
1

15-721 Database Management Systems

Locking and Consistency

Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2© 2005 Anastassia Ailamaki

Paper

Granularity of locks and degrees of 
consistency in a shared data base

Gray, Lorie, Putzolu, Traiger
IFIP Working Conf. On Modelling of DBMS 

pp 1-29, 1997

3© 2005 Anastassia Ailamaki

Detailed Roadmap

Reminders
transactions / ACID properties
serializability; Locking; 2PL

Multiple Granularity locks
Degrees of consistency



2

4© 2005 Anastassia Ailamaki

Reminders:

(see undergrad book, eg., Silberschatz, Korth + 
Sudarshan)

Definitions and problem statement
ACID properties
serializability - DFN
locking and 2PL
(deadlocks)

5© 2005 Anastassia Ailamaki

Definitions

Database
a fixed set of named resources (entities)

Consistency constraints
must be true for DB to be considered consistent
Example:
Σ(ACCT-BALS) = Σ(ASSETS)
ACCT-BAL >= 0

Key point

consistent 
database 

S1

consistent 
database 

S2

transaction T

6© 2005 Anastassia Ailamaki

Transactions - definition

= unit of work, eg.
move $10 from savings to checking

Atomicity (all or none)
Consistency
Isolation (as if alone)
Durability

recovery

concurrency 
control



3

7© 2005 Anastassia Ailamaki

Concurrent execution of independent transactions
utilization/throughput (“hide” waiting for I/Os.)
response time
fairness

Isolation example (lost update):

Problem statement

t0:
t1:
t2:
t3:
t4:
t5:

T1:
tmp1 := read(X) 

tmp1 := tmp1 – 20

write (tmp1, X)

T2:

tmp2 := read(X) 

tmp2 := tmp2 + 10

write (tmp2, X)

8© 2005 Anastassia Ailamaki

Arbitrary interleaving can lead to 
Temporary inconsistency (ok, unavoidable)
“Permanent” inconsistency

Need correctness criteria:
schedule: a particular action sequencing for a 
set of transactions
consistent schedule: each transaction sees 
consistent view of DB

Problem statement

9© 2005 Anastassia Ailamaki

Example: Interleaved execution

Read(X)

X=X-10
Write(X)

Read(X)

Read(Y)
Y=Y+10
Write(Y)

X = X * 1.1
Write(X)
Read(Y)
Y=Y*1.1
Write(Y)

‘correct’?

time



4

10© 2005 Anastassia Ailamaki

How to define correctness?

A: Serializability:
A schedule (=interleaving) is ‘correct’ if it is 

serializable,
ie., equivalent to  a serial interleaving 
(regardless of the exact nature of the 

updates)
examples and counter-examples:

11© 2005 Anastassia Ailamaki

‘Lost update’ case

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N)

How to check 
for correctness?

12© 2005 Anastassia Ailamaki

Serialization graph

T1
Read(N)

T2

Read(N)
N=N-1

N= N-1

Write(N)
Write(N) T1

T2N

N

Cycle -> not serializable

RW, WR, WW 
conflicts



5

13© 2005 Anastassia Ailamaki

Serializability
Assumption: all serial schedules are consistent

Dependencies:
T1 reads X, …, T2 writes X --- RW
T1 writes X, …, T2 reads X --- WR
T1 writes X, …, T2 writes X --- WW

Serialization graph
Nodes are Transactions T1, T2, …
Edges: Ti → Tj if there is RW, WR, or WW from Ti to Tj

Theorem: schedule S serializable ⇔ SG(S) acyclic
suggests (bad) technique for CC:

build SG(S), topological sort, see if it works

14© 2005 Anastassia Ailamaki

Locking

Q: how to automatically create correct 
interleavings?
A: locks to the rescue 

lock(X); unlock(X)
exclusive/shared locks; compatibility matrix
locks are not enough:

15© 2005 Anastassia Ailamaki

Locks are not enough

(counter) example?



6

16© 2005 Anastassia Ailamaki

‘Inconsistent analysis’

T1 
Read(A) 
A=A-10 
Write(A) 
 

T2 
 
 
 
Read(A) 
Sum = A 

 Read(B) 
Sum += B 

Read(B) 
B=B+10 
Write(B) 

 

 

Precedence graph?

time

17© 2005 Anastassia Ailamaki

‘Inconsistent analysis’ – w/ locks

time T1

L(A)

Read(A)

...

U(A)

T2

L(A)

....

L(B)

....

the problem 
remains!

Solution??

18© 2005 Anastassia Ailamaki

Well-formed Xact: lock, action, unlock, lock…
Basic idea: lock <entity> / unlock <entity>

Two-phased Xact: <lock> <actions> <unlock>

Solution: Locking+protocols

Theorem:
all Xacts well-formed and 2-phased ⇒ any S is serializable

begin end
acquire locks release locks

shrinking phasegrowing phase
shrink 
point avoid 

cascading 
aborts



7

19© 2005 Anastassia Ailamaki

2PL – observations

- limits concurrency
- may lead to deadlocks (what to do, then?)
- 2PLC (keep locks until ‘commit’)

Q1: lock granularity?
Q2: how to trade-off correctness for 

concurrency?

20© 2005 Anastassia Ailamaki

Detailed Roadmap

Reminders
transactions / ACID properties
serializability; Locking; 2PL

Multiple Granularity locks
Degrees of consistency

21© 2005 Anastassia Ailamaki

Motivation

- lock granularity – field? record? page? 
table?

