
1

Encapsulation of Parallelism in 
the Volcano Query Processing 

System

Goetz Graefe (1990)

The Volcano Query Processing System

�GAMMA
� Introduction
�Related Work

�The Volcano System
�Exchange Operator
�Conclusion

GAMMA

�Shared-nothing
�Hash-based parallel algorithms
�Horizontal partitioning (‘declustering’)

P1 PNP2

network



2

Split Table

Directs operator output to the appropriate 
node (e.g., by some hash value)

E.g.: Parallel Hash Join

Experimental setup

�Wisconsin benchmark (100K, 1M, 10M 
tuples); 

� tables: hash partitioned
�selections (1%, 10%) x (non-indexed, 

clustered index)
� joins
�wallclock time; speedup; scale-up



3

Selections

�non-indexed, 
1%, 10%

#processors

response time

1%

10%

??

Selections

�non-indexed, 
1%, 10%

#processors

speedup

1%

10%

superlinear! why?

??

Selections

�clustered ind., 1%, 

�clustered 10%
�non-clustered 1%

#processors

response time

??



4

Selections

� clustered 1%, 
� clustered 10%
� non-clustered 1%

� super-linear?
� sub-linear?
� why?

#processors

speed-up

??

Selections

� clustered 1%, 
� clustered 10%
� non-clustered 1%

� why super-linear?
� why sub-linear?

#processors

speed-up

clust. 1%

super-linear!

Selections - scaleup

� response time vs 
processors, 
increasing the db 
size

�All queries: 
~constant scale-
up

#processors

response time



5

Joins

A join B
�part. = join attr
�part. attr != join 

attr

#processors

response time

??

Joins

� joinAB
�part. = join attr

�part. attr != join 
attr

#processors

speed-up

??

The Volcano Query Processing System

�GAMMA
� Introduction
�Related Work

�The Volcano System
�Exchange Operator
�Conclusion



6

Introduction

�Design and implementation of an 
extensible query processing system

�Should allow parallelizing of algorithms 
without reasoning about parallelism

Approach to Parallelism

�The exchange operator is used to 
parallelize query execution plans

�Volcano’s mechanisms for operators and 
data exchange similar to commercial 
systems (System-R, Ingres)

Main Ideas behind Volcano

�Uniform interface extensible to new 
operators (iterator interface)

�Operator Model approach to parallelization
�Exchange operator used for parallelization



7

Questions Volcano Attempts to Address:

�How do we design an extensible system 
that is also efficient?

�How do we parallelize operators but free
the programmer from reasoning about 
such parallelism?

Related Work

� Influenced by GAMMA (but departs 
radically in data exchange and 
parallelization)
�Make a more extensible system

�Tandem Computer’s parallel operator 
similar to the exchange operator

The Volcano Query Processing System

�GAMMA
� Introduction
�Related Work

�The Volcano System
�Exchange Operator
�Conclusion



8

The Volcano System

�Study the design of an extensible system 
that is also very efficient

�Parallelization of query evaluation through 
the use of an operator

�Volcano system supports file systems, 
buffer management, sorting, B+-trees, 
joins, (and many others)

The Volcano System (continued)

�Query Engine – provides operator building 
blocks with uniform (iterator) interface
�Each block looks the same, operates on a 

constant stream of inputs
�Algorithms are generic, state records capture 

specificity

�Query Optimizer - builds the query 
execution plan from operators, including 
the use of the Exchange parallelizing 
operator

GAMMA System



9

Bracket Model Advantages

�Generic process 
template for 
sending/receiving data

�Each operator 
wrapped within 
template, shielded 
from environment

�Template provides I/O 
service for data 
exchange

Bracket Model Pitfalls

�Template only executes one operator at a 
time

�Needs external scheduler to schedule 
operator

�Data exchange requires expensive 
network I/O or inter-procedure calls

Bracket Model seen as unsuitable for an 
extensible system

Operator Model

�Query Execution Engine provides 
parallelism mechanisms

�Query Optimizer decides on policy
�Single operator (Exchange) provides 

parallelism
�Iterator interface
�Data exchange through shared memory “port”

�Inserted into points of the query plan

Exchange operator enables parallelism



10

Simple Query Execution Plan

PRINT

JOIN

JOIN SCAN

SCAN SCAN

Inserting Exchange into a QEP
PRINT

JOIN

JOIN

SCAN

SCAN SCAN

EXCHG

EXCHG

EXCHG EXCHG

The Volcano Query Processing System

�GAMMA
� Introduction
�Related Work

�The Volcano System
�Exchange Operator
�Conclusion



11

The Exchange Operator

�Exchange operator creates shared port, 
forks child process

�Child process produces data to the port
�Aggregate tuples into packets, write packet

�Allows N queued packets to accumulate

�Parent process consumes data

The Exchange Operator (continued)

� Captures both vertical and horizontal parallelism (or inter 
and intra operator parallelism)

� What are 3 of the ways we can exploit parallelism?

