

The Relational Model

Mine eye hath play'd the painter and hath stell'd
Thy beauty's form in table of my heart.

Shakespeare, Sonnet XXIV

Why Study the Relational Model?

- **Most widely used model.**
 - Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.
- **“Legacy systems” in older models**
 - e.g., IBM’s IMS
- **Object-oriented concepts have recently merged in**
 - *object-relational model*
 - Informix, IBM DB2, Oracle 8i
 - Early work done in POSTGRES research project at Berkeley

Anastassia Ailamaki, 2003

Relational Database: Definitions

- *Relational database*: a set of *relations*.
- *Relation*: made up of 2 parts:
 - *Schema* : specifies name of relation, plus name and type of each column.
 - E.g. Students(*sid*: string, *name*: string, *login*: string, *age*: integer, *gpa*: real)
 - *Instance* : a *table*, with rows and columns.
 - #rows = *cardinality*
 - #fields = *degree / arity*
- Can think of a relation as a *set* of rows or *tuples*.
 - i.e., all rows are distinct

Anastassia Ailamaki, 2003

Ex: Instance of Students Relation

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@cs	18	3.2
53650	Smith	smith@math	19	3.8

- Cardinality = 3, arity = 5 , all rows distinct
- Do all values in each column of a relation instance have to be distinct?

Anastassia Ailamaki, 2003

SQL - A language for Relational DBs

- **SQL*** (a.k.a. “Sequel”), standard language
- **Data Definition Language (DDL)**
 - create, modify, delete relations
 - specify constraints
 - administer users, security, etc.
- **Data Manipulation Language (DML)**
 - Specify *queries* to find tuples that satisfy criteria
 - add, modify, remove tuples

Anastassia Ailamaki, 2003

* Structured Query Language

SQL Overview

- **CREATE TABLE <name> (<field> <domain>, ...)**
- **INSERT INTO <name> (<field names>)
VALUES (<field values>)**
- **DELETE FROM <name>
WHERE <condition>**
- **UPDATE <name>
SET <field name> = <value>
WHERE <condition>**
- **SELECT <fields>
FROM <name>
WHERE <condition>**

Anastassia Ailamaki, 2003

Creating Relations in SQL

- Creates the Students relation.

- Note: the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.

```
CREATE TABLE Students
  (sid CHAR(20),
   name CHAR(20),
   login CHAR(10),
   age INTEGER,
   gpa FLOAT)
```

Anastasia Ailamaki, 2003

Table Creation (continued)

- Another example: the Enrolled table holds information about courses students take.

```
CREATE TABLE Enrolled
  (sid CHAR(20),
   cid CHAR(20),
   grade CHAR(2))
```

Anastasia Ailamaki, 2003

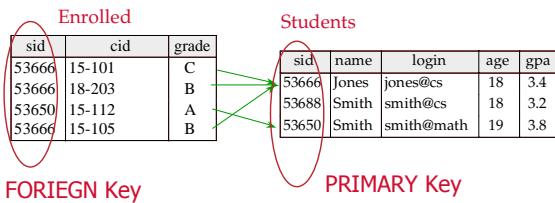
Adding and Deleting Tuples

- Can insert a single tuple using:

```
INSERT INTO Students (sid, name, login, age, gpa)
VALUES ('53688', 'Smith', 'smith@cs', 18, 3.2)
```

- Can delete all tuples satisfying some condition (e.g., name = Smith):

```
DELETE
  FROM Students S
  WHERE S.name = 'Smith'
```


Powerful variants of these commands are available; more later!

Anastasia Ailamaki, 2003

Keys

- Keys are a way to associate tuples in different relations
- Keys are one form of integrity constraint (IC)

Anastasia Ailamaki, 2003

Primary Keys

- A set of fields is a **superkey** if:
 - No two distinct tuples can have same values in all key fields
- A set of fields is a **key for a relation** if :
 - It is a superkey
 - No subset of the fields is a superkey
- what if >1 key for a relation?**
 - one of the keys is chosen (by DBA) to be the **primary key**. Other keys are called **candidate keys**.
- E.g.**
 - sid is a key for Students.
 - What about name?
 - The set {sid, gpa} is a superkey.

