
1

15-721 Database Management Systems

Benchmarking in Database
Systems

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2© 2005 Anastassia Ailamaki

Questions (already)

q What’s your view of performance?

q How would you measure/compare
performance of database systems?

q What would you do if it was your database
system under test?

3© 2005 Anastassia Ailamaki

Why Benchmark DB Systems?

q Provide buying guide for
customer on cost, performance

q Stake in the sand for vendors

q Target for developers

2

4© 2005 Anastassia Ailamaki

Why Not Benchmark DB Systems?

q Vendors cheat like mad.
q (how can you cheat?)

q Benchmark specials

q Customers never achieve same level of
performance as vendors

q “Single number” benchmarks are mainly
marketing tools

5© 2005 Anastassia Ailamaki

Benchmarketing

q Benchmark “wars”
q Small “representative” application
q …run
q 1 winner, n losers
q …run “corrected” benchmark in “tuned” system
q (gurus get involved)
q Another winner, other losers
q … more of the same…
q “the new system will include this beta feature”

6© 2005 Anastassia Ailamaki

More Reasons Not to Benchmark

q Design is really hard

q Even if people agree on benchmark, they don’t
agree on how to compare performance

q Noone thinks benchmark is good (not even the
winner)

q And cheating, cheating, cheating
q Auditing benchmark results did not fix the problem

3

7© 2005 Anastassia Ailamaki

Anon. et. al.

q (Really Jim Gray)

q A Measure of Transaction Processing
Plan Original version of paper
published in DataMation on April 1,
1984

8© 2005 Anastassia Ailamaki

Anon. et. al. Benchmark
Benchmark consists of three tests:
q Debit/Credit Transaction

q Simulates customer doing a banking transaction
q Measures throughput and cost

q Scan
q Series of batch updates of 1000 records
q Measures performance available to application

programmer (time+cost)

q Sort
q Sort 1 million records
q Illustrates raw performance of system (time+cost)

9© 2005 Anastassia Ailamaki

Observations

q Only debit/credit component survived – evolved into
TPC/A and then TPC/B and then TPC-C

q Sort benchmark evolved into:

1) “Datamation” sort

2) Minute sort – how much can you sort in a minute

3) Penny sort – how much you can sort for a penny

4

10© 2005 Anastassia Ailamaki

Performance Metrics

q For sort and scan: elapsed time
q For debit credit:

Peak transactions per second with 95% of
transactions having less than one second
response time

q Speed of communication line is factored out.
Response = interval between the arrival of the
last bit from the communications line and the
sending of the first bit of the response

q As we will see cost is factored in too

11© 2005 Anastassia Ailamaki

Calculating Cost

q Complex to calculate
q Ideally would capture entire “cost of ownership”
q Adopted the “vendors view” for its simplicity

Cost = the 5-year capital cost of vendor supplied
software & hardware in the machine room
(Probably 1/5 the total cost)

q Not included :
Cost of money
Terminal cost
Communication line cost
Application development cost
Cost of running the operation

12© 2005 Anastassia Ailamaki

How is Cost Used?

q Benchmark is charged for resource used
2-5 of the 5-year cost of the s/w and h/w

q Example for a sort that runs 1 hour:

Package Package Cost Per Hour Cost Benchmark Cost
Processor $80K $1.8 $1.8
Memory $15K $.3 $.3
Disk $50K $1.1 $1.1
Software $50K $1.1 $1.1
Total $4.3

5

13© 2005 Anastassia Ailamaki

Why Include Price in Benchmark?
q Cross-vendor comparisons for h/w and s/w
q Flexibility in system configuration used

q Sort example (drawn from Tandem):
1)A one CPU, 2 disk sort takes 30 minutes @ cost

of $1.5

2)A 16 CPU, 2 disk, 8MB memory sort takes 10
minutes and cost $15

q Parallel sort is 3X faster but has 10X cost

14© 2005 Anastassia Ailamaki

Definition of Sort Benchmark

q Goal: measure what a wizard can get out of the system
q Excellent measure of input/output architecture (software and

hardware) as well as overhead imposed by OS
q Definition:

q Input file: 1M, 100 byte records stored sequentially on disk
q first 10 bytes of each record constitutes a key
q keys of the input file are in random order
q Sort creates an output file on disk and fills it with the input records in key

order
q No restrictions – sort may use as much memory and as many scratch

files as desired
q Relevant metrics: elapsed time and cost

15© 2005 Anastassia Ailamaki

Scan Benchmark
q Typical of “end-of-day” processing in on-line transaction

processing systems
q E.g., each night the credit card company generates 1/30th of the

months bills

q Based on a Cobol program that sequentially scans a
sequential file, reading and updating each record

q Input file is 1M, 100-byte records
q Scan is broken into minibatch transactions each of which

processes 1000 records
q Restrictions:

q Must use fine grain locking so debit/credit transactions can run
concurrently

q Updates must be protected with a log
q Application must be written using some end-user application interface

in high-level programming language

6

16© 2005 Anastassia Ailamaki

Transaction Flow

Open file shared, record locking
Perform Scan 1000 times

Begin
BeginTransaction

Perform 1000 times
Read next record from input file with locking

Rewrite record
CommitTransaction
End

Close File

17© 2005 Anastassia Ailamaki

Evaluation

Relevant measures:

q Elapsed time: average time between
BeginTransaction steps

q Cost: the time-weighted system cost of Scan

Results:

q Theory: Elapsed time of 0.1 second.

q Practice: 1 to 100 seconds (10 second average)
with costs ranging from $0.001 to $0.1

18© 2005 Anastassia Ailamaki

DebitCredit Benchmark

Background
q 1973, a large retail bank wanted to put its 1,000

branches, 10,000 tellers, and 10,000,000 accounts on-
line. Goal: a peak load of 100 TPS + 99.5% availability

q Two bids were submitted:
1) $5M from a minicomputer vendor - $50K/TPS cost
2) $25M from a mainframe vendor $250K/TPS costs
q TP1 => TPC/A (w/ terminals) => TPC/B (w/o terminals)
q For a long time 1000 TPS was unachievable. Eventually

vendors produced systems capable of 10,000 TPS!!
q Eventually TPC-C by Transaction Processing Council

7

19© 2005 Anastassia Ailamaki

DebitCredit Database
q Record types: branches, tellers, accounts, history
q Sizing for 100 TPS:

q 1,000 branches (0.1MB, random access, 100B records)
q 10,000 tellers (1 MB, random access, 100B records)
q 10,000,000 accounts (1 GB, random access, 100B recs)
q 90 day history (10 GB sequential, 50 byte records)

q Transaction flow:
BeginTransaction

Read message from terminal (100 bytes)
Read and update account
Write history
Read and update teller
Read and update branch
Write message to terminal (200 bytes)

CommitTransaction

20© 2005 Anastassia Ailamaki

DebitCredit Details

q Branch keys are generated randomly
q Teller within branch is picked at random
q Random account picked

q 85% of the time same branch

q 15% of the time different branch

q Account keys = 10B, other keys can be
short (i.e. ints)

21© 2005 Anastassia Ailamaki

Other Restrictions

q All data files must be protected by
q fine granularity locking
q logging (duplexed)

q History file must be on stable storage
q 95% of the transactions must have a

response time of 1 second or less
q Message handling and terminal must be

incorporated
q Tellers have a 100 second think time

8

22© 2005 Anastassia Ailamaki

Benchmark Scaling

q For a 10 TPS system store only 1/10 of the DB

(100 branches, 1,000 tellers, 1M accounts)

q For a 1000 TPS system scale up DB 100x

(10K branches, 100K tellers, 100M accounts)

q For a 10,000 TPS system scale up DB 1000x

(100K branches, 1M tellers, 1G accounts)

23© 2005 Anastassia Ailamaki

Criticism

q Doesn’t match real business transactions (too simple)

q Performance benchmark only. Evaluates very little of the
functionality offered by relational database systems

q Allowed vendors to ignore decision support issues for almost
10 years (84-94)

q Comments about functional benchmarks being non-portable
are bogus. E.g., Wisconsin benchmark is certainly portable

q Cost structure is too simple
q Ignores communications/terminal costs
q Ignores cost of development and maintenance
q Ignores cost of outages (lost labor)

