
1

Web Data Management

Charlie Garrod

25 Apr 2005

12 years ago…

l Al Gore had just invented the internet

l A (relatively) small number of users put
content on the web

l And a (relatively) small number of users
downloaded it

Most content was simple!

8 years ago...

l Much larger number of users

l Most content was still simple and static

web caches

Cache

Proxy caches

Cache

Home server

Client

Client

Client

Client

2

5 years ago...

l Content Distribution Networks

l Move web content to the “edge”

CDNs

Transparent proxy servers

Home server

Client

Client

Client

Client

Today…

l Web content is complex and dynamic
– interactive and personalized

l Amazon, CNN, Google, USAir, LiveJournal,
and of course the 15-721 course homepage…

Dynamic content generation

Web Server

Application Server

Database Server

3

Dynamic content generation

Client

Client

Client

Client

Home server

Web database workloads

l Most queries are small and simple (OLTP)
– Show me the last 25 journal entries by “puuj”

– Show me non-full flights to LAX next Friday

– Find all websites about fire-breathing space
monkeys

l Few updates

l Other than that, workloads vary greatly
between applications

Web database workloads

l Queries and updates are often instantiations
of more general templates
– Q1: SELECT id FROM users WHERE age > ?

– U2: UPDATE users SET age = ? WHERE id = ?

4

The $65,536 question:

How do we make dynamic
content scalable?

Web Data Management Outline

l Introduction

l Overview of common approaches

l WebView Materialization

l DBProxy: A dynamic data cache for Web
applications

l Conclusions

Web Data Management Outline

l Introduction

l Overview of common approaches

l WebView Materialization

l DBProxy: A dynamic data cache for Web
applications

l Conclusions

5

Solution #1

Make the content “static”

: WebView Materialization

Solution #1: WebView Materialization

l Generate new static version of webpage
every time it is updated

l Works great for CNN, Slashdot, etc. where
the content is semi-static
– Does not adapt well to personalized or interactive

websites

Solution #2

Build a custom solution

6

Client

Client

Big DBMS™

Client

Client

Solution #2: Big DBMS™

Solution #2: Big DBMS™

l Build a custom, semi-centralized DBMS
system

l Good for big companies such as Google,
Amazon, EBay, etc. with an established user
base and significant market investment

l Very expensive to implement!

Solution #3

Try something else!

7

Solution #3: Dynamic CDN

l Try to apply the principles of caching and
content-distribution to dynamic web pages
– Build a nice, general solution to scale dynamic

workloads

– Adaptable to personalization and interaction

– Cheaper than a custom, specialized solution

Solution #3: Dynamic CDN

l Try to apply the principles of caching and
content-distribution to dynamic web pages
– Build a nice, general solution to scale dynamic

workloads

– Adaptable to personalization and interaction

– Cheaper than a custom, specialized solution

This is easier said than done!

Web database workloads revisited

l Most queries are small and simple (OLTP)
– Show me the last 25 journal entries by “puuj”

– Show me non-full flights to LAX next Friday

– Find all websites about fire-breathing space
monkeys

l Few updates

l Other than that, workloads vary greatly
between applications

8

Distributing dynamic content

l Which server components should we
distribute?
– Everything?

– Just the web server and application server?

– Partially replicate the database?

Distribute everything!

l All proxy servers contain a web server, app
server, and database

l The perfect solution for scaling queries!

l Updates are practically impossible
– Distributed databases are fundamentally hard to

build and are usually intended only for LANs

Distribute everything!

Client

Client

Client

Client

Client

Client

Client

Client

9

Distribute the web and app server!

l Efficiently off-loads the web server and
application execution to remote proxy
servers
– Reduces bandwidth usage

l Still relies on a centralized database

l Interactions with the database become high-
latency

Distribute the web and app server!

Client

Client

Big DBMS™

Client

Client

And finally…

10

Partial Replication (and Caching)

l Distributes web and app server load as
before
– Reduces bandwidth, etc.

l Updates are potentially less expensive than
with full replication
– But still non-trivial

Partial Replication (and Caching)

cache

cache

Client

Client

Client

Client

DBMS

Intermission

11

Web Data Management Outline

l Introduction

l Overview of common approaches

l WebView Materialization

l DBProxy: A dynamic data cache for Web
applications

l Conclusions

WebView Materialization

l Strategy #1: make the content static
l Labrinidis and Roussopoulos, University of

Maryland, circa 2000.
l Introduced a formal cost model for evaluating

materialization of “WebViews” at the web
server, within the DBMS, or not at all

l Experimentally evaluated the different
strategies

Strategy #1: “Virtual” materialization

l Query is re-executed at database and
webpage is regenerated

l Updates are cheap since only the “standard”
update must be executed at the DBMS

l Queries are expensive since all work must
be re-done every time

12

Strategy #2: Materialization at DBMS

l The query result is saved at the database,
but the resultant webpage itself is
regenerated

l Updates are more expensive since the
materialized view at the DBMS must be
regenerated as well

l Queries are slightly cheaper since only the
webpage must be regenerated

Strategy #3: Materialization at web
server

l The full materialized webpage is stored at
the web server

l Updates are very expensive, essentially the
cost of a standard update plus a query plus
the cost of generating the resultant webpage

l Queries are very cheap since the page is just
retrieved as if it were static content

Experimental Methodology

l Used a single Sun system as a server
(running Apache and Informix), 22 Sun
systems as clients, all within a single LAN

l Measured query response time for each
strategy for various access rates, update
rates, number and size of views, and view
selectivity

13

Results, yada, yada

Problems with their methodology

l Relatively small number of views (100-2000)

l Results are indicative of an open system
under low load
– For “materialization at web server” updates are

executed as a separate background process

– Only query response time is measured

– Cheaters!