Pipelining Bushy Parallelism Intra-operator Paralleli sm

Horizontal Vertical

Inter-operator Intra-operator

Vertical Parallelism

�The Exchange operator 
provides pipelining between 
processes
�Calling open (EXCHNG) creates 

new process, and shared port
�Exchange operator in parent 

process (PRINT) receives data 
from IPC

�Exchange operator in child 
process (JOIN) produces packets 
of tuples to port

PRINT

JOIN

EXCHG



12

In detail…

PRINT

JOIN

EXCHG B

1. Open procedure in EXCHNG A called

2. New process (EXCHNG B) forked, port created

open

open

3. EXCHNG B calls open for JOIN, and so on

4. Next procedure in EXCHNG A called,
Waits for data from port

6. EXCHNG A reads packet, 
returns tuple per next call to PRINT 

next

5. EXCHNG B calls Next in JOIN, 
keeps producing tuples, put into port as packet next

next
next

tuples

EXCHG A

one
tuple

Dataflow

�Demand Driven
�Iterators, lazy evaluation
�Only produce a tuple when next is called

�Data Driven
�Exchange operators, eager evaluation
�Eagerly call next, produce tuples, and write to 

port

Exchange operator decouples the flow of 
data

Horizontal Parallelism

�Bushy parallelism
�Different CPU’s execute 

different subtrees of a 
complex query tree

� Intra-operator parallelism
�Several CPU’s perform the 

same operator on different 
subsets of data

Join

Scan 
B

Scan 
A

Bushy Parallelism

Scan
A.3

Scan
A.2

Scan
A.1

Intra-operator Parallelism



13

Bushy Parallelism in Exchange

�Bushy parallelism 
implemented by 
inserting one or more 
Exchange operators 
into a query tree

�SCAN A and B now 
operate in parallel to 
produce tuples to the 
JOIN

JOIN

SCAN A SCAN B

EXCHG EXCHG

Inter-operator Parallelism in Exchange

�Requires data partitioning
�Can have multiple ports
�Support function used to decide which port 

a packet is sent
�Can implement round robin, range, hash

In detail…

SCAN

SCAN0

JOIN

JOIN0

JOIN

JOIN1

JOIN

JOIN2

SCAN

SCAN3

SCAN

SCAN2

SCAN

SCAN1

Support function
decides port

A.1 A.4A.3A.2

Multiple 
processes 
forked



14

Example of Intra-operator parallelism

�Consider a query with four 
operators: A, B, C, D
�A calls B’s iterator methods
�B calls C’s iterator methods

�C calls D’s iterator methods

�Assume there are three 
processing groups: A, BC, D

A

B C

D

Example (continued)

�Exchange operators need to be 
inserted between A, BC, and D

�B and C run in the same 
process, and pass records 
through simple procedure calls

�A has process A0

�BC has processes BC0 BC1 BC2

�D has processes D0 D1 D2 D3

X

Y

A

B

D

CBC

Example (continued)

A

A0

X

BC

BC0

Y

X

BC

BC1

Y

X

BC

BC2

Y

X

Creating BC Processes

� A calls X’s open, close, next procedures instead of B’s (without 
knowledge of process boundaries)

� X creates a port with one input queue for A0 and forks BC0

� BC0 forks rest. BC group wait for Y to initialize 3 input queues



15

Example (continued)

Creating D Processes

A

A0

X

BC

BC0

Y

X

BC

BC1

Y

X

BC

BC2

Y

X

D

D2

Y

D

D1

Y

D

D0

Y

D

D3

Y

Overhead and Performance

� Overhead of iterator procedure calls small (but 
not insignificant)

� Pipelining in Exchange improve performance

16.21 secondsReading using 
iterator and pipeline

28.00 secondsRead using iterator

20.28 secondsRead

Time for 100k tuples

Packet Size

� Size of packets 
can be changed 
to make 
overhead 
negligible

Packet Size vs Time

0

50

100

150

200

1 5 20 100 250

Tuples per Packet

E
la

ps
ed

 T
im

e 
(s

ec
)



16

Summary

� Volcano Query Processing System is a flexible 
and extensible

� The Exchange operator allows vertical, bushy, 
and intra-operator parallel without exposing 
parallelism to other operators

� Novel Exchange operator decouples data flow, 
enables vertical, bushy, and intra-operator 
parallelism

� Operator model and exchange operator allows 
operators to schedule each other

Comparisons

Exchange OperatorSplit/Merge Tables

Operators schedule 
operators

Central system 
schedules operators

Operator ModelBracket Model

Shared-memoryShared-nothing

VolcanoGAMMA

… anything else?

Conclusion

�Operator model supports self-scheduling 
parallel query evaluation in an extensible 
database system

�Can exploit many types of parallelism “for 
free” programmers do not need to reason 
about parallel algorithms



17

Questions?

Operator Structure

Open*()
Next*()
Close*()

State*

Operator

Input *

Internal State Vars
Support Functions
- comparison
- hashing

State Record

Open*()
Next*()
Close*()

State*

Operator

Anonymous Inputs or Streams
Operator does not need to know what operator produces its input


