15-721 Database Management Systems

System R and the Relational
Model

Instructor: Anastassia Ailamaki
http.//www.cs.cmu.edu/~natassa

Detailed Roadmap

Intro

o Codd’s paper
o System R - design
o System R - evaluation

© 2005 Anastassia Ailamaki

The Roots

o Codd (CACM’70): Relational Model

o Bachman (Turing Award, 1973): DBTG
o (network model based on COBOL)

o SIGMOD 1975: The Great Debate
o pros and cons??

© 2005 Anastassia Ailamaki

The Roots

CODASYL: Relational:
o RL too much math o DBTG complicated
o Implementation o No easy set queries

o OLTP <-> operators o No semantics

Late 70’s: Relational Model wins

© 2005 Anastassia Ailamaki 4

Relational Prototypes

o SQL,Quel (user-friendlier than Rel.
algebra)
o Performance issue addressed

]

© 2005 Anastassia Ailamaki

Relational Prototypes

System R INGRES
@ IBM SJ, 1974-78 | @ UCB 1973-77
o compiler o Interpreter

o RDS/RSS links o Unix FS (no recovery!)
a Recovery scheme | o 16-bit PDP-11
o No hashing

© 2005 Anastassia Ailamaki

System R

Impact

INGRES

o ESVAL / HP Allbase, o INGRES Corp., Britton-

IDMS/SQL, Lee IDM, Sybase
o Oracle, DB2, SQL/DS o Clean QUEL
o Query optimization o Queries for views
o Compilation o Protection, integrity

- But: both systems unfaithful to Rel. Model:
- allow duplicate records

. No notion of domain or primary key

Ve

© 2005 Anastassia Ailamaki

Detailed Roadmap

a Intro

mp Codd’s paper

o System R - design
o System R - evaluation

© 2005 Anastassia Ailamaki

Codd, CACM'70

Goals:

o (logical + physical) Data independence
oOrdering (sorted vs. raw)
olndexing (existence or not)
oAccess path dependency

a Avoid inconsistencies

© 2005 Anastassia Ailamaki

(putting things In context:
DBTG)

DBTG = CODASYL = Network model:
o repeating groups
o records (eg., ‘employee’, ‘department’)
o sets (eg., ‘employee works in a
department’)
[‘'marketing’, {John, Mary, Mike}]
[‘sales’, {Peter, Tom}]

\- Y

© 2005 Anastassia Ailamaki 10

(putting things In context:
DBTG)

QL: ‘fetch’, ‘fetch next’, ‘fetch within parent’
o Fast, for suitable queries;
o bad for rest

o even worse, apps break if schema
changes

N _/

© 2005 Anastassia Ailamaki 11

Salvation:

o Everything is a table - no ‘DBTG sets’, no
repeating groups
o In detail:

© 2005 Anastassia Ailamaki 12

The Relational Model

o Relation (dom, ... dom)
oR(sy,...,8,) RcS;x...x§,
o Rows

o Distinct

o Ordering doesn’t matter
o Columns

o Order matters

o Order + labels = unique identification
o Primary key, foreign key

© 2005 Anastassia Ailamaki

Codd, CACM'70 (cont.)

a First Normal Form (1NF)
a Simple domains only->attributes
o No repeating groups
o Advantages/disadvantages?
o Language
o Declaration of relations (today: DDL)
a Queries (today: DML)
o Insertion/deletion/update

© 2005 Anastassia Ailamaki

Operations and Rules

o Set operations on relations

a Projection 7, (R(S4,8,,83)) = R'(S;,5,)
o Join RPIS

o Composition nt,5 (RP><IS)

o Restriction (selection with AND, OR)

© 2005 Anastassia Ailamaki

(‘Restriction’)

R'=Ri3 | 125
i.e., give the (2,3) tuples of ‘R’ that match a
tuple from ‘S’
Formally: R’ is the maximal subset of R s.t.
projection, 3(R’) = projection ,,(S)

[hence CODASYL’s complaints!]

© 2005 Anastassia Ailamaki

Operations and Rules - cont'd

o Redundancy (no derivable relations)
o ‘strong’ (an existing table is a projection of
some other)
o ‘weak’(...... of some join)
o [either way, the yet-to-be-invented Functional
Dependencies would capture them]
o Consistency
o [the penalty for redundancy: need to check]

© 2005 Anastassia Ailamaki

- Reminders

Goals:
o (logical + physical) Data
independence
o Avoid inconsistencies

© 2005 Anastassia Ailamaki

Today:

Five fundamental operators, for rel. algebra

© 2005 Anastassia Ailamaki 19

Today:

Five fundamental operators, for rel. algebra
o union

o difference

o selection

o projection

o cartesian product

© 2005 Anastassia Ailamaki 20

Today:

For Inconsistencies:
o Functional Dependencies and

o Normal Forms (remember 3NF and
BNCF?)