Anastasia Ailamaki, 2003

Primary and Candidate Keys in SQL

- Possibly many **candidate keys** (specified using **UNIQUE**), one of which is chosen as the **primary key**.
- Keys must be used carefully!
- “For a given student and course, there is a single grade.”

```
CREATE TABLE Enrolled
  (sid CHAR(20)
   cid CHAR(20),
   grade CHAR(2),
   PRIMARY KEY (sid,cid))
```

VS.

```
CREATE TABLE Enrolled
  (sid CHAR(20)
   cid CHAR(20),
   grade CHAR(2),
   PRIMARY KEY (sid),
   UNIQUE (cid, grade))
```

“Students can take only one course, and no two students in a course receive the same grade.”

Anastasia Ailamaki, 2003

Foreign Keys, Referential Integrity

- **Foreign key:** Set of fields in one relation that is used to 'refer' to a tuple in another relation.
 - Must correspond to the primary key of the other relation.
 - Like a 'logical pointer'.
- If all foreign key constraints are enforced, **referential integrity** is achieved (i.e., no dangling references.)

Anastassia Ailamaki, 2003

Foreign Keys in SQL

Example: Only students listed in the Students relation should be allowed to enroll for courses.

- *sid* is a foreign key referring to *Students*:

```
CREATE TABLE Enrolled
(sid CHAR(20),cid CHAR(20),grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students )
```

Enrolled

sid	cid	grade
53666	15-101	C
53666	18-203	B
53650	15-112	A
53666	15-105	B

Students

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@cs	18	3.2
53650	Smith	smith@math	19	3.8

Anastassia Ailamaki, 2003

Enforcing Referential Integrity

- Consider Students and Enrolled; *sid* in Enrolled is a foreign key that references Students.
- What should be done if an Enrolled tuple with a non-existent student id is inserted? (*Reject it!*)
- What should be done if a Students tuple is deleted?
 - Also delete all Enrolled tuples that refer to it?
 - Disallow deletion of a Students tuple that is referred to?
 - Set sid in Enrolled tuples that refer to it to a *default sid*?
 - (In SQL, also: Set sid in Enrolled tuples that refer to it to a special value *null*, denoting 'unknown' or 'inapplicable')?
- Similar issues arise if primary key of Students tuple is updated.

Anastassia Ailamaki, 2003

Integrity Constraints (ICs)

- **IC:** condition that must be true for *any* instance of the database; e.g., *domain constraints*.

- ICs are specified when schema is defined.
- ICs are checked when relations are modified.
- A *legal instance of a relation is one that satisfies all specified ICs*.
- DBMS should not allow illegal instances.
- If the DBMS checks ICs, stored data is more faithful to real-world meaning.
- Avoids data entry errors, too!

Anastassia Ailamaki, 2003

Where do ICs Come From?

- ICs are based upon the semantics of the real-world that is being described in the database relations.
- We can check a database instance to see if an IC is violated, but we can NEVER infer that an IC is true by looking at an instance.
 - An IC is a statement about *all possible* instances!
 - From example, we know *name* is not a key, but the assertion that *sid* is a key is given to us.
- Key and foreign key ICs are the most common; more general ICs supported too.

Anastassia Ailamaki, 2003

Relational Model: Summary

- A tabular representation of data.
- Simple and intuitive, currently the most widely used
 - Object-relational variant gaining ground
- Integrity constraints can be specified by the DBA, based on application semantics. DBMS checks for violations.
 - Two important ICs: primary and foreign keys
 - In addition, we *always* have domain constraints.
- Mapping from ER to Relational is (fairly) straightforward.
- NEXT: FILES< STORAGE, BUFFERS, DISKS...
- READ CHAPTER 9!

Anastassia Ailamaki, 2003

Schema Refinement and Normalization

Nobody realizes that some people expend tremendous energy merely to be normal.

