
1

15-721 Database Management Systems

System R and the Relational
Model

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2© 2005 Anastassia Ailamaki

Detailed Roadmap

Intro
Codd’s paper
System R - design
System R - evaluation

3© 2005 Anastassia Ailamaki

The Roots

Codd (CACM’70): Relational Model
Bachman (Turing Award, 1973): DBTG

(network model based on COBOL)
SIGMOD 1975: The Great Debate

pros and cons??

2

4© 2005 Anastassia Ailamaki

The Roots

CODASYL:
RL too much math
Implementation
OLTP <-> operators

Relational:
DBTG complicated
No easy set queries
No semantics

Late 70’s: Relational Model wins

5© 2005 Anastassia Ailamaki

Relational Prototypes

SQL,Quel (user-friendlier than Rel.
algebra)
Performance issue addressed

6© 2005 Anastassia Ailamaki

Relational Prototypes

System R
@ IBM SJ, 1974-78

compiler
RDS/RSS links
Recovery scheme
No hashing

INGRES
@ UCB 1973-77

Interpreter
Unix FS (no recovery!)
16-bit PDP-11

3

7© 2005 Anastassia Ailamaki

Impact
System R

ESVAL / HP Allbase,
IDMS/SQL,
Oracle, DB2, SQL/DS
Query optimization
Compilation

INGRES
INGRES Corp., Britton-
Lee IDM, Sybase
Clean QUEL
Queries for views
Protection, integrity

• But: both systems unfaithful to Rel. Model:
• allow duplicate records
• No notion of domain or primary key

8© 2005 Anastassia Ailamaki

Detailed Roadmap

Intro
Codd’s paper
System R - design
System R - evaluation

9© 2005 Anastassia Ailamaki

Codd, CACM’70

Goals:
(logical + physical) Data independence

Ordering (sorted vs. raw)
Indexing (existence or not)
Access path dependency

Avoid inconsistencies

4

10© 2005 Anastassia Ailamaki

(putting things in context:
DBTG)

DBTG = CODASYL = Network model:
repeating groups
records (eg., ‘employee’, ‘department’)
sets (eg., ‘employee works in a
department’)
[‘marketing’, {John, Mary, Mike}]
[‘sales’, {Peter, Tom}]
...

11© 2005 Anastassia Ailamaki

(putting things in context:
DBTG)

QL: ‘fetch’, ‘fetch next’, ‘fetch within parent’
Fast, for suitable queries;
bad for rest
even worse, apps break if schema
changes

12© 2005 Anastassia Ailamaki

Salvation:

Everything is a table - no ‘DBTG sets’, no
repeating groups
In detail:

5

13© 2005 Anastassia Ailamaki

The Relational Model
Relation (dom, … dom)
R (s1, …, sn) R ⊆ S1 × … × Sn

Rows
Distinct
Ordering doesn’t matter

Columns
Order matters
Order + labels = unique identification

Primary key, foreign key

14© 2005 Anastassia Ailamaki

Codd, CACM’70 (cont.)

First Normal Form (1NF)
Simple domains only->attributes
No repeating groups
Advantages/disadvantages?

Language
Declaration of relations (today: DDL)
Queries (today: DML)
Insertion/deletion/update

15© 2005 Anastassia Ailamaki

Operations and Rules

Set operations on relations
Projection π12 (R(s1,s2,s3)) = R’(s1,s2)
Join R S
Composition π13 (R S)
Restriction (selection with AND, OR)

6

16© 2005 Anastassia Ailamaki

(‘Restriction’)

R’ = R(2,3) | (1,2)S
i.e., give the (2,3) tuples of ‘R’ that match a

tuple from ‘S’
Formally: R’ is the maximal subset of R s.t.

projection(2,3)(R’) = projection(1,2)(S)

[hence CODASYL’s complaints!]

17© 2005 Anastassia Ailamaki

Operations and Rules - cont’d

Redundancy (no derivable relations)
‘strong’ (an existing table is a projection of
some other)
‘weak’(…... of some join)
[either way, the yet-to-be-invented Functional
Dependencies would capture them]

Consistency
[the penalty for redundancy: need to check]

18© 2005 Anastassia Ailamaki

Reminders

Goals:
(logical + physical) Data
independence
Avoid inconsistencies

7

19© 2005 Anastassia Ailamaki

Today:

Five fundamental operators, for rel. algebra
?
?
?
?
?