24© 2005 Anastassia Ailamaki

Current TPC benchmarks

q TPC-C (OLTP)

q TPC-D: Decision-support =>TPC-H, TPC-R

q TPC-W: web

q http://www.tpc.org

9

25© 2005 Anastassia Ailamaki

TPC-C
q Complete wholesale supplier computing environment
q Population of users executes transactions
q Activities of order-entry environment

q entering and delivering orders
q recording payments
q checking the status of orders
q monitoring the level of stock at the warehouses

q Transactions executed on-line or queued. Tests:
q The simultaneous execution of complex transaction types
q Multiple on-line terminal sessions, elapsed time, I/O, ACID
q Non-uniform data distribution, type variety, contention

q Measure: new-order tpmC, $/tpmC, and availability date of the
priced configuration.

26© 2005 Anastassia Ailamaki

TPC-C World

Customers

Company

Warehouse-1

District-10

Warehouse-W

District-1 District-2

3k1 2 30k

27© 2005 Anastassia Ailamaki

TPC-C Schema

Warehouse District

History

Customer

New-Order

OrderOrder-LineItem

Stock

W W*10

3k

1+

W*30k

W*30k+5-15

0-1

1+
W*30k+

W*9k+

W*300k+

3+

100k

W

W*100k

100k

10

10

28© 2005 Anastassia Ailamaki

TPC-H/R
q Suite of business oriented ad-hoc queries and

concurrent data modifications
q Queries and the data relevant to industry
q Illustrates decision support systems that

q examine large volumes of data
q execute queries with a high degree of complexity
q give answers to critical business questions

q TPC-H Composite Query-per-Hour Performance
Metric (QphH@Size) reflects

q selected database size
q query processing power with single execution stream
q query throughput with multiple concurrent users.

q Price/Performance metric: $/QphH@Size.

29© 2005 Anastassia Ailamaki

TPC-H Schema

ORDERKEY

LINEITEM (L_)
SF*6000K Tuples

PARTKEY

SUPPKEY

LINENUMBER

QUANTITY

EXTENDEDPRICE

DISCOUNT

TAX

RETURNFLAG

LINESTATUS

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

ORDERKEY

ORDER (O_)
SF*1500K Tuples

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDERPRIORITY

CLERK

SHIPPRIORITY

COMMENT

PARTKEY

PART (P_)
SF*200K Tuples

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

CUSTKEY

CUSTOMER (C_)
SF*150K Tuples

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

SUPPKEY

SUPPLIER (S_)
SF*10K Tuples

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

PARTKEY

PARTSUPP (PS_)
SF*800K Tuples

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

NATIONKEY

NATION (N_)
25 Tuples

NAME

REGIONKEY

COMMENT

REGIONKEY

REGION (R_)
5 Tuples

NAME

COMMENT

30© 2005 Anastassia Ailamaki

TPC-H Example Query

SELECT
L_ORDERKEY, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS
REVENUE, O_ORDERDATE, O_SHIPPRIORITY

FROM CUSTOMER, ORDER, LINEITEM
WHERE

C_MKTSEGMENT = 'FOOD' AND
C_CUSTKEY = O_CUSTKEY AND
L_ORDERKEY = O_ORDERKEY AND
O_ORDERDATE < DATE 1.5.98 AND
L_SHIPDATE > DATE 1.6.98

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE DESC, O_ORDERDATE

(Shipping Priority (Query 3))

11

31© 2005 Anastassia Ailamaki

TPC-W

q Transactional web benchmark

q Controlled internet commerce environment

q Business-oriented transactional web server

q Similar tests with TPC-C

q Metric: Web Interactions Per Second (WIPS)

q Profiles:
q Primary shopping

q Browsing

q Web-based ordering

32© 2005 Anastassia Ailamaki

Other benchmarks

q Wisconsin benchmark

q 007 (OODBMSs)

q Sequoia2000 (GIS)

q Data mining benchmarks (similar to DSS)

q Microbenchmarks

q Excellent (and fun) reading: Gray’s handbook

(on the web from www.benchmarkresources.com)