Albert Camus

Functional Dependencies (FDs)

- A **functional dependency $X \rightarrow Y$** holds over relation schema R if, for every **allowable instance r** of R :

$$t1 \in r, t2 \in r, \pi_X(t1) = \pi_X(t2) \text{ implies } \pi_Y(t1) = \pi_Y(t2)$$
(where $t1$ and $t2$ are tuples; X and Y are sets of attributes)
- In other words: $X \rightarrow Y$ means Given any two tuples in r , if the X values are the same, then the Y values must also be the same. (but not vice versa)
- Can read " \rightarrow " as "determines"

Anastasia Ailamaki, 2003

FD's Continued

- An FD is a statement about **all** allowable relations.
 - Must be identified based on semantics of application.
 - Given some instance $r1$ of R , we can check if $r1$ violates some FD f , but we cannot determine if f holds over R .
- **Question: How related to keys?**
- if " $K \rightarrow$ all attributes of R " then K is a **superkey** for R
 - (does not require K to be *minimal*.)
- **FDs are a generalization of keys.**

Anastasia Ailamaki, 2003

Normal Forms

- Back to schema refinement...
- Q1: is any refinement needed??!
- If a relation is in a **normal form** (BCNF, 3NF etc.):
 - we know that certain problems are avoided/minimized.
 - helps decide whether decomposing a relation is useful.
- **Role of FDs in detecting redundancy:**
 - Consider a relation R with 3 attributes, ABC.
 - **No (non-trivial) FDs hold:** There is no redundancy here.
 - **Given $A \rightarrow B$:** If A is not a key, then several tuples could have the same A value, and if so, they'll all have the same B value!
- **1st Normal Form – all attributes are atomic**
- **1st \supset 2nd (of historical interest) \supset 3rd \supset Boyce-Codd \supset ...**

Anastasia Ailamaki, 2003

Boyce-Codd Normal Form (BCNF)

- Reln R with FDs F is in **BCNF** if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a *trivial*/FD), or
 - X is a superkey for R .
- In other words: **" R is in BCNF if the only non-trivial FDs over R are key constraints."**
- If R in BCNF, then every field of every tuple records information that **cannot be inferred** using FDs alone.
 - Say we know FD $X \rightarrow A$ holds this example relation:

X	Y	A
x	y1	a
x	y2	?
 - Can you guess the value of the missing attribute?
- Yes, so relation is not in BCNF

Anastasia Ailamaki, 2003

Decomposition of a Relation Scheme

- If a relation is not in a desired normal form, it can be **decomposed** into multiple relations that each are in that normal form.
- Suppose that relation R contains attributes $A1 \dots An$. A **decomposition** of R consists of replacing R by two or more relations such that:
 - Each new relation scheme contains a **subset** of the attributes of R , and
 - Every attribute of R appears as an attribute of at least one of the new relations.

Anastasia Ailamaki, 2003

Example (same as before)

S	N	L	R	W	H
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Hourly_Emps

- SNLRWH has FDs $S \rightarrow \text{SNLRWH}$ and $R \rightarrow W$
- Q: Is this relation in BCNF?

No, The second FD causes a violation;
W values repeatedly associated with R values.

Anastasia Ailamaki, 2003

Decomposing a Relation

- Easiest fix is to create a relation RW to store these associations, and to remove W from the main schema:

S	N	L	R	H
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

Wages

Hourly_Emps2

- Q: Are both of these relations now in BCNF?
- Decompositions should be used only when needed.**
- Q: potential problems of decomposition?

Anastasia Ailamaki, 2003

Problems with Decompositions

- There are three potential problems to consider:
 - 1) May be **impossible** to reconstruct the original relation! (Lossiness)
 - Fortunately, not in the SNLRWH example.
 - 2) **Dependency checking may require joins.**
 - Fortunately, not in the SNLRWH example.
 - 3) **Some queries become more expensive.**
 - e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs. redundancy.

Anastasia Ailamaki, 2003

Review – Natural Join

- Natural Join is a fundamental operator of relational algebra**

- Semantics of $R \bowtie S$ are:**

- Compute Cartesian Product of R and S
- Select out those tuples where the common attributes of R and S have the same values
- Keep all unique attributes of these tuples plus one copy of each of the common attributes.