20© 2005 Anastassia Ailamaki

Today:

Five fundamental operators, for rel. algebra
union
difference
selection
projection
cartesian product

21© 2005 Anastassia Ailamaki

Today:

For Inconsistencies:
Functional Dependencies and
Normal Forms (remember 3NF and
BNCF?)

8

22© 2005 Anastassia Ailamaki

End of reminders

Goals:
(logical + physical) Data
independence
Avoid inconsistencies

23© 2005 Anastassia Ailamaki

24© 2005 Anastassia Ailamaki

Detailed Roadmap

Intro
Codd’s paper
System R - design
System R - evaluation

9

25© 2005 Anastassia Ailamaki

System R Architecture

R.D.S.

Programs (Sequel, QBE, etc.)

Relational Data System
(auth, integrity, view, query
optimization, catalog mgmt)

Relational Storage System
(device mgmt, space alloc,
buffers, Xact consistemcy -
locking, recovery)

R.S.S.

Multiple virtual machines!

26© 2005 Anastassia Ailamaki

System R Architecture (cont.)

Programs (Sequel, QBE, etc.)

Relational Data Interface
(called from host language,
supports emulators, etc.)

Relational Storage Interface
(access to tuples)

R.D.S.

R.S.S.

27© 2005 Anastassia Ailamaki

Even more detailed Roadmap

Intro
Codd’s paper
System R - design

RDS (QL, Data control, Q-opt)
RSS (Segments, rel, images, links, CC,
recovery)

System R - evaluation

10

28© 2005 Anastassia Ailamaki

Host Language Interface
Example:

EMP(EMPNO, NAME, DNO, JOB, SAL, MGR)
DEPT(DNO, DNAME, LOC, NEMPS)

RDS - Embedded SEQUEL in a program:
CALL BIND(‘X’, ADDR(X));
CALL BIND(‘Y’, ADDR(Y));
CALL SEQUEL(C1, ‘SELECT NAME:X, SAL:Y

FROM EMP
WHERE JOB=“PROGRAMMER”’);

CALL FETCH(C1);
CALL DESCRIBE(C1, DEGREE, P)

Gives variable
address to

RDIAssociate C1
to answer
tuple set

Get next
tupleDescribe C1
into array

29© 2005 Anastassia Ailamaki

Host Language Interface (cont.)

Locking
FETCH_HOLD locks
RELEASE unlocks

Transaction calls (passed through to the RSI)
BEGIN_TRANS
END_TRANS
SAVE (checkpoint)
RESTORE

30© 2005 Anastassia Ailamaki

Queries

SEQUEL = SQL
SELECT <attribute_list> [count, avg, sum, …]
FROM <relation_list>
[WHERE <condition>]
[ORDER BY …]
[HAVING …]
[GROUP BY …]

11

31© 2005 Anastassia Ailamaki

Data Manipulation

Updates
UPDATE <relation>
SET <attribute = value>
[WHERE <condition>]

Insertions
Deletions

32© 2005 Anastassia Ailamaki

Data Definition
Create / Drop TABLE (=relation)
Define / Drop VIEW (for read authorization)

E.g., DEFINE VIEW VEMP AS:
SELECT *
FROM EMP
WHERE DNO =

SELECT DNO
FROM EMP
WHERE NAME = USER;

Expand table (add new field)

33© 2005 Anastassia Ailamaki

Rules

Integrity constraints
ASSERT ON UPDATE TO EMP:

NEW SAL ≥ OLD SAL
Triggers
DEFINE TRIGGER EMPINS

ON INSERTION OF EMP:
(UPDATE DEPT
SET NEMPS = NEMPS + 1
WHERE DNO = NEW EMP.DNO)

Catalogs (relations, views, triggers, etc.)

12

34© 2005 Anastassia Ailamaki

Optimizer

Measure mainly I/O cost
Emphasize importance of clustering
Based on existence of indices
Cost model – choose cheapest plan
Details later...

35© 2005 Anastassia Ailamaki

Even more detailed Roadmap

Intro
Codd’s paper
System R - design

RDS (QL, Data control, Q-opt)
RSS (Segments, rel, images, links, CC,
recovery)

System R - evaluation

36© 2005 Anastassia Ailamaki

RSS Segments

Segment: logical address space
Used to store large relations, catalogs, logs…
No relation spans segments
User-defined segment length
Mapped to a set of fixed-size disk pages

Page map, replacement
Segment types

E.g., for shared data, temporary relations, etc.