© 2005 Anastassia Ailamaki 21

End of reminders

Goals:
a((logical + physical) Data
Vindependence
o Avoid inconsistencies

© 2005 Anastassia Ailamaki

© 2005 Anastassia Ailamaki

Detailed Roadmap

a Intro
o Codd’s paper
m) System R - design
o System R - evaluation

© 2005 Anastassia Ailamaki

System R Architecture

Multiple virtual machines!

—‘ H FPrograms (Sequel, QBE, etc.)

Relational Data System

R.D.S. (auth, integrity, view, query
optimization, catalog mgmt)

Relational Storage System
RSS. [— 8oy

(device mgmt, space alloc,
buffers, Xact consistemcy -
locking, recovery)

© 2005 Anastassia Ailamaki

System R Architecture (cont.)

—‘ H ’7 Programs (Sequel, QBE, etc.)
I 1 1 | 1. Relational Data Interface
(called from host language,
R.D.S. supports emulators, etc.)

“— Relational Storage Interface
RS.S (access to tuples)

© 2005 Anastassia Ailamaki

Even more detailed Roadmap

a Intro
o Codd’s paper
o System R - design
o RDS (QL, Data control, Q-opt)

o RSS (Segments, rel, images, links, CC,
recovery)

o System R - evaluation

© 2005 Anastassia Ailamaki

Host Language Interface

o Example:

Gives variable 0, JOB, SAL, MGR)
address 10 & NEMPS)

o RDS - Embel Associate C1 A program:
to answer

tuple set

© 2005 Anastassia Ailamaki 28

Host Language Interface (cont.)

o Locking
o FETCH_HOLD locks
o RELEASE unlocks

o Transaction calls (passed through to the RSI)
o BEGIN_TRANS
o END_TRANS
o SAVE (checkpoint)
o RESTORE

© 2005 Anastassia Ailamaki 29

Queries

SEQUEL = SQL
SELECT <attribute_list> [count, avg, sum, ...]
FROM <relation_list>
[WHERE <condition>]
[ORDER BY ...]
[HAVING ...]
[GROUP BY ...]

f

© 2005 Anastassia Ailamaki 30

Data Manipulation

o Updates
UPDATE <relation>
SET <attribute = value>
[WHERE <condition>]

o Insertions
o Deletions

© 2005 Anastassia Ailamaki

Data Definition

a Create / Drop TABLE (=relation)
o Define / Drop VIEW (for read authorization)
o E.g., DEFINE VIEW VEMP AS:
SELECT *
FROM EMP
WHERE DNO =
SELECT DNO
FROM EMP
WHERE NAME = USER;

o Expand table (add new field)

© 2005 Anastassia Ailamaki

Rules

o Integrity constraints
ASSERT ON UPDATE TO EMP:
NEW SAL > OLD SAL

o Triggers
DEFINE TRIGGER EMPINS
ON INSERTION OF EMP:
(UPDATE DEPT
SET NEMPS = NEMPS + 1
WHERE DNO = NEW EMP.DNO)

o Catalogs (relations, views, triggers, etc.)

Nirr

© 2005 Anastassia Ailamaki

Optimizer

o Measure mainly 1/O cost

o Emphasize importance of clustering
o Based on existence of indices

o Cost model — choose cheapest plan
o Details later...

© 2005 Anastassia Ailamaki

Even more detailed Roadmap

o Intro
o Codd’s paper
o System R - design
o RDS (QL, Data control, Q-opt)

o RSS (Segments, rel, images, links, CC,
recovery)

o System R - evaluation

© 2005 Anastassia Ailamaki

RSS Segments

o Segment: logical address space
o Used to store large relations, catalogs, logs...
o No relation spans segments
o User-defined segment length
o Mapped to a set of fixed-size disk pages
o Page map, replacement

o Segment types
o E.g., for shared data, temporary relations, etc.

© 2005 Anastassia Ailamaki

RSS log segments + recovery

o Special segment for logs
o Recovery (shadow pages)
o Two (current and backup) page maps / segment
o OPEN_SEGMENT: identical
o Update request: current map to a new page
o Replacement: send to new page
o SAVE_SEGMENT: backup := current
o RESTORE_SEGMENT: current := backup
o Used for checkpointing and seg. recovery

© 2005 Anastassia Ailamaki 37

Storage System (cont.)

o Relations
o Fixed- and variable-length attributes
o New fields added to the right
o Tuple id = page number + offset from bottom
o Updates of variable-sized fields: overflow
a Links
u Connect tuples in one (sort) or two (1:N) relations
o Tuple=Prefix+data

© 2005 Anastassia Ailamaki 38

Current Scheme: Slotted Pages

o How to store tuples in a page (so that tid’s remain valid)

