 C. Faloutsos 48

16

g CMU SCS

R-trees - insertion - observations

» many more split algorithms exist (next!)

15-721 C. Faloutsos 49

CMUSCS

B

¢ R-trees

15-721

Indexing - more detailed outline

— main idea,; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

C. Faloutsos

sCs

g CcMU

15-721

* delete rectangle

R-trees - deletion

f underflow
-??

C. Faloutsos

17

g CMU SCS

R-trees - deletion

« delete rectangle
« if underflow
— temporarily delete all siblings (!);

— delete the parent node and
— re-insert them

15-721

C. Faloutsos

g CMU SCS

R-trees - deletion

« variations: later (eg. Hilbert R-trees w/ 2-to-
1 merge)

15-721

C. Faloutsos

g CMU SCS

Indexing - more detailed outline

* R-trees

— main idea; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

15-721 C. Faloutsos

18

g CMU SCS
R-trees - range search

pseudocode:
check the root
for each branch,
if its MBR intersects the query rectangle
apply range-search (or print out, if this
is a leaf)

15-721 C. Faloutsos 55

g CMU SCS
R-trees - nn search

P1 P3
A c[] ||:| S
F

= =9-

B
ED P4
a P2]

15-721 C. Faloutsos 56

g CMU SCS
R-trees - nn search

* Q: How? (find near neighbor; refine...)
P1 P3

aclll [CO&]

[~ J==-

B[] F
Lo ED P4
d P2[D |

15-721 C. Faloutsos 57

19

CMU SCS

R-trees - nn search

» Al: depth-first search; then, range query

P1 P3|
acl Og
B——F |H

ED P4
q .P2 E 1]

15-721 C. Faloutsos

g CMU SCS
R-trees - nn search

» Al: depth-first search; then, range query

P1 P3|
aclll [T
B[F |‘H
ED pa |
q .PZ E 1|

15-721 C. Faloutsos

g CMU SCS
R-trees - nn search

» Al: depth-first search; then, range query

P1 P3|
A Cl] DE@—D
F |'H
B
e {}e EED P4 E
P2 —
—

15-721 C. Faloutsos

20

g CMU SCS
R-trees - nn search

» A2: [Roussopoulos+, sigmod95]:

— priority queue, with promising MBRs, and their
best and worst-case distance

¢ main idea:

15-721 C. Faloutsos 61

g CMU SCS
R-trees - nn search

consider only P2 and P4, for illustration

P1 P3

ac]]
F

= =9-

B
ED P4
a P2]

15-721 C. Faloutsos 62

g CMU SCS
R-trees - nn search
best of P4 .
- => P4 is useleq
for 1-nn
wo stofy
d P2

15-721 C. Faloutsos 63

21

g CMU SCS

R-trees - nn search

» what is really the worst of, say, P2?

\ie}

15-721

C. Faloutsos

g CMU SCS

R-trees - nn search

» what is really the worst of, say, P2?
» A: the smallest of the two red segments!

15-721

C. Faloutsos

g CMU SCS

R-trees - nn search

* variations: [Hjaltason & Samet] incremental
nn:

— build a priority queue

— scan enough of the tree, to make sure you have
thek nn

— to find the k+1)-th, check the queue, and scan
some more of the tree

* ‘optimal’ (but, may need too much memory)

15-721

C. Faloutsos 66

22

g CMU SCS

Indexing - more detailed outline

* R-trees

— main idea; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

15-721

C. Faloutsos

g CMU SCS

R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

L o
[/ a Q@

15-721

C. Faloutsos

g CMU SCS

R-trees - spatial joins

Spatial joins. find (quickly) all
counties intersecting lakes

15-721 C. Faloutsos

g CMU SCS
R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

‘ /

_ T /
S~

15-721 C. Faloutsos 70

g CMUSCS
R-trees - spatial joins

Assume that they are both organized in R-trees:

—
[]-]

15-721 C. Faloutsos 71

g CMU SCS
R-trees - spatial joins

for each parent P1 of tree T1
for each parent P2 of tree T2
if their MBRs intersect,
process them recursively (ie., check their
children)

15-721 C. Faloutsos 72

g CMU SCS

R-trees - spatial joins

Improvements - variations:

- [Seeger+, sigmod 92]: do some pre-filtering; do
plane-sweeping to avold1 * N2 tests for
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees

(FYI, many more papers on spatial joins, without R-
trees: [Koudas+ Sevcik], e.t.c.)