Anastasia Ailamaki, 2003

Lossless Decomposition (example)

S	N	L	R	W	H
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

R	W
8	10
5	7

=

S	N	L	R	W	H
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

Anastasia Ailamaki, 2003

Lossy Decomposition (example)

A	B	C
1	2	3
4	5	6
7	2	8

A	B
1	2
4	5
7	2

B	C
2	3
5	6
2	8

$A \rightarrow B; C \rightarrow B$

A	B
1	2
4	5
7	2

B	C
2	3
5	6
2	8

A	B	C
1	2	3
4	5	6
7	2	8
1	2	8
7	2	3

Anastasia Ailamaki, 2003

Lossless Join Decompositions

- **Decomposition of R into X and Y is *lossless-join* w.r.t. a set of FDs F if, for every instance r that satisfies F:**
 $\pi_X(r) \bowtie \pi_Y(r) = r$
- **It is always true that $r \subseteq \pi_X(r) \bowtie \pi_Y(r)$**
 - In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- **Definition extended to decomposition into 3 or more relations in a straightforward way.**
- **It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem #1)**

Anastasia Ailamaki, 2003

More on Lossless Decomposition

- The decomposition of R into X and Y is **lossless with respect to F** if and only if the closure of F contains:

$$X \cap Y \rightarrow X, \text{ or}$$

$$X \cap Y \rightarrow Y$$
- in example: decomposing ABC into AB and BC is lossy, because intersection (i.e., "B") is not a key of either resulting relation.
- **Useful result:** If $W \rightarrow Z$ holds over R and $W \cap Z$ is empty, then decomposition of R into R-Z and WZ is loss-less.

Anastasia Ailamaki, 2003

Lossless Decomposition (example)

$A \rightarrow B; C \rightarrow B$	<table border="1"> <tr><td>A</td><td>B</td><td>C</td></tr> <tr><td>1</td><td>2</td><td>3</td></tr> <tr><td>4</td><td>5</td><td>6</td></tr> <tr><td>7</td><td>2</td><td>8</td></tr> </table>	A	B	C	1	2	3	4	5	6	7	2	8	\Rightarrow	<table border="1"> <tr><td>A</td><td>C</td></tr> <tr><td>1</td><td>3</td></tr> <tr><td>4</td><td>6</td></tr> <tr><td>7</td><td>8</td></tr> </table>	A	C	1	3	4	6	7	8	<table border="1"> <tr><td>B</td><td>C</td></tr> <tr><td>2</td><td>3</td></tr> <tr><td>5</td><td>6</td></tr> <tr><td>2</td><td>8</td></tr> </table>	B	C	2	3	5	6	2	8	
A	B	C																															
1	2	3																															
4	5	6																															
7	2	8																															
A	C																																
1	3																																
4	6																																
7	8																																
B	C																																
2	3																																
5	6																																
2	8																																
	<table border="1"> <tr><td>A</td><td>C</td></tr> <tr><td>1</td><td>3</td></tr> <tr><td>4</td><td>6</td></tr> <tr><td>7</td><td>8</td></tr> </table>	A	C	1	3	4	6	7	8		<table border="1"> <tr><td>B</td><td>C</td></tr> <tr><td>2</td><td>3</td></tr> <tr><td>5</td><td>6</td></tr> <tr><td>2</td><td>8</td></tr> </table>	B	C	2	3	5	6	2	8	$=$	<table border="1"> <tr><td>A</td><td>B</td><td>C</td></tr> <tr><td>1</td><td>2</td><td>3</td></tr> <tr><td>4</td><td>5</td><td>6</td></tr> <tr><td>7</td><td>2</td><td>8</td></tr> </table>	A	B	C	1	2	3	4	5	6	7	2	8
A	C																																
1	3																																
4	6																																
7	8																																
B	C																																
2	3																																
5	6																																
2	8																																
A	B	C																															
1	2	3																															
4	5	6																															
7	2	8																															

But, now we can't check $A \rightarrow B$ without doing a join!

Anastasia Ailamaki, 2003

Dependency Preserving Decomposition

- **Dependency preserving decomposition (Intuitive):**
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold individually on X, on Y and on Z, then all FDs that were given to hold on R should also hold. (Avoids Problem #2 on our list.)
- **Projection of set of FDs F:** If R is decomposed into X and Y the projection of F on X (denoted F_X) is the set of FDs $U \rightarrow V$ in F^+ (closure of F, not just F) such that all of the attributes U, V are in X. (same holds for Y of course)

Anastasia Ailamaki, 2003

Dependency Preserving Decompositions (Cont.)