- Pros and cons?
- (Ideally, each transaction should obtain a 

few locks)



8

22© 2005 Anastassia Ailamaki

Multiple granularity

Eg:

attr1 attr1attr2

record-nrecord2record1

Table2Table1

DB

23© 2005 Anastassia Ailamaki

what types of locks?

X/S locks for leaf level
higher levels? X/S are too restrictive!

Why not go directly to the proper level?

24© 2005 Anastassia Ailamaki

what types of locks?

X/S locks for leaf level +
‘intent’ locks, for higher levels
IS: intent to obtain S-lock underneath
IX: intent ....           X-lock ...
S: shared lock for this level
X: ex- lock for this level
(SIX: shared lock here; + IX)



9

25© 2005 Anastassia Ailamaki

Protocol

- each xact obtains appropriate lock at 
highest level

- proceeds to desirable lower levels
- must have IS/IX lock on parent, for IS/S/IX 

lock on children
- must have IX/SIX lock on parent, for 

IX/X/SIX on children
- when done, unlock items, bottom-up

26© 2005 Anastassia Ailamaki

Compatibility matrix

X

SIX

S

IX

IS

XSIXSIXIST1
T2

27© 2005 Anastassia Ailamaki

Compatibility matrix

X

SIX

S

IX

nookokokokIS

XSIXSIXIST1
T2



10

28© 2005 Anastassia Ailamaki

Compatibility matrix

X

SIX

S

nononookokIX

nookokokokIS

XSIXSIXIST1
T2

29© 2005 Anastassia Ailamaki

Compatibility matrix

X

SIX

nonooknookS

nononookokIX

nookokokokIS

XSIXSIXIST1
T2

30© 2005 Anastassia Ailamaki

Compatibility matrix

X

nonononookSIX

nonooknookS

nononookokIX

nookokokokIS

XSIXSIXIST1
T2



11

31© 2005 Anastassia Ailamaki

Compatibility matrix

nononononoX

nonononookSIX

nonooknookS

nononookokIX

nookokokokIS

XSIXSIXIST1
T2

32© 2005 Anastassia Ailamaki

Examples

T1 wants to update Smith’s record
IX on DB
IX on EMPLOYEE table
X on Smith’s record

33© 2005 Anastassia Ailamaki

T2 wants to give 10% raise to everybody 
that is below average salary

IX on DB
SIX on EMPLOYEE
X on appropriate employee tuples

OR:
IX on DB
X on EMPLOYEE

Examples - cont’d



12

34© 2005 Anastassia Ailamaki

Consistency

Definition: “Dirty” data: updates of un-
committed xacts

Definition: long locks: held until commit

Q: what is the impact of  long/short S-
locks, and long X-locks on correctness

35© 2005 Anastassia Ailamaki

Consistency levels

Degree 0: short write locks on updated 
items

Degree 1: long write locks on updated items
("long" means to hold until the transaction finishes)

Degree 2: long write locks on updated 
items, and short read locks on items read

Degree 3: long write locks on updated 
items, and long read locks on items read

36© 2005 Anastassia Ailamaki

Consistency levels (0)

(no locks: ERRORS!)
Degree 0: short write locks on updated 

items
-> we may update uncommitted data ->
cascaded aborts



13

37© 2005 Anastassia Ailamaki

Examples (0/1)
Garbage reads

T1: update(X); T2: update(X)
Who knows what value X will wind up holding?
Solution: set short write locks.  (→ degree 0)

Lost Updates
T1: update(X);
T2: update(X);
T1: abort (restoring X to pre-T1 value)

At this point the update due to T2 is lost.   
(note: log contains (T1, X, [oldval, newval])

Solution: set long write locks. (→ degree 1)

38© 2005 Anastassia Ailamaki

Consistency levels (1)

Degree 0: short write locks on updated 
items

Degree 1: long write locks on updated items
-> we may read uncommitted data

39© 2005 Anastassia Ailamaki

Prevention of Inconsistency (1/2)

Dirty Reads
T1: update(X)
T2: read(X)
T1: abort

Now T2's read is bogus 
Solution: long exclusive locks + short read locks 
(→ degree 2)
Systems often run long queries at level 2



14

40© 2005 Anastassia Ailamaki

Consistency levels (2)

Degree 0: short write locks on updated 
items

Degree 1: long write locks on updated items
Degree 2: long write locks on updated 

items, and short read locks on items read
-> we read clean data, but repeated reads 

may give different results

41© 2005 Anastassia Ailamaki

Prevention of Inconsistency (2/3)
Unrepeatable Reads

T1: update(X)
T1: complete transaction
T2: read(X)
T3: update(X)
T3: complete transaction
T2: read(X)

Now T2 has read two different values for X
Solution: long read locks.  (→ degree 3)

2-phase well-formed → degree 3 consistent

42© 2005 Anastassia Ailamaki

Consistency levels (3)

Degree 0: short write locks on updated 
items

Degree 1: long write locks on updated items
Degree 2: long write locks on updated 

items, and short read locks on items read
Degree 3: long write locks on updated 

items, and long read locks on items read 
-> (= 2PLC): ‘correct’



15

43© 2005 Anastassia Ailamaki

Consistency Levels

Concurrency increases conversely with 
‘correctness’
Degree 3 is the default.

44© 2005 Anastassia Ailamaki

Conclusions

(locks and 2PL for consistency)
multiple granularity locks
levels of consistency