13

37© 2005 Anastassia Ailamaki

RSS log segments + recovery
Special segment for logs
Recovery (shadow pages)

Two (current and backup) page maps / segment
OPEN_SEGMENT: identical
Update request: current map to a new page
Replacement: send to new page
SAVE_SEGMENT: backup := current
RESTORE_SEGMENT: current := backup

Used for checkpointing and seg. recovery

38© 2005 Anastassia Ailamaki

Storage System (cont.)

Relations
Fixed- and variable-length attributes
New fields added to the right
Tuple id = page number + offset from bottom
Updates of variable-sized fields: overflow
Links

Connect tuples in one (sort) or two (1:N) relations
Tuple=Prefix+data

39© 2005 Anastassia Ailamaki

PAGE HEADER

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

How to store tuples in a page (so that tid’s remain valid)

Current Scheme: Slotted Pages

14

40© 2005 Anastassia Ailamaki

1237RH1PAGE HEADER

30Jane RH2 4322 John

45 RH3 Jim 20

•••

RH4

7658 Susan 52

•

1563

37Dan87916

43Leon25345

52Susan76584

20Jim15633

45John43222

30Jane12371

AgeNameSSNRID

R

Records are stored sequentially
Offsets to start of each record at end of page

Formal name: NSM (N-ary Storage Model)

Current Scheme: Slotted Pages

41© 2005 Anastassia Ailamaki

FIXED-LENGTH VALUES VARIABLE-LENGTH VALUESHEADER

offsets to variable-
length fields

null bitmap,
record length, etc

All attributes of a record are stored together

A Record in a Slotted Page

42© 2005 Anastassia Ailamaki

Storage System (cont.)

Images
… are B-tree indices
“Sort” relations by one or more key attributes
Clustered / non-clustered
Unique
Maintained by the RSS

Links
Great for joins!

15

43© 2005 Anastassia Ailamaki

Concurrency Control
Logical locking

Segments, relations, TIDs, key value intervals
Hold till end of Xact

Physical locking (also required – why?)
Pages
Hold for a single RSI operation

All locking is automated, and at RSS level
3 levels of consistency (later, later)
Deadlock detection: youngest Xact killed

44© 2005 Anastassia Ailamaki

Recovery

Needed to ensure consistency after a crash
Checkpoints (database dumps)
Log with old and new values
‘soft’ failure: Shadow paging
disk failure: Logging and tape recovery

45© 2005 Anastassia Ailamaki

RSI Operators

Segments
OPEN_SEGMENT
CLOSE_SEGMENT
SAVE_SEGMENT
RESTORE_SEGMENT

Transactions/locks
START_TRANS
END_TRANS
SAVE_TRANS
RESTORE_TRANS
LOCK_SEGMENT
LOCK_RELATION
RELEASE_TUPLE

16

46© 2005 Anastassia Ailamaki

System R Summary

RDS/RSS
SEQUEL
Transaction support

Concurrency control with hierarchical locks
Recovery with checkpoints, log and shadow
paging

Authorization/assertions/triggers
Elaborate query optimizer
Segments, images (indices), links

47© 2005 Anastassia Ailamaki

48© 2005 Anastassia Ailamaki

Detailed Roadmap

Intro
Codd’s paper
System R - design
System R - evaluation

17

49© 2005 Anastassia Ailamaki

Evaluation: Goals

High-level, data-independent Q.L.
Support application programs & ad-hoc q’s
Concurrency
Recovery
Views
GOOD PERFORMANCE

50© 2005 Anastassia Ailamaki

Implementation Phases

Phase 0 [74-75]
Quick implementation: SQL subset

Phase 1 [76-77]
Implementation of full system

Phase 2 [78-79]
Evaluation

51© 2005 Anastassia Ailamaki

Phase 0
XRM access method
Single user (why?)
SQL (mainly interactive)

no joins, subqueries instead
Catalog: set of relations

Managed by the system like any other
(XRM) tuples <tid, val_ptr, val_ptr, …)
“inversions” (=indices)
Query Optimization

18

52© 2005 Anastassia Ailamaki

Lessons from Phase 0

Materializing tuples is expensive
CPU bound system - cost = aTc + b
(#I/O)
Joins are important
Query optimizer: should be geared to
simpler queries

53© 2005 Anastassia Ailamaki

Phase 1

All of the above and…
Compilation (R. Lorie)

invalid modules are recompiled transparently
Ad-hoc queries (UFI): same treatment

RSS paths
Index scan
Relation scan (in physical order)
Link scan

54© 2005 Anastassia Ailamaki

Phase 1 (cont.)

