Web Data Management

Charlie Garrod
25 Apr 2005
-

12 years ago...
. |
I Al Gore had just invented the internet

I A (relatively) small number of users put
content on the web

I And a (relatively) small number of users
downloaded it

Most content was simple!

8 years ago... web caches

I Much larger number of users

I Most content was still simple and static

T P
Client —
- G
'3 N
fent &YS Home server

Ss

N
Proxy caches Inte\rrif M

o) @

ient

5 years ago... CDNSs

| Content Distribution Networks

I Move web content to the “edge”

i. - l=
F Home server

Transparent proxy servers Interne1

Ter ‘— .
—=)
ient

Today...
R —
I Web content is complex and dynamic
- interactive and personalized
I Amazon, CNN, Google, USAIr, LiveJournal,
and of course the 15-721 course homepage...

Dynamic content generation

Web Server Database Server

er=ray

»

\

Application Server

Dynamic content generation

—
Ci ~

Home server

% _~‘\\~~_J\ ==

]
lient =
t

>

- Interpet_ :_}3
Client ’—}_‘,,—

Client

Web database workloads

. |

I Most queries are small and simple (OLTP)
- Show me the last 25 journal entries by “puuj”
- Show me non-full flights to LAX next Friday
- Find all websites about fire-breathing space

monkeys

I Few updates

I Other than that, workloads vary greatly
between applications

Web database workloads

I Queries and updates are often instantiations
of more general templates
- Q1: SELECT id FROM users WHERE age > ?
- U2: UPDATE users SET age = ? WHERE id = ?

The $65,536 question:
. |

How do we make dynamic
content scalable?

Web Data Management Outline
.

Introduction
Overview of common approaches
WebView Materialization

DBProxy: A dynamic data cache for Web
applications

Conclusions

Web Data Management Outline
e

Introduction
Overview of common approaches
WebView Materialization

DBProxy: A dynamic data cache for Web
applications

Conclusions

Solution #1 : WebView Materialization
¢ |

Make the content “static”

Solution #1: WebView Materialization
¢ |

I Generate new static version of webpage
every time it is updated

I Works great for CNN, Slashdot, etc. where
the content is semi-static

- Does not adapt well to personalized or interactive
websites

Solution #2
¢ |

Build a custom solution

Solution #2: Big DBMS™

N

| BigDBMS™

/

I_‘h‘*~§-‘€
nternet _) -
%t“'_—;_\/f
8. =8
Client ‘-—____’ ||

Solution #2: Big DBMS™
.

I Build a custom, semi-centralized DBMS
system

I Good for big companies such as Google,
Amazon, EBay, etc. with an established user
base and significant market investment

I Very expensive to implement!

Solution #3
¢ |

Try something else!

Solution #3: Dynamic CDN
. |

I Try to apply the principles of caching and
content-distribution to dynamic web pages
- Build a nice, general solution to scale dynamic
workloads
- Adaptable to personalization and interaction
- Cheaper than a custom, specialized solution

Solution #3: Dynamic CDN
.

I Try to apply the principles of caching and
content-distribution to dynamic web pages
- Build a nice, general solution to scale dynamic
workloads
- Adaptable to personalization and interaction
- Cheaper than a custom, specialized solution

This is easier said than done!

Web database workloads revisited

. |
I Most queries are small and simple (OLTP)
- Show me the last 25 journal entries by “puuj”
- Show me non-full flights to LAX next Friday
- Find all websites about fire-breathing space
monkeys
I Few updates
Other than that, workloads vary greatly
between applications

Distributing dynamic content

I Which server components should we
distribute?

- Everything?

- Just the web server and application server?
- Partially replicate the database?

Distribute everything!
.

I All proxy servers contain a web server, app

server, and database
The perfect solution for scaling queries!
Updates are practically impossible

- Distributed databases are fundamentally hard to
build and are usually intended only for LANs

Distribute everything!