PAGE HEADER
R

RID | SSN | Name | Age
1237 | Jane 30
4322 | John 45
1563 Jim 20
7658 | Susan 52
2534 | Leon 43
8791 Dan 37

alu|s|w|N|=

© 2005 Anastassia Ailamaki 39

Current Scheme: Slotted Pages

o Formal name: NSM (N-ary Storage Model)

R PAGE HEADER ‘ RH1 ‘ 1237

Jane

30‘ RH2 ‘4322‘ John
1,56\3 Jim ‘20‘ RH4
4322 | John | 45 765N\ Susan | 52 ‘
1563 | Jim | 20
7658 | Susan 52
2534 | Leon 43
8791 | Dan | 37

RID | SSN | Name | Age
1237 | Jane | 30 45

RH3

alu|ls|lw|N|=

o Records are stored sequentially

o Offsets to start of each record at end of page

o

© 2005 Anastassia Ailamaki 40

A Record in a Slotted Page

1 [1

HEADER FIXED-LENGTH VALUES l i i| VARIABLE-LENGITH VALUE$S |
null bitmap, offsets to variable-
record length, etc length fields

All attributes of a record are stored together

o

©2005 Anastassia Allamaki 4
Storage System (cont.)

o Images
o ... are B-tree indices
o “Sort” relations by one or more key attributes
o Clustered / non-clustered
o Unique
o Maintained by the RSS

o Links
o Great for joins!

© 2005 Anastassia Ailamaki 42

Concurrency Control

o Logical locking
o Segments, relations, TIDs, key value intervals
o Hold till end of Xact
a Physical locking (also required — why?)
o Pages
o Hold for a single RSI operation
o All locking is automated, and at RSS level
o 3 levels of consistency (later, later)
o Deadlock detection: youngest Xact killed

© 2005 Anastassia Ailamaki

Recovery

o Needed to ensure consistency after a crash
o Checkpoints (database dumps)

o Log with old and new values

o ‘soft’ failure: Shadow paging

o disk failure: Logging and tape recovery

© 2005 Anastassia Ailamaki

RSI Operators

Segments Transactions/locks

o OPEN_SEGMENT o START_TRANS

o CLOSE_SEGMENT o END_TRANS

o SAVE_SEGMENT o SAVE_TRANS

o RESTORE_SEGMENT o RESTORE_TRANS
o LOCK_SEGMENT

o LOCK_RELATION

o RELEASE_TUPLE

© 2005 Anastassia Ailamaki

System R Summary

o RDS/RSS

o SEQUEL

o Transaction support
a Concurrency control with hierarchical locks
o Recovery with checkpoints, log and shadow

paging

o Authorization/assertions/triggers

o Elaborate query optimizer

o Segments, images (indices), links

© 2005 Anastassia Ailamaki

© 2005 Anastassia Ailamaki

Detailed Roadmap

a Intro

o Codd’s paper

o System R - design
* System R - evaluation

© 2005 Anastassia Ailamaki

Evaluation: Goals

o High-level, data-independent Q.L.

o Support application programs & ad-hoc g's
o Concurrency

o Recovery

o Views

o GOOD PERFORMANCE

© 2005 Anastassia Ailamaki

Implementation Phases

Phase 0 [74-75]
Quick implementation: SQL subset

Phase 1 [76-77]
Implementation of full system

Phase 2 [78-79]
Evaluation

© 2005 Anastassia Ailamaki

Phase 0

o XRM access method
o Single user (why?)
o SQL (mainly interactive)
0 no joins, subqueries instead
o Catalog: set of relations
o Managed by the system like any other
a (XRM) tuples <tid, val_ptr, val_ptr, ...)
o “inversions” (=indices)
o Query Optimization

© 2005 Anastassia Ailamaki

Lessons from Phase O

o Materializing tuples is expensive

a CPU bound system - cost=aT,+ b
(#1/0)

o Joins are important

o Query optimizer: should be geared to
simpler queries

© 2005 Anastassia Ailamaki 52

Phase 1

All of the above and...
o Compilation (R. Lorie)
o invalid modules are recompiled transparently
o Ad-hoc queries (UFI): same treatment
o RSS paths
o Index scan
a Relation scan (in physical order)
o Link scan

© 2005 Anastassia Ailamaki 53

Phase 1 (cont.)

o Query optimization
o Use statistics to calculate estimates
o Joins
o 2-way: nested loops or sort-merge
o N-way: tree search on 2-way combinations

© 2005 Anastassia Ailamaki 54

Phase 1 (cont.)

o Locking
o abandoned predicate locking (why?)

