The Relational Model

Mine eye hath play’d the painter and hath stell’d

Thy beauty’s form in table of my heart. @

Shakespeare, Sonnet XXIV

=
- Why Study the Relational Model?

* Most widely used model.

—Vendors: IBM, Informix, Microsoft, Oracle,
Sybase, etc.

* “Legacy systems” in older models
—-e.g., IBM's IMS

* Object-oriented concepts have recently
merged in

— object-relational model
¢ Informix, IBM DB2, Oracle 8i

¢ Early work done in POSTGRES research
project at Berkeley
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Relational Database: Definitions

o Relational database: a set of relations.
o Relation: made up of 2 parts:

— Schema : specifies name of relation, plus
name and type of each column.

¢ E.g. Students(si@: string, name: string,
login: string, age: integer, gpa: real)
— Instance : a table, with rows and columns.
o #rows = cardinality
o #fields = degree / arity
¢ Can think of a relation as a set of rows or tfuples.
—i.e., all rows are distinct
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- Ex: Instance of Students Relation

sid |name login age |gpa
53666 |Jones |jones@cs 18 |34
53688 |Smith |smith@cs 18 |32
53650 |Smith |smith@math | 19 | 3.8

® Cardinality = 3, arity = 5, all rows distinct

® Do all values in each column of a relation instance
have to be distinct?
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SQL - A language for Relational DBs

¢ SQL" (a.k.a. “Sequel”), standard language
¢ Data Definition Language (DDL)
— create, modify, delete relations
— specify constraints
— administer users, security, etc.
« Data Manipulation Language (DML)
— Specify gueries to find tuples that satisfy criteria
— add, modify, remove tuples

*Structured Query Language
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SQL Overview

* CREATE TABLE <name> ( <field> <domain>, ..

« INSERT INTO <name> (<field names>)
VALUES (<field values>)

* DELETE FROM <name>
WHERE <condition>

« UPDATE <nhame>
SET <field name> = <value>
WHERE <condition>

e SELECT <fields>
FROM <name>
WHERE <condition>
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Creating Relations in SQL

¢ Creates the Students relation.

—Note: the type (domain) of each field is
specified, and enforced by the DBMS
whenever tuples are added or modified.

CREATE TABLE Students
(sid CHAR(20),
name CHAR(20),
Togin CHAR(10),
age INTEGER,
gpa FLOAT)
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- Table Creation (continued)

* Another example: the Enrolled table holds
information about courses students take.

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2))
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- Adding and Deleting Tuples

* Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (“53688’, ‘smith’, ‘smith@cs’, 18, 3.2)

. Can delete all tuples satisfying some condition
(e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

Powerful variants of these commands are available;
more later!

Anastassia Ailameki, 2003

=

Keys

» Keys are a way to associate tuples in
different relations

e Keys are one form of integrity constraint
(I0)

Enrolled Students
sd\ cid grade > -
2668 115.101 C \/ sn&\ name | login age | gpa
53666 |18-203 B 53660 |Jones |jones@cs 18 | 34
53650! |15-112 A 5368% Smith |[smith@cs 18 |32
53666 |15-105 B 53650 |Smith |smith@math | 19 | 3.8

FORIEGN Key PRIMARY Key
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Primary Keys

* Aset of fields is a superkey if:

— No two distinct tuples can have same values in all key
fields

* Aset of fields is a key for a relation if :
— Itis a superkey
— No subset of the fields is a superkey

« what if >1 key for a relation?

— one of the keys is chosen (by DBA) to be the primary
key. Other keys are called candidate keys.

* E.g.
— sidis a key for Students.
— What about name?
— The set {sid, g,aa}A isa Eg&gmey.

Primary and Candidate Keys in SQL

¢ Possibly many candidate keys (specified using
UNIQUE), one of which is chosen as the primary key.

« Keys must be used carefully!
« “For a given student and course, there is a single grade.”