- **Definition: Decomposition of R into X and Y is dependency preserving if $(F_X \cup F_Y)^+ = F^+$**
 - i.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, these imply all dependencies in F^+ .
- **Important to consider F^+ in this definition:**
 - ABC, $A \rightarrow B$, $B \rightarrow C$, $C \rightarrow A$, decomposed into AB and BC.
 - Is this dependency preserving? Is $C \rightarrow A$ preserved?????
 - note: F^+ contains $F \cup \{A \rightarrow C, B \rightarrow A, C \rightarrow B\}$, so...
- FAB contains $A \rightarrow B$ and $B \rightarrow A$; FBC contains $B \rightarrow C$ and $C \rightarrow B$
- So, $(FAB \cup FBC)^+$ contains $C \rightarrow A$

Anastasia Ailamaki, 2003

Decomposition into BCNF

- Consider relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R - Y$ and XY (guaranteed to be loss-less).
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C, $JP \rightarrow C$, $SD \rightarrow P$, $J \rightarrow S$
 - *(contractid, supplierid, projectid, depid, partid, qty, value)*
 - To deal with $SD \rightarrow P$, decompose into SDP, CSJDQV.
 - To deal with $J \rightarrow S$, decompose CSJDQV into JS and CJDQV
 - So we end up with: SDP, JS, and CJDQV
- Note: several dependencies may cause violation of BCNF. The order in which we ``deal with'' them could lead to very different sets of relations!

Anastasia Ailamaki, 2003

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - e.g., CSZ, CS → Z, Z → C
 - Can't decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
 - {*contractid, supplierid, projectid, deptid, partid, qty, value*}
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - but JPC tuples are stored only for checking the f.d. (Redundancy!)

Anastassia Ailamaki, 2003

Third Normal Form (3NF)

- Reln R with FDs F is in 3NF if, for all $X \rightarrow A$ in F^+
 - $A \in X$ (called a *trivial FD*), or
 - X is a superkey of R, or
 - A is part of some *candidate key* (not superkey!) for R. (sometimes stated as "A is *prime*")
- **Minimality** of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no ``good'' decomp, or performance considerations).
 - Lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations always possible.

Anastassia Ailamaki, 2003

What Does 3NF Achieve?

- If 3NF violated by $X \rightarrow A$, one of the following holds:
 - X is a subset of some key K ("partial dependency")
 - We store (X, A) pairs redundantly.
 - e.g. Reserves SBDC (C is for credit card here) with key SBD and $S \rightarrow C$
 - X is not a proper subset of any key. ("transitive dep.")
 - There is a chain of FDs $K \rightarrow X \rightarrow A$, which means that we cannot associate an X value with a K value unless we also associate an A value with an X value (different K's, same X implies same A) – problem with initial SNLRWH example.
- But: even if R is in 3NF, these problems could arise.
 - e.g., Reserves SBDC (note: "C" is for credit card here), $S \rightarrow C$, $C \rightarrow S$ is in 3NF (why?), but for each reservation of sailor S, same (S, C) pair is stored.
- Thus, 3NF is indeed a compromise relative to BCNF.

Anastassia Ailamaki, 2003

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier) but does not ensure dependency preservation.
- To ensure dependency preservation, one idea:
 - If $X \rightarrow Y$ is not preserved, add relation XY.

Problem is that XY may violate 3NF! e.g., consider the addition of CJP to 'preserve' $JP \rightarrow C$. What if we also have $J \rightarrow C$?
- **Refinement:** Instead of the given set of FDs F, use a *minimal cover for F*.

Anastassia Ailamaki, 2003

Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F:
 - Closure of F = closure of G.
 - Right hand side of each FD in G is a single attribute.
 - If we modify G by deleting an FD or by deleting attributes from an FD in G, the closure changes.
- Intuitively, every FD in G is needed, and ``as small as possible'' in order to get the same closure as F.
- e.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$
- M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
 - (in book)

Anastassia Ailamaki, 2003

Summary of Schema Refinement

- BCNF: each field contains information that cannot be inferred using only FDs.
 - ensuring BCNF is a good heuristic.
- Not in BCNF? Try decomposing into BCNF relations.
 - Must consider whether all FDs are preserved!
- Lossless-join, dependency preserving decomposition into BCNF impossible? Consider 3NF.
 - Same if BCNF decomp is unsuitable for typical queries
 - Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.
- Note: even more restrictive Normal Forms exist (we don't cover them in this course, but some are in the book.)

Anastassia Ailamaki, 2003