Encapsulation of Parallelism in
the Volcano Query Processing
System

Goetz Graefe (1990)

The Volcano Query Processing System

= 0 GAMMA
® Introduction
® Related Work
® The Volcano System
® Exchange Operator
® Conclusion

GAMMA

® Shared-nothing
® Hash-based parallel algorithms
® Horizontal partitioning (‘declustering’)

Split Table

Directs operator output to the appropriate
node (e.g., by some hash value)

|
| CONTROL PACKET
|
|
|
|
2
STREAM OF TUPLES RS SPLIT
B ——
EXECUTING TABLE
OPERATOR

OUTGOING STREAMS Value | Destination Process
OF TUPLES
0 (Processor #3, Port #5)
— 1| (Processor #2, Port #13)
2| (Processor #7, Port #6)
3| (Processor #9, Port#15)

E.g.: Parallel Hash Join

EASH o
TARLE PROBE

DNITIATE 1)

(6)
4}

DONE (#13)
INTTIATE (%9}

Bl STORE

DONE (#14)

— SELECT

INITIATE (210)

P

PL

Experimental setup

® Wisconsin benchmark (100K, 1M, 10M

tuples);

® tables: hash partitioned
® selections (1%, 10%) x (non-indexed,

clustered index)
® joins

® wallclock time; speedup; scale-up

Selections

® non-indexed, responsetime
1%, 10%

#processors

Selections

. i ! ?
®non-indexed, speedup superlinear! why

1%, 10%

#processors

Selections

response time
®clustered ind., 1%,
®clustered 10%
® non-clustered 1%

#processors

Selections

® clustered 1%,
@ clustered 10%
® non-clustered 1%

® super-linear?
® sub-linear?

speed-up

z—

® why?
#processors
Selections
speed-up
® clustered 1%,
® clustered 10% super-linear!

® non-clustered 1%

® why super-linear?
® why sub-linear?

clust. 1%

#processors

Selections - scaleup

response time

@ response time vs
processors,
increasing the db
size

® All queries:
~constant scale-
up

|

#processors

Joins

response time

A join B

@ part. = join attr

® part. attr !'=join
attr

//

#processors

Joins

speed-up

®joinAB
Opart. = join attr
Opart. attr != join
attr

\

#processors

The Volcano Query Processing System

® GAMMA

=) @ |ntroduction
® Related Work
® The Volcano System
® Exchange Operator
® Conclusion

Introduction

® Design and implementation of an
extensible query processing system

® Should allow parallelizing of algorithms
without reasoning about parallelism

Approach to Parallelism

® The exchange operator is used to
parallelize query execution plans
®\/olcano’s mechanisms for operators and

data exchange similar to commercial
systems (System-R, Ingres)

Main ldeas behind Volcano

® Uniform interface extensible to new
operators (iterator interface)

® Operator Model approach to parallelization
® Exchange operator used for parallelization

Questions Volcano Attempts to Address:

® How do we design an extensible system
that is also efficient?

® How do we parallelize operators but free
the programmer from reasoning about
such parallelism?

Related Work

® Influenced by GAMMA (but departs
radically in data exchange and
parallelization)
OMake a more extensible system

® Tandem Computer’s parallel operator
similar to the exchange operator

The Volcano Query Processing System

® GAMMA

@ [ntroduction

® Related Work

=) @ The Volcano System
® Exchange Operator
® Conclusion

The Volcano System

® Study the design of an extensible system
that is also very efficient

® Parallelization of query evaluation through
the use of an operator
@ \/olcano system supports file systems,

buffer management, sorting, B*-trees,
joins, (and many others)

The Volcano System (continued)

® Query Engine — provides operator building
blocks with uniform (iterator) interface

OEach block looks the same, operates on a
constant stream of inputs

OAlgorithms are generic, state records capture
specificity
® Query Optimizer - builds the query
execution plan from operators, including
the use of the Exchange parallelizing
operator

GAMMA System

INTTIATE (%4

SELECT Pl

Bracket Model Advantages

OUTPUT
® Generic process
template for
sending/receiving data
® Each operator Bl

wrapped within
template, shielded

JON

from environment e~ ——~—
® Template provides I/O

service for data

AGGREGATION

exchange —~—~—————

Bracket Model Pitfalls

® Template only executes one operator at a
time

® Needs external scheduler to schedule
operator

® Data exchange requires expensive
network 1/O or inter-procedure calls

Bracket Model seen as unsuitable for an
extensible system

Operator Model

® Query Execution Engine provides
parallelism mechanisms

® Query Optimizer decides on policy

® Single operator (Exchange) provides
parallelism
Olterator interface
OData exchange through shared memory “port”
Olnserted into points of the query plan

Exchange operator enables parallelism

Simple Query Execution Plan

PRINT
JOIN

| JOIN | | SCAN |

S

| SCAN | | SCAN |

Inserting Exchange into a QEP

JOIN EXCHG
SCAN
| EXCHG | | EXCHG |

| SCAN | | SCAN |

The Volcano Query Processing System

©® GAMMA
@ |ntroduction

@ Related Work .