© 2005 Anastassia Ailamaki

Phase 1 (cont.)

o Locking
o abandoned predicate locking
o (slow to check conflicts; locks should be in RDS)
o Locking on physical items (hierarchies)
o “trading” (!) and intention locks

© 2005 Anastassia Ailamaki

Phase 2: Evaluation

o At IBM and customer sites for 2.5 years

a General comments
o Enthousiastic, easy installation/reconfiguration
o OK speed for 200Mb db, 10 conc. Users
o slow for complex joins

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o SQL

o?

© 2005 Anastassia Ailamaki 58

Phase 2: Evaluation (cont.)

o SQL
o Simplicity, power and data independence
o Uniform across environments (ANSI standard)

o User-suggested extensions (exist, like, outer
join)

]

© 2005 Anastassia Ailamaki 59

Phase 2: Evaluation (cont.)

o Compilation approach ?

© 2005 Anastassia Ailamaki 60

Phase 2: Evaluation (cont.)

o Compilation approach was great success
o Short, repetitive Xacts
o Ad-hoc queries: code generation takes little time

u Not perceivable to the user
o Pays off after a few records have been fetched

o Simplified design: Same approach for all queries

© 2005 Anastassia Ailamaki 61

Phase 2: Evaluation (cont.)

o Access paths:
a B-trees ?
o no hashing ?
o Links ?

© 2005 Anastassia Ailamaki 62

Phase 2: Evaluation (cont.)

o Access paths:
o B-trees,
o no hashing,
o no links

o “essential”: unusable by optimizer, non-nav. SQL
o “non-essential”: hard to maintain

© 2005 Anastassia Ailamaki 63

Phase 2: Evaluation (cont.)

o Query optimizer
o (how would you test it?)
o (how accurate were the estimates?)

© 2005 Anastassia Ailamaki 64

Phase 2: Evaluation (cont.)

a Query optimizer
o Experiments on “uniform and independent” DB
o Correct path ordering, est. costs may be off

]

© 2005 Anastassia Ailamaki 65

Phase 2: Evaluation (cont.)

o Views & authorization?

© 2005 Anastassia Ailamaki 66

Phase 2: Evaluation (cont.)

o Views & authorization: flexible &
convenient

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Recovery
o Shadow page algo?

]

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Recovery

o Shadow page = performance penalties
o (logging updates may be better)

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

a Locking (3 levels)
o Level 1: may read dirty data

u Level 2: reads clean data; successive reads
may give different results

o Level 3: “Correct”
o Q:is Level 1 faster > Level 2 > Level 3?

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Locking (3 levels)
o Level 1: may read dirty data

o Level 2: reads clean data; successive reads
may give different results

o Level 3: “Correct”
o Q: is Level 1 faster > Level 2 > Level 3?

o A: not that much - Level 3 is default and
recommended!

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Convoy phenomenon

a Q: often, many xacts do nothing, waiting -
o what is wrong?
o And how to fix it?

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Convoy phenomenon
o Q: often, many xacts do nothing, waiting -
o what is wrong?
a And how to fix it?

o A: Locks frequently requested / shortly released
(like what?)

o Solution: Round-robin CPU should NOT swap out job
w/ high-traffic lock

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Storing catalogs as relations: Good or
bad?

]

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Storing catalogs as relations: NICE!
o Same QL for accessing everything

© 2005 Anastassia Ailamaki

Evaluation - Conclusions

o Compilation, query optimizer

o CODASYL vs relational
o Qopt performance worse than network model
o But more adaptable and independent of data

© 2005 Anastassia Ailamaki 76

Phase 2: Evaluation

o At IBM and customer sites for 2.5 years
o General comments
o Enthousiastic, easy installation/reconfiguration
o SQL
o Simplicity, power and data independence
o Uniform across environments (ANSI standard)
o User-suggested extensions (exist, like, outer join)

© 2005 Anastassia Ailamaki 77

Phase 2: Evaluation (cont.)

o Compilation approach was great success
o Short, repetitive Xtions
o Ad-hoc queries: code generation takes little time
o Not perceivable to the user
o Pays off after a few records have been fetched
o Simplified design: Same approach for all queries
o Access paths: B-trees, no hashing, no links
o “essential”: unusable by optimizer, non-nav. SQL
o “non-essential”: hard to maintain

© 2005 Anastassia Ailamaki 78

Phase 2: Evaluation (cont.)

o Query optimizer
o Experiments on “unified and independent” DB
o Correct path ordering, est. costs may be off
o Views & authorization: flexible & convenient
o Recovery

o Shadow page = performance penalties
o (logging updates may be better)

o Locking (3 levels)

© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

o Convoy phenomenon

a Locks frequently requested / shortly released

o Round-robin CPU swaps job w/ high-traffic lock
o Storing catalogs as relations: NICE!

o Same QL for accessing everything
o Conclusions

o Compilation, query optimizer

o Qopt performance worse than network

o But more adaptable and independent of data

© 2005 Anastassia Ailamaki