CREATE TABLE Enrolled R
(sid CHAR(20)
cid CHAR(20), VS.
grade CHAR(2),
PRIMARY KEY (sid,cid))

“Students can take only one course, and no two students
in a course receive the same grade.”

Anastassia Ailamaki, 2003




Foreign Keys, Referential Integrity

* Foreign key : Set of fields in one relation
that is used to “refer’ to a tuple in another
relation.

— Must correspond to the primary key of the other
relation.

—Like a " logical pointer’.

« If all foreign key constraints are enforced,
referential integrity is achieved (i.e., no
dangling references.)
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Foreign Keys in SQL

Example: Only students listed in the Students relation
should be allowed to enroll for courses.

- sidis a foreign key referring to Students:

CREATE TABLE Enrolled

(sid CHAR(20),cid CHAR(20),grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students )

Enrolled

sd cid grade Students

53666 |15-101 [ . sid |name login age | gpa
53666 |18-203 B -—(53666 |Jones |jones@cs 18 |34
53650 |15-112 A _| 53688 |Smith |smith@cs 18 |32
53666 |15-105 B 53650 |Smith |smith@math | 19 | 3.8
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Enforcing Referential Integrity

* Consider Students and Enrolled; sidin Enrolled is a
foreign key that references Students.

What should be done if an Enrolled tuple with a non-
existent student id is inserted? (Reject it!)

* What should be done if a Students tuple is deleted?
— Also delete all Enrolled tuples that refer to it?
— Disallow deletion of a Students tuple that is referred to?
— Set sid in Enrolled tuples that refer to it to a default sid?
— (In SQL, also: Set sid in Enrolled tuples that refer to it to a
special value nu/j, denoting ‘unknown’or ‘inapplicable?)
+ Similar issues arise if primary key of Students tuple is
updated.
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Integrity Constraints (ICs)

» IC: condition that must be true for any
instance of the database; e.g., domain
constraints.

—ICs are specified when schema is defined.

—ICs are checked when relations are
modified.

¢ A /egalinstance of a relation is one that
satisfies all specified ICs.

— DBMS should not allow illegal instances.

o If the DBMS checks ICs, stored data is
more faithful to real-world meaning.

— Avoids data entry errors, too!
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Where do ICs Come From?

¢ ICs are based upon the semantics of the real-world
that is being described in the database relations.

¢ We can check a database instance to see if an IC is
violated, but we can NEVER infer that an IC is true
by looking at an instance.
— An IC is a statement about a// possible instances!
— From example, we know name s not a key, but the

assertion that sidis a key is given to us.

» Key and foreign key ICs are the most common;

more general ICs supported too.
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Relational Model: Summary

* A tabular representation of data.
* Simple and intuitive, currently the most widely used
— Object-relational variant gaining ground

* Integrity constraints can be specified by the DBA, based
on application semantics. DBMS checks for violations.

— Two important ICs: primary and foreign keys
— In addition, we a/ways have domain constraints.
* Mapping from ER to Relational is (fairly) straightforward.

o NEXT: FILES< STORAGE, BUFFERS, DISKS...
e READ CHAPTER 9!
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Schema Refinement
and Normalization

Nobody realizes that some people
expend tremendous energy
merely to be normal.

Albert Camus

=
- Functional Dependencies (FDs)

* A functional dependency X - Y holds over relation
schema R if, for every allowable instance rof R:

t10r 201 Th(tl) = TT,(L2)
implies 71, (¢1) = 71, (£2)
(where t1 and £ are tuples;X and Y are sets of attributes)

¢ In other words: X - Y means
Given any two tuples in 7 if the X values are the same,
then the Y values must also be the same. (but not vice
versa)

e Can read “-" as “determines”
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ﬁ FD’s Continued

* An FD is a statement about a//allowable
relations.
— Must be identified based on semantics of
application.

— Given some instance rf of R, we can check
if r1 violates some FD 7, but we cannot
determine if £ holds over R.