15-721

C. Faloutsos

g CMU SCS

Indexing - more detailed outline

¢ R-trees

— main idea,; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

15-721

C. Faloutsos

g CMU SCS

R-trees - performance analysis

« How many disk (=node) accesses we'll
need for

- range
-nn
— spatial joins
« why does it matter?

15-721 C. Faloutsos

25

g CMU SCS
R-trees - performance analysis

* How many disk (=node) accesses we’'ll
need for
—range
—nn
— spatial joins

« why does it matter?

¢ A: because we can design split etc
algorithms accordingly; also, do query-
optimization

15-721 C. Faloutsos 76

g CMUSCS
R-trees - performance analysis

¢ A: because we can design split etc
algorithms accordingly; also, do query-
optimization

* motivating question: on, e.g., split, should
we try to minimize the area (volume)? the
perimeter? the overlap? or a weighted
combination? why?

15-721 C. Faloutsos 7

g CMU SCS
R-trees - performance analysis
« How many disk accesses for range queries?

— query distribution wrt location?
- “ wrt size?

15-721 C. Faloutsos 78

g CMU SCS
R-trees - performance analysis

* How many disk accesses for range queries?
— query distribution wrt location®niform; (biased)
- " “ wrt size?uniform

15-721 C. Faloutsos 79

g CMUSCS
R-trees - performance analysis

« easier case: we know the positions of parent

MBRs, eg:
o
15-721 C. Faloutsos 80

R-trees - performance analysis

« How many times will P1 be retrieved (unif.
queries)?

P1 t x2

15-721 C. Faloutsos 81

27

g CMU SCS
R-trees - performance analysis

* How many times will P1 be retrieved (unif.
POINT queries)?

SR | S—

15-721 C. Faloutsos 82

g CMUSCS
R-trees - performance analysis

¢ How many times will P1 be retrieved (unif.
POINT queries)? A: x1*x2
x1

S - S—

15-721 C. Faloutsos 83

g CMUSCS
R-trees - performance analysis

« How many times will P1 be retrieved (unif.
queries of size q1xg2)?
x1

— ey

t x2

15-721 C. Faloutsos 84

28

g CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xg2)? A: (x1+ql)*(x2+qg2)
x1

t x2

15-721 C. Faloutsos 85

g CMU SCS

R-trees - performance analysis

expect
#DiskAccesses(q1,92) =
sum (X, +ql) * (5, + q2)
=sum (X, * X;,) +
g2*sum(x;)+
gl* sum ()
ql*g2 *N

15-721 C. Faloutsos 86

¢ Thus, given a tree with N nodes (i=1, ... N) w

1%

g CMU SCS

R-trees - performance analysis
¢ Thus, given a tree with N nodes (i=1, ... N) wi
expect
#DiskAccesses(q1,92) =
sum (X, +al) * (%2 + q2)

=sum ()I(l * Xi,2) + — ‘volume’
g2 * sum (x,) + —— surface area
ql* sum (X,) —
ql* g2 * N —— count

15-721

C. Faloutsos 87

%

29

g CMU SCS
R-trees - performance analysis

Observations:
« for point queries: only volume matters

« for horizontal-line queries: (q2=0): vertical
length matters

« for large queries (q1, g2 >> 0): the count N
matters

15-721 C. Faloutsos 88

g CMUSCS
R-trees - performance analysis

Observations (cont’ed)
« overlap: does not seem to matter
« formula: easily extendible todimensions

« (for even more details: [Pagel +, PODS93],
[Kamel+, CIKM93])

15-721 C. Faloutsos 89

g CMUSCS
R-trees - performance analysis

Conclusions:

« splits should try to minimize area and
perimeter

« ie., we want few, small, square-like parent
MBRs

« rule of thumb: shoot for queries with q1=92 =
0.1 (or =0.5 or so).

15-721 C. Faloutsos 90

g CMU SCS
R-trees - performance analysis

* How many disk (=node) accesses we’'ll
need for
—range
—nn
— spatial joins

15-721 C. Faloutsos 91

g CMUSCS
R-trees - performance analysis

Range queries - how many disk accesses, if wg
just now that we have

- N points inn-d space?
A ?