O, =2
Client ~~< =g -~ 7 Client
De--2|HB - [HB| -, =
Client Client

Client S

_ -~ 7 Client
=

Client

Distribute the web and app server!
. |

I Efficiently off-loads the web server and
application execution to remote proxy
servers

- Reduces bandwidth usage

| Still relies on a centralized database

I Interactions with the database become high-
latency

Distribute the web and app server!

9. FHE

Client hd] \

%t'\\ — -
~S])

5= _.--7| ||| Internet | BOBBMSHE

Client —

e |

Client e

And finally...
e

Partial Replication (and Caching)
. |

I Distributes web and app server load as
before
- Reduces bandwidth, etc.
I Updates are potentially less expensive than
with full replication
- But still non-trivial

Partial Replication (and Caching)

=
Glien” ~~ < |
He--2) i
Creat L P
[=PR Internet
=R g

"‘v 0
=R i

8

1

Client

Intermission

10

Web Data Management Outline
. |

Introduction
Overview of common approaches
WebView Materialization

DBProxy: A dynamic data cache for Web
applications

Conclusions

WebView Materialization
¢ |

Strategy #1: make the content static
Labrinidis and Roussopoulos, University of
Maryland, circa 2000.

Introduced a formal cost model for evaluating
materialization of “WebViews” at the web
server, within the DBMS, or not at all
Experimentally evaluated the different
strategies

Strategy #1: “Virtual” materialization
. |

Query is re-executed at database and
webpage is regenerated

Updates are cheap since only the “standard”
update must be executed at the DBMS
Queries are expensive since all work must
be re-done every time

11

Strategy #2: Materialization at DBMS
. |

I The query result is saved at the database,
but the resultant webpage itself is
regenerated

I Updates are more expensive since the
materialized view at the DBMS must be
regenerated as well

I Queries are slightly cheaper since only the
webpage must be regenerated

Strategy #3: Materialization at web
server
. |

I The full materialized webpage is stored at
the web server

I Updates are very expensive, essentially the
cost of a standard update plus a query plus
the cost of generating the resultant webpage

I Queries are very cheap since the page is just
retrieved as if it were static content

Experimental Methodology
e

I Used a single Sun system as a server
(running Apache and Informix), 22 Sun
systems as clients, all within a single LAN

I Measured query response time for each
strategy for various access rates, update
rates, number and size of views, and view
selectivity

Results, yada, yada

2

15

Query
Response 1

Time (sec)
05
L

10 25 35 50
[Dvir 0.09604 [0.517741.051751.59493
|[Bmat-db |0.33903[0.84658| 1.3145 |1.83115
|mmat-web|0.00921[0.00459 0.00576 [0.05372
Access Rate (requests/sec)

Problems with their methodology
.

I Relatively small number of views (100-2000)
I Results are indicative of an open system
under low load

- For “materialization at web server” updates are
executed as a separate background process

- Only query response time is measured
- Cheaters!

WebView Materialization Conclusions

I Still show that materialization at web server
can effectively reduce overall load for a
relatively small number of views, which can
greatly improve performance for some loads

I Somewhat surprising that materialization at
DBMS often hurts!

I A nice mix of theoretical and experimental
methodology!

13

Web Data Management Outline
. |

I Introduction

I Overview of common approaches

I WebView Materialization

I DBProxy: A dynamic data cache for Web
applications

| Conclusions

DBProxy: A dynamic data cache...

¢ |
I Amiri et al., IBM T.J. Watson, circa 2002.

I Based on partial replication
- Queries are processed locally at a proxy server if
possible
- All updates forwarded to a central database,
which periodically propagates the updates to the
proxy servers

Overall goals
e

| Database independence
- Any back-end database could be used
I Self-management

- Cache dynamically adapts to a changing
workload without administrator intervention

I Consistency

- Must be efficient even with a large cache and
heavy update traffic

14

DBProxy architecture

8. |=

Client ~~4
ey

=
ient

EHe.]
=r~_

Client T

«

Client

[RN,

Internet

DBProxy JDBC driver architecture

JDBC mterface

Query Parser

~ !