¢ Question: How related to keys?

o if "K - all attributes of R” then K is a
superkey for R
(does not require K to be minimal.)

* FDs are a generalization of keys.
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- Normal Forms

¢ Back to schema refinement...

¢ Q1:is any refinement needed??!

o If a relation is in a normal form (BCNF, 3NF etc.):
— we know that certain problems are avoided/minimized.
— helps decide whether decomposing a relation is useful.

* Role of FDs in detecting redundancy:

— Consider a relation R with 3 attributes, ABC.
¢ No (non-trivial) FDs hold: There is no redundancy here.

* Given A - B: If Ais not a key, then several tuples could have the
same A value, and if so, they'll all have the same B value!

¢ 1st Normal Form — all attributes are atomic
o 1st 2nd (of historical interest) 0 3" 0 Boyce-Codd O ...
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Boyce-Codd Normal Form (BCNF)

* Reln R with FDs Fis in BCNF if, forall X - A in F*+
—AOX (called a trivial FD), or
— Xis a superkey for R.

¢ In other words: "R is in BCNF if the only non-trivial FDs
over R are key constraints.”

« If R in BCNF, then every field of every tuple records
information that cannot be inferred using FDs alone.
— Say we know FD X — A holds this example relation: [x [y |A

 Can you guess the value of the X |yl |a
missing attribute? X |y2 |?

eYes, so relation is not in BCNF
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Decomposition of a Relation Scheme

o If a relation is not in a desired normal form, it can be
decomposed into multiple relations that each are in that
normal form.

* Suppose that relation R contains attributes A7 ... An. A
decomposition of R consists of replacing R by two or more
relations such that:

— Each new relation scheme contains a subset of the
attributes of R, and

— Every attribute of R appears as an attribute of at least
one of the new relations.
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- Example (same as before)

S N L RW H |
123-22-3666 |Attishoo |48 |8 [10 40
231-31-5368 Smiley |22 8 10 30
131-24-3650 |Smethurst (35 |5 |7 30 Hourly_Emps
434-26-3751 | Guldu 35 5 |7 32
612-67-4134 Madayan 35 8 |10 40

e SNLRWH has FDs S — SNLRWH and R - W
¢ Q: Is this relation in BCNF?

No, The second FD causes a violation;
W values repeatedly associated with R values.
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= . .
- Decomposing a Relation

o Easiest fix is to create a relation RW to store these
associations, and to remove W from the main

schema:

S N L RH

123-22-3666 Attishoo |48 |8 |40 o
231-31-5368 Smiley 22 |8 |30 8 o
131-24-3650 Smethurst (35 |5 |30 5 |7

434-26-3751 | Guldu 355 32

612-67-4134 Madayan |35 (8 |40 Wages

Hourly_Emps2

*Q: Are both of these relations are now in BCNF?

eDecompositions should be used only when needed.

—Q: potential proR!EQ!E‘SL cziogé:omposition?

ﬁ Problems with Decompositions

¢ There are three potential problems to consider:
1) May be impossible to reconstruct the original relation!
(Lossiness)

» Fortunately, not in the SNLRWH example.

2) Dependency checking may require joins.
» Fortunately, not in the SNLRWH example.

3) Some queries become more expensive.
e e.g., How much does Guldu earn?

Tradeoff: Must consider these issues vs.
redundancy.
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- Review — Natural Join

+ Natural Join is a fundamental operator of
relational algebra N

+ Semantics of R >< S are:
— Compute Cartesian Product of R and S
— Select out those tuples where the common
attributes of R and S have the same values
— Keep all unique attributes of these tuples plus one
copy of each of the common attributes.
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- Lossless Decomposition (example)

S N L R ‘H
123-22-3666 |Attishoo |48 |8 =
231-31-5368 |Smiley |22 3 1o
131-24-3650 |Smethurst |35 \30 [><] 5 |7