15-721 C. Faloutsos 92

g CMUSCS
R-trees - performance analysis

Range queries - how many disk accesses, if w¢
just now that we have

- N points inn-d space?

A: can not tell! need to know distribution

15-721 C. Faloutsos 93

31

g CMU SCS

R-trees - performance analysis
What are obvious and/or realistic distributions?

15-721 C. Faloutsos 94

g CMU SCS

R-trees - performance analysis

What are obvious and/or realistic distributions?
A: uniform
A: Gaussian / mixture of Gaussians

A: self-similar / fractal. Fractal dimension ~
intrinsic dimension

15-721 C. Faloutsos 95

g CMUSCS
R-trees - performance analysis

Formulas for range queries and k-nn queries: ug
fractal dimension [Kamel+, PODS94], [Korn+
ICDE2000] [Kriegel+, PODS97]

Formulas for spatial joins of regions: open
research question

15-721 C. Faloutsos 96

e

32

g CMU SCS

Indexing - more detailed outline

* R-trees

— main idea; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)

15-721 C. Faloutsos

g CMU SCS

R-trees - variations

Guttman’s R-trees sparkeauch follow-up
work

m)can we do better splits?

¢ what about static datasets (no ins/del/upd)?
« what about other bounding shapes?

15-721

C. Faloutsos

g CMU SCS

R-trees - variations

Guttman'’s R-trees sparked much follow-up worl
e can we do better splits?
—i.e, defer splits?

15-721

C. Faloutsos

33

CMU SCS

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]

« defer splits, by forced-reinsert, i.e.: instead
of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

* Which ones to re-insert?

¢ How many?

]D

—

15-721 C. Faloutsos 100

CMUSCS

R-trees - variations

A: R*-trees [Kriegel+, SIGMOD90]

« defer splits, by forced-reinsert, i.e.: instead
of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

* Which ones to re-insert?

« How many? A: 30% | -

—

15-721 C. Faloutsos 101

CMU SCS

R-trees - variations

Q: Other ways to defer splits?

15-721 C. Faloutsos 102

34

g CMU SCS
R-trees - variations

Q: Other ways to defer splits?

A: Push a few keys to the closest sibling node
(closest = ??)

15-721 C. Faloutsos 103

g CMU SCS
R-trees - variations

R*-trees: Also try to minimize area AND
perimeter, in their split.

Performance: higher space utilization; faster
than plain R-trees. One of theost
successful R-tree variants.

15-721 C. Faloutsos 104

g CMU SCS

R-trees - variations
Guttman’s R-trees sparkaauch follow-up
work
e can we do better splits?

m) what about static datasets (no ins/del/upd)?
— Hilbert R-trees

« what about other bounding shapes?

15-721 C. Faloutsos 105

g CMU SCS

15-721

C. Faloutsos

R-trees - variations

« what about static datasets (no ins/del/upd)?
¢ Q: Best way to pack points?

106

g CMU SCS

« Al: plane-sweep

terrible for 'y’

15-721

great for queries on ‘X’;

C. Faloutsos

R-trees - variations

¢ what about static datasets (no ins/del/upd)?
¢ Q: Best way to pack points?

fie

107

g CMU SCS

¢ Al: plane-sweep

bad for 'y’

15-721

great for queries on ‘X’;

C. Faloutsos

R-trees - variations

« what about static datasets (no ins/del/upd)?
¢ Q: Best way to pack points?

i

108

36

g CMU SCS

R-trees - variations
« what about static datasets (no ins/del/upd)?
¢ Q: Best way to pack points?
* Al: plane-sweep
great for queries on ‘X’;

terrible for 'y’ mrLA]
¢ Q: how to improve? HLHH LL

15-721 C. Faloutsos

109

g CMU SCS

R-trees - variations
¢ A: plane-sweep on HILBERT curve!

[|
v

15-721 C. Faloutsos 110

g CMU SCS

R-trees - variations

¢ A: plane-sweep on HILBERT curve!
« In fact, it can be made dynamic (how?), as
well as to handle regions (how?)