Query Matching
Module

Query Evaluator

s
al

¢/

V4

=

\

Resource
Manager

c :1 Consistency| /[Rgﬂifoj
aalog Manager Repostiony

Cache
\ Index

DBProxy local database
e

| Stores subsets of tables from the central
database (both horizontally and vertically

partitioned)

I And catalog information from the central

database...

I And information about the queries that are
currently cached...

15

DBProxy query matching

determine if the query is a subset of the
union of queries already in the cache

yet been issued before

| Uses the SELECT and WHERE clauses to

Can potentially answer queries that have not

- Q1: SELECT id FROM users WHERE age < 25
- Q2: SELECT id FROM users WHERE age > 18
- Q3: SELECT id FROM users WHERE age > 21

DBProxy update mechanism

I All updates are forwarded to the central
database

I All proxies subscribe to a stream which
contains all updates at the database
- Not just the updates they care about

DBProxy consistency guarantees
. |
I Lag consistency
- The proxy server is not too outdated
I Monotonic state transitions

- The view of the database at the proxy moves only
forward with time

I Immediate visibility of updates

- An application observes the effects of its own
updates

16

DBProxy consistency guarantees
. |

I Lag consistency
- The proxy server is not too outdated
I Monotonic state transitions
No transactional consistency!

only

I Immediate visibility of updates

- An application observes the effects of its own
updates

DBProxy cache replacement
.

I Runs as a background process, garbage
collecting results that are not used by any
cached query and occasionally evicting
cached queries to reclaim space
- General replacement algorithm, taking into

account recency and frequency of use, space
used, miss cost vs. hit cost, etc.

Experimental methodology

P2-400, 128 MB RAM

Ethemnet PIlI-1GHz
===

—]
TPC-W Client 225 ms latency
(IDBC /
driver

17

Experimental methodology

. |

I Modified TPC-W (which simulates a simple
web bookstore workload) to introduce some
additional complexity

I Measured proxy response time and hit rate
with several database sizes, several cache
configurations, and various loads on the
back-end database

| Started with a warm cache

Proxy response time
.

Average Response Time (msec)

Configuration

Proxy cache hit rates
e

Baseline TPC-W Modified TPC-W
Query Response | Hit Query Response | Hit Query
Category time rate | frequency time rate | frequency

Simple 51 91 % 23% 317 37% 47 %
Top-N 935 68 % 12% 852 66 % 37%
Exact-match 211 76 % 65 % 458 54 % 15%
Total 263 3% 100 % 540 50% | 100 %

No Cache 385 - 100 % 1024 - 100 %

Using 100K database, 80K users

18

Problems with their methodology
. |

I No comparison to centralized-only
configuration

I No mention of throughput, an important
performance metric

I Used TPC-W browsing mix only

- Did not measure the effect of various update
loads on the system

Harsh (and slightly unfair)
DBProxy conclusions

I Great cache configuration and query-
matching

I Poor update-handling and consistency
management

I While initially impressive, performance
results do not support the use of DBProxy
compared to a centralized architecture or for
any workloads with a non-trivial update
component

Web Data Management Outline
¢ |

I Introduction

I Overview of common approaches

I WebView Materialization

I DBProxy: A dynamic data cache for Web
applications

| Conclusions

19

Many similar projects

. |
I DBCache (IBM Almaden), DBProxy (IBM
Watson), GlobeDB (ETH Zurich)

I Similar projects that focus on file system
workloads (UT Austin)

I And...

Shameless plug: S-3 (CMU)

I Ailamaki, Garrod, Maggs, Manjhi, Mowry,
and Olston (among others)

| Efficient transactional consistency

I Theoretical framework for the effect of data
secrecy on scalability

I Exploiting knowledge of query and update
templates

Conclusions
¢ |

I Overall, this is still very much an area of on-
going research!

I Lots of people working on this problem, and
nobody yet has come up with a satisfactory
solution

I And it's really a $64 billion question

20