8

5
434-26-3751 | Guldu 35 |5 ‘32

8

612-67-4134 Madayan |35 \40
S N L RWH
123-22-3666 Attishoo |48 8 |10 40
__ 231-31-5368 Smiley |22 8 10 30
— |131-24-3650 Smethurst 35 5 |7 30
434-26-3751 Guldu 3557 32
612-67-4134 Madayan (35 8 |10 40
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Lossy Decomposition (example)

A [B |C A B B [C
1123 12 2 (3
456»45 5 |6
7 12 |8 7 2 2 |8
A_-B;C-B
A B C
A B B |C 123
1 2 2 |3 — 4 5 6
45[>q56 7 2 8
7 2 12 18 | 128
7 23

Anastassia Ailamaki, 2003




=
- Lossless Join Decompositions

a set of FDs F if, for every instance r that satisfies F:

Decomposition of R into X and Y is /oss/ess-join w.r.t.

i < vy = r
Itis always truethat r U 7,(9) > 71, (9
— In general, the other direction does not hold! If it does,
the decomposition is lossless-join.
Definition extended to decomposition into 3 or more
relations in a straightforward way.

It is essential that all decompositions used to deal with
redundancy be lossless! (Avoids Problem #1)
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ﬁ Lossless Decomposition (example)
A[B]C A lC B [C
1 (23 13 2 |3
4 |5 |6 » 4 |6 5 |6
712 8 7 I8 2 |8
A-B;,CsB
A |C B |[C A B |C
1 (3 2 13 _ 112 (3
s s | D] 5 |6 = la|5 |6
7 |8 2 | 7 |2 |8
But, now we can't check A - B without doing a join!

=

o Definition: Decomposition of R into Xand Y is

Dependency Preserving Decompositions (Cont.)

dependency preserving if (FxkOFy)* = F+

- i.e., if we consider only dependencies in the closure F * that
can be checked in X without considering Y, and in Y without
considering X, these imply all dependencies in F*.

Important to consider F * in this definition:

-ABC, A - B, B~ C, C- A decomposed into AB and BC.

e note: F* contains FO{A - C,B - A, C - B}, so...

FAB contains A B and B - A; FBCcontainsB —~ CandC - B
So, (FAB O FBC)* contains C — A

=
More on Lossless Decomposition

e The decomposition of R into X and Y is
lossless with respect to F ifand only if the
closure of F contains:
XnY > X, or
XnY->Y
in example: decomposing ABC into AB and BC is
lossy, because intersection (i.e., "B") is not a key
of either resulting relation.
e Useful result: If W - Z holds over Rand W n Zis
empty, then decomposition of R into R-Z and WZ is
loss-less.
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- Dependency Preserving Decomposition

* Dependency preserving decomposition (Intuitive):

—If R is decomposed into X, Y and Z, and we
enforce the FDs that hold individually on X, on Y
and on Z, then all FDs that were given to hold
on R should also hold. (Avoids Problem #2 on
our /ist.)

* Projection of set of FDs F: If Ris decomposed into
X and Y the projection of F on X (denoted F, ) is the
set of FDs U - V in F* (closure of F, not just F) such
that all of the attributes U, V are in X. (same holds
for Y of course)

Anastassia Ailameki, 2003

=
Decomposition into BCNF

« Consider relation R with FDs F. If X _. Y violates BCNF,
decompose R into R - Y and XY (guaranteed to be loss-less).

— Repeated application of this idea will give us a collection of relations
that are in BCNF; lossless join decomposition, and guaranteed to
terminate.

- e.g., CSIDPQV, keyC, P - C, SD-P, J - S

— {contractid, supplierid, projectid,deptid,partid, gty, value}

— To deal with SD - P, decompose into SDP, CSIDQV.