15-721 C. Faloutsos 111

37

g CMU SCS

R-trees - variations

« Dynamic (‘Hilbert R-
tree):
— each point has an ‘h’-
value (hilbert value)
— insertions: like a B-tree
on the h-value

— but also store MBR, for
searches

15-721 C. Faloutsos 112

g CMU SCS

R-trees - variations
Guttman’s R-trees sparkaauch follow-up
work
e can we do better splits?
¢ what about static datasets (no ins/del/upd)?
ﬂ what about other bounding shapes?

15-721 C. Faloutsos 113

g CMU SCS

R-trees - variations

« what about other bounding shapes? (and whyf:

e Al: arbitrary-orientation lines (cell-tree,
[Guenther]

« A2: P-trees (polygon trees) (MB polygon: O,
90, 45, 135 degree lines)

(S

15-721 C. Faloutsos 114

38

g CMU SCS

R-trees - variations

¢ A3: L-shapes; holes (hB-tree)
¢ A4: TV-trees [Lin+, VLDB-Journal 1994]
* A5: SR-trees [Katayama+, SIGMOD97] (used

in Informedia)
AN
= C
_n /|

15-721 C. Faloutsos 115

g CMU SCS
Outline

* R-trees
— Problem definition - Spatial Access Methods
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)
- GIST

15-721 C. Faloutsos 116

g CMUSCS
GIST: unifying the variants

e “Generalized Search Tree”
e common API for all these variants? (why?)

15-721 C. Faloutsos 117

g CMU SCS
GIST: unifying the variants

e “Generalized Search Tree”
* API:
—consistent(n,q) //returns NO or MAYBE
—union(rl, ... rn) /I finds, e.g., MBR
— penalty(p, n) /lcost to pupinn
— pickSplit(r1, ... rn) //split set of objects

15-721 C. Faloutsos

118

g CMU SCS

— main idea; file structure

— algorithms: insertion/split

— deletion

— search: range, nn, spatial joins
— performance analysis

— variations (packed; hilbert;...)
— Conclusions

15-721 C. Faloutsos

GIST

* source code attp:/gist.cs.berkeley.edu, With

— R-trees

— R*-trees

—etc
15-721 C. Faloutsos 119

Outline

* R-trees

120

40

g CMU SCS
R-trees - conclusions

» Popular method; like multi-d B-trees
 guaranteed utilization
» good search times (for low-dim. at least)

Informix (-> IBM) ships DataBlade with R-
trees

15-721 C. Faloutsos 121

g CMU SCS
References

q- Guttman, A. (June 1984). R-Trees: A Dynamic | ndex
Structure for Spatial Searching. Proc. ACM SIGMOD,
Boston, Mass.

 Joseph M. Hellerstein, Jeffrey F. Naughton, Avi
Pfeffer: Generalized Search Treesfor Database Systems.
VLDB 1995: 562-573

15-721 C. Faloutsos 122

g CMU SCS

References cont’d

« Edgar Chavez, Gonzalo Navarro, Ricardo A. Baeza-Yates,
José L. Marroquin:Searching in metric spaces. ACM
Comp. Surveys, 33,3, Sept. 2001, pp. 273-321

» Christian Bohm, Stefan Berchtold, Daniel A. Keim:
Searching in high-dimensional spaces: Index structures for
improving the performance of multimedia databases. ACM
Comp. Surveys, 33,3, Sept. 2001, pp. 322-373

15-721 C. Faloutsos 123

g CMU SCS

References cont’d

* Volker Gaede, Oliver Giunther: Multidimensional Access
Methods. ACM Comp. Surveys, 30,2, June 1998, pp.170-
231

» Jagadish, H. V. (May 23-25, 199Q)near Clustering of
Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

15-721 C. Faloutsos 124

g CMU SCS

References, cont'd

e Lin, K.-l., H. V. Jagadish, et al. (Oct. 1994YHe TV-tree
- An Index Structure for High-dimensional Data.” VLDB
Journal 3: 517-542.

» Pagel, B., H. Six, et al. (May 1993jowards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

* Robinson, J. T. (1981Yhe k-D-B-Tree: A Search
Structure for Large Multidimensional Dynamic Indexes.
Proc. ACM SIGMOD.

15-721 C. Faloutsos 125

g CMU SCS

References, cont’d

¢ Roussopoulos, N., S. Kelley, et al. (May 19%&garest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose,
CA.

15-721 C. Faloutsos 126

42