® The Volcano System
= e Exchange Operator
® Conclusion

ok,

10

The Exchange Operator

® Exchange operator creates shared port,
forks child process

® Child process produces data to the port
OAggregate tuples into packets, write packet
OAllows N queued packets to accumulate

® Parent process consumes data

The Exchange Operator (continued)

® Captures both vertical and horizontal parallelism (or inter
and intra operator parallelism)

® What are 3 of the ways we can exploit parallelism?

Horizontal Vertical
K—H
Pipelining Bushy Parallelism Intra-operator Paralleli sm
Inter-operator Intra-operator

Vertical Parallelism

® The Exchange operator
provides pipelining between
processes
OCalling open (EXCHNG) creates
new process, and shared port

OExchange operator in parent
process (PRINT) receives data
from IPC

OExchange operator in child
process (JOIN) produces packets
of tuples to port

11

In detalil...

1. Open procedure in EXCHNG A called
2. New process (EXCHNG B) forked, port created

3. EXCHNG B calls open for JOIN, and so on

4. Next procedure in EXCHNG A called,
Waits for data from port

upl 5. EXCHNG B calls Next in JOIN,
open < n%)g’é{ \UP es keeps producing tuples, put into port as packet

t) 6. EXCHNG A reads packet,

JOIN returns tuple per next call to PRINT

Dataflow

® Demand Driven

Olterators, lazy evaluation

OOnly produce a tuple when next is called
® Data Driven

OExchange operators, eager evaluation

OEagerly call next, produce tuples, and write to
port

Exchange operator decouples the flow of
data

Horizontal Parallelism

® Bushy parallelism Join
ODifferent CPU’s execute

different subtrees of a
complex query tree @ @

Bushy Parallelism

® Intra-operator parallelism
OSeveral CPU’s perform the

same operator on different (acan
subsets of data A2

Intra-operator Parallelism

12

Bushy Parallelism in Exchange

® Bushy parallelism
implemented by

inserting one or more
Exchange operators
into a query tree

®SCANAandBnow | —— | | —— |
operate in parallel to [Tscana | [some |
produce tuples to the
JOIN

Inter-operator Parallelism in Exchange

® Requires data partitioning
® Can have multiple ports

® Support function used to decide which port
a packet is sent
OCan implement round robin, range, hash

In detail...
Multiple
processes JOIN, JOIN, JOIN,
forked
JOIN JOIN /g JOIN
Support function
decides port
SCAN SCAN, SCAN, SCAN,
SCAN SCAN SCAN SCAN

Example of Intra-operator parallelism

® Consider a query with four A

operators: A, B, C, D
OA calls B’s iterator methods

OB calls C’s iterator methods
OC calls D's iterator methods Bl ©

® Assume there are three
processing groups: A, BC, D

Example (continued)

® Exchange operators need to be
inserted between A, BC, and D

®B and C run in the same
process, and pass records
through simple procedure calls

® A has process A,
®BC has processes BC,BC, BC,
® D has processes D,D,; D, D,

Example (continued)

Ag

E A

L x
BC, BC, BC,
X X X
E BLE BC EABC
Y Y Y

® A calls X’s open, close, next procedures instead of B's (without
knowledge of process boundaries)

® X creates a port with one input queue for A, and forks BC,
® BC, forks rest. BC group wait for Y to initialize 3 input queues

Creating BC Processes

14

Example (continued)

AU
M A
O X
BC, BC, BC,
X X X
E BC] BC [BC
y H v A v
DO Dl DZ D3
‘f Y Y
D 5——-D | |

Creating D Processes

Overhead and Performance

® Overhead of iterator procedure calls small (but
not insignificant)
® Pipelining in Exchange improve performance

Time for 100k tuples

Read 20.28 seconds
Read using iterator 28.00 seconds
Reading using 16.21 seconds
iterator and pipeline

Packet Size

® Size of packets Packet Size vs Time
can be changed
to make
overhead
negligible

150 \

100 \
50

Elapsed Time (sec)

Tuples per Packet

15

Summary

® \/olcano Query Processing System is a flexible
and extensible

® The Exchange operator allows vertical, bushy,
and intra-operator parallel without exposing
parallelism to other operators

® Novel Exchange operator decouples data flow,
enables vertical, bushy, and intra-operator
parallelism

® Operator model and exchange operator allows
operators to schedule each other

Comparisons
GAMMA Volcano
Shared-nothing Shared-memory
Bracket Model Operator Model
Central system Operators schedule

schedules operators operators

Split/Merge Tables Exchange Operator

... anything else?

Conclusion

® Operator model supports self-scheduling
parallel query evaluation in an extensible
database system

® Can exploit many types of parallelism “for

free” programmers do not need to reason
about parallel algorithms

16

Questions?

Operator Structure

State Record

Operator

Open*()
Next*()
Close*()

State*

Input *

Internal State Vars
Support Functions
- comparison

- hashing

Operator

Anonymous Inputs or Streams
Operator does not need to know what operator produces its input

Open*()
Next*()
Close*()

State*

17