WebView Materialization Conclusions

l Still show that materialization at web server
can effectively reduce overall load for a
relatively small number of views, which can
greatly improve performance for some loads

l Somewhat surprising that materialization at
DBMS often hurts!

l A nice mix of theoretical and experimental
methodology!

14

Web Data Management Outline

l Introduction

l Overview of common approaches

l WebView Materialization

l DBProxy: A dynamic data cache for Web
applications

l Conclusions

DBProxy: A dynamic data cache…

l Amiri et al., IBM T.J. Watson, circa 2002.

l Based on partial replication
– Queries are processed locally at a proxy server if

possible

– All updates forwarded to a central database,
which periodically propagates the updates to the
proxy servers

Overall goals

l Database independence
– Any back-end database could be used

l Self-management
– Cache dynamically adapts to a changing

workload without administrator intervention

l Consistency
– Must be efficient even with a large cache and

heavy update traffic

15

DBMS

JDBC
driver

DBMS

JDBC
driver

DBProxy architecture

Client

Client

Client

Client

DBMS

DBProxy JDBC driver architecture

DBProxy local database

l Stores subsets of tables from the central
database (both horizontally and vertically
partitioned)

l And catalog information from the central
database…

l And information about the queries that are
currently cached…

16

DBProxy query matching

l Uses the SELECT and WHERE clauses to
determine if the query is a subset of the
union of queries already in the cache

l Can potentially answer queries that have not
yet been issued before
– Q1: SELECT id FROM users WHERE age < 25

– Q2: SELECT id FROM users WHERE age > 18

– Q3: SELECT id FROM users WHERE age > 21

DBProxy update mechanism

l All updates are forwarded to the central
database

l All proxies subscribe to a stream which
contains all updates at the database
– Not just the updates they care about

DBProxy consistency guarantees

l Lag consistency
– The proxy server is not too outdated

l Monotonic state transitions
– The view of the database at the proxy moves only

forward with time

l Immediate visibility of updates
– An application observes the effects of its own

updates

17

l Lag consistency
– The proxy server is not too outdated

l Monotonic state transitions
– The view of the database at the proxy moves only

forward with time

l Immediate visibility of updates
– An application observes the effects of its own

updates

DBProxy consistency guarantees

No transactional consistency!

DBProxy cache replacement

l Runs as a background process, garbage
collecting results that are not used by any
cached query and occasionally evicting
cached queries to reclaim space
– General replacement algorithm, taking into

account recency and frequency of use, space
used, miss cost vs. hit cost, etc.

Experimental methodology

DBMS

JDBC
driver

TPC-W Client DBMS
225 ms latency

Ethernet

P2-400, 128 MB RAM

PIII-1GHz

18

Experimental methodology

l Modified TPC-W (which simulates a simple
web bookstore workload) to introduce some
additional complexity

l Measured proxy response time and hit rate
with several database sizes, several cache
configurations, and various loads on the
back-end database

l Started with a warm cache

Proxy response time

Proxy cache hit rates

Using 100K database, 80K users

19

Problems with their methodology

l No comparison to centralized-only
configuration

l No mention of throughput, an important
performance metric

l Used TPC-W browsing mix only
– Did not measure the effect of various update

loads on the system

DBProxy conclusions

l Great cache configuration and query-
matching

l Poor update-handling and consistency
management

l While initially impressive, performance
results do not support the use of DBProxy
compared to a centralized architecture or for
any workloads with a non-trivial update
component

Harsh (and slightly unfair)

Web Data Management Outline

l Introduction

l Overview of common approaches

l WebView Materialization

l DBProxy: A dynamic data cache for Web
applications

l Conclusions

20

Many similar projects

l DBCache (IBM Almaden), DBProxy (IBM
Watson), GlobeDB (ETH Zurich)

l Similar projects that focus on file system
workloads (UT Austin)

l And…

Shameless plug: S-3 (CMU)

l Ailamaki, Garrod, Maggs, Manjhi, Mowry,
and Olston (among others)

l Efficient transactional consistency

l Theoretical framework for the effect of data
secrecy on scalability

l Exploiting knowledge of query and update
templates

Conclusions

l Overall, this is still very much an area of on-
going research!

l Lots of people working on this problem, and
nobody yet has come up with a satisfactory
solution

l And it’s really a $64 billion question