Query optimization
Use statistics to calculate estimates
Joins

2-way: nested loops or sort-merge
N-way: tree search on 2-way combinations

19

55© 2005 Anastassia Ailamaki

Phase 1 (cont.)

Locking
abandoned predicate locking (why?)

56© 2005 Anastassia Ailamaki

Phase 1 (cont.)

Locking
abandoned predicate locking

(slow to check conflicts; locks should be in RDS)
Locking on physical items (hierarchies)
“trading” (!) and intention locks

57© 2005 Anastassia Ailamaki

Phase 2: Evaluation
At IBM and customer sites for 2.5 years
General comments

Enthousiastic, easy installation/reconfiguration
OK speed for 200Mb db, 10 conc. Users
slow for complex joins

20

58© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

SQL
?

59© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

SQL
Simplicity, power and data independence
Uniform across environments (ANSI standard)
User-suggested extensions (exist, like, outer
join)

60© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Compilation approach ?

21

61© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Compilation approach was great success
Short, repetitive Xacts
Ad-hoc queries: code generation takes little time

Not perceivable to the user
Pays off after a few records have been fetched

Simplified design: Same approach for all queries

62© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Access paths:
B-trees ?
no hashing ?
Links ?

63© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Access paths:
B-trees,
no hashing,
no links

“essential”: unusable by optimizer, non-nav. SQL
“non-essential”: hard to maintain

22

64© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Query optimizer
(how would you test it?)
(how accurate were the estimates?)

65© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Query optimizer
Experiments on “uniform and independent” DB
Correct path ordering, est. costs may be off

66© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Views & authorization?

23

67© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Views & authorization: flexible &
convenient

68© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Recovery
Shadow page algo?

69© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Recovery
Shadow page ⇒ performance penalties

(logging updates may be better)

24

70© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Locking (3 levels)
Level 1: may read dirty data
Level 2: reads clean data; successive reads
may give different results
Level 3: “Correct”
Q: is Level 1 faster > Level 2 > Level 3?

71© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Locking (3 levels)
Level 1: may read dirty data
Level 2: reads clean data; successive reads
may give different results
Level 3: “Correct”
Q: is Level 1 faster > Level 2 > Level 3?
A: not that much - Level 3 is default and
recommended!

72© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Convoy phenomenon
Q: often, many xacts do nothing, waiting -

what is wrong?
And how to fix it?

25

73© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Convoy phenomenon
Q: often, many xacts do nothing, waiting -

what is wrong?
And how to fix it?

A: Locks frequently requested / shortly released
(like what?)

Solution: Round-robin CPU should NOT swap out job
w/ high-traffic lock

74© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Storing catalogs as relations: Good or
bad?

75© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Storing catalogs as relations: NICE!
Same QL for accessing everything

26

76© 2005 Anastassia Ailamaki

Evaluation - Conclusions

Compilation, query optimizer
CODASYL vs relational

Qopt performance worse than network model
But more adaptable and independent of data

77© 2005 Anastassia Ailamaki

Phase 2: Evaluation

At IBM and customer sites for 2.5 years
General comments

Enthousiastic, easy installation/reconfiguration
SQL

Simplicity, power and data independence
Uniform across environments (ANSI standard)
User-suggested extensions (exist, like, outer join)

78© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Compilation approach was great success
Short, repetitive Xtions
Ad-hoc queries: code generation takes little time

Not perceivable to the user
Pays off after a few records have been fetched

Simplified design: Same approach for all queries
Access paths: B-trees, no hashing, no links

“essential”: unusable by optimizer, non-nav. SQL
“non-essential”: hard to maintain

27

79© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Query optimizer
Experiments on “unified and independent” DB
Correct path ordering, est. costs may be off

Views & authorization: flexible & convenient
Recovery

Shadow page ⇒ performance penalties
(logging updates may be better)

Locking (3 levels)

80© 2005 Anastassia Ailamaki

Phase 2: Evaluation (cont.)

Convoy phenomenon
Locks frequently requested / shortly released
Round-robin CPU swaps job w/ high-traffic lock

Storing catalogs as relations: NICE!
Same QL for accessing everything

Conclusions
Compilation, query optimizer
Qopt performance worse than network
But more adaptable and independent of data