— To deal with J - S, decompose CSIDQV into JS and CIDQV

— So we end up with: SDP, JS, and CIDQV

* Note: several dependencies may cause violation of BCNF. The
order in which we " “deal with” them could lead to very
different sets of relations!
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- BCNF and Dependency Preservation

« In general, there may not be a dependency preserving
decomposition into BCNF.

-eg, CSZ, CS-Z, 2-C
— Can't decompose while preserving 1st FD; not in BCNF.

« Similarly, decomposition of CSJDPQV into SDP, JS and
CIDQV is not dependency preserving (w.r.t. the FDs
JP.C, SD-PandJ-S).

e {contractid, supplierid, projectid,deptid,partid, qty, value}
— However, it is a lossless join decomposition.

— In this case, adding JPC to the collection of relations gives
us a dependency preserving decomposition.
* but JPC tuples are stored only for checking the f.d. (Redundancy!)
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B8 Third Normal Form (3NF)

¢ Reln R with FDs F is in 3NF if, forall X - A in F*
AOX (called a trivial FD), or
X is a superkey of R, or
A is part of some candidate key (not superkey!) for R.
(sometimes stated as “A is prime”)
o Minimality of a key is crucial in third condition above!
« If Ris in BCNF, obviously in 3NF.
« If Ris in 3NF, some redundancy is possible. Itis a
compromise, used when BCNF not achievable (e.g., no
" “good” decomp, or performance considerations).
— Lossless-join, dependency-preserving decomposition of R
into a collection of 3NF relations always possible.
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B8 What Does 3NF Achieve?

« If 3NF violated by X - A, one of the following holds:
— Xis a subset of some key K (“partial dependency”)
« We store (X, A) pairs redundantly.
* e.g. Reserves SBDC (C is for credit card) with key SBD and S - C
— Xis not a proper subset of any key. (“transitive dep.”)

e There is a chain of FDs K - X - A, which means that we cannot
associate an X value with a K value unless we also associate an A
value with an X value (different K’s, same X implies same A!) —
problem with initial SNLRWH example.

« But: even if R is in 3NF, these problems could arise.
— e.g., Reserves SBDC (note: “C” is for credit card here), S - C, C
- S is in 3NF (why?), but for each reservation of sailor S, same
(S, C) pair is stored.

* Thus, 3NF is indeed a compromise relative to BCNF.
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Decomposition into 3NF

* Obviously, the algorithm for lossless join decomp into
BCNF can be used to obtain a lossless join decomp into
3NF (typically, can stop earlier) but does not ensure
dependency preservation.

* To ensure dependency preservation, one idea:

—If X - Y is not preserved, add relation XY.

Problem is that XY may violate 3NF! e.g., consider the
addition of CJP to “preserve’ JP - C. What if we also
have J - C?

+ Refinement: Instead of the given set of FDs F, use a
minimal cover for F.
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Minimal Cover for a Set of FDs

e Minimal cover G for a set of FDs F:
— Closure of F = closure of G.
— Right hand side of each FD in G is a single attribute.

— If we modify G by deleting an FD or by deleting attributes
from an FD in G, the closure changes.

« Intuitively, every FD in G is needed, and " " as small as
possible” in order to get the same closure as F.

e e.g., A - B, ABCD - E, EF -. GH, ACDF -, EG has the
following minimal cover:

-A-B, ACD -~ E, EF -~ G and EF - H
¢ M.C. implies Lossless-Join, Dep. Pres. Decomp!!!
— (in book)
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Summary of Schema Refinement

« BCNF: each field contains information that cannot be
inferred using only FDs.

— ensuring BCNF is a good heuristic.
* Not in BCNF? Try decomposing into BCNF relations.
— Must consider whether all FDs are preserved!

* Lossless-join, dependency preserving decomposition
into BCNF impossible? Consider 3NF.

— Same if BCNF decomp is unsuitable for typical queries
— Decompositions should be carried out and/or re-examined
while keeping performance requirements in mind.
+ Note: even more restrictive Normal Forms exist (we
don't cover them in this course, but some are in the
book.)
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