15-721 Database Management Systems

Locking and Consistency

Anastassia Ailamaki
http.//www.cs.cmu.edu/~natassa

Paper

Granularity of locks and degrees of
consistency in a shared data base

Gray, Lorie, Putzolu, Traiger

IFIP Working Conf. On Modelling of DBMS
pp 1-29, 1997

© 2005 Anastassia Ailamaki

Detailed Roadmap

o Reminders
o transactions / ACID properties
o serializability; Locking; 2PL

o Multiple Granularity locks

o Degrees of consistency

© 2005 Anastassia Ailamaki

Reminders:
/

o (see undergrad book, eg., Silberschatz, Korth +
Sudarshan)

o Definitions and problem statement
a ACID properties

o serializability - DFN

o locking and 2PL

o (deadlocks)

N—

Ve

© 2005 Anastassia Ailamaki

Definitions

o Database
o a fixed set of named resources (entities)
o Consistency constraints
o must be true for DB to be considered consistent
o Example:
S(ACCT-BALS) = £(ASSETS)
ACCT-BAL>=0
o Key point

consistent t tion T consistent
database “ransaction 1, database

S1 S2

© 2005 Anastassia Ailamaki

Transactions - definition

= unit of work, eg.
move $10 from savings to checking

Atomicity (all or none)

Consistency recovery
Isolation (as if alone)
Durabmty concurrency

control

© 2005 Anastassia Ailamaki

Problem statement

o Concurrent execution of independent transactions
o utilization/throughput (“hide” waiting for 1/0s.)
o response time

a fairness
o Isolation example (lost update):
T1: T2:

t0:| tmpl = read(X)
tl: tmp2 := read(X)
t2:| tmpl :=tmpl — 20
t3: tmp2 :=tmp2 + 10
t4: | write (tmpl, X)
t5: write (tmp2, X)

© 2005 Anastassia Ailamaki

Problem statement

o Arbitrary interleaving can lead to
o Temporary inconsistency (ok, unavoidable)
o “Permanent” inconsistency

o Need correctness criteria:

o schedule: a particular action sequencing for a
set of transactions

o consistent schedule: each transaction sees
consistent view of DB

© 2005 Anastassia Ailamaki

Example: Interleaved execution

Read(X)
Read(X)
X=X-10
Write(X) ‘correct’?
Read(Y)
Y=Y+10
Write(Y)
X=X*1.1
Write(X)
Read(Y)
Y=Y*1.1
time Write(Y)

© 2005 Anastassia Ailamaki

How to define correctness?

A: Serializability:

A schedule (=interleaving) is ‘correct’ if it is
serializable,

ie., equivalent to a serial interleaving

(regardless of the exact nature of the
updates)

examples and counter-examples:

© 2005 Anastassia Ailamaki

‘Lost update’ case

T1 T2
Read
™) Read(N) How to check
N=N-1 for correctness?
N=N-1
Write(N)
Write(N)

© 2005 Anastassia Ailamaki

Serialization graph

RW, WR, WW
conflicts

Cycle -> not serializable

© 2005 Anastassia Ailamaki

Serializability

Assumption: all serial schedules are consistent
o Dependencies:
a T1reads X, ..., T2 writes X --- RW
a T1 writes X, ..., T2 reads X --- WR
o T1 writes X, ..., T2 writes X --- WW
o Serialization graph
a Nodes are Transactions T1, T2, ...
o Edges: Ti — Tj if there is RW, WR, or WW from Ti to Tj
Theorem: schedule S serializable < SG(S) acyclic
o suggests (bad) technique for CC:
build SG(S), topological sort, see if it works

© 2005 Anastassia Ailamaki

Locking

o Q: how to automatically create correct
interleavings?

o A: locks to the rescue
a lock(X); unlock(X)
o exclusive/shared locks; compatibility matrix
o locks are not enough:

© 2005 Anastassia Ailamaki

Locks are not enough

o (counter) example?

© 2005 Anastassia Ailamaki

‘Inconsistent analysis’

time Ti -

Read(A)

A=A-10

Write(A)
Read(A) 0
Sum=a Precedence graph?
Read(B)
Sum +=B

Read(B)

B=B+10

Write(B)

e

© 2005 Anastassia Ailamaki

‘Inconsistent analysis’ — w/ locks

time T1 ™

L(A)

Read(A) the problem

remains!

U@ Solution??
L(A)
L(B)

e

© 2005 Anastassia Ailamaki

Solution: Locking+protocols

a Well-formed Xact: lock, action, unlock, lock...
o Basic idea: lock <entity> / unlock <entity>
o Two-phased Xact: <lock> <actions> <unlock>

) acquire locks | release locks
begin | end
growing phase shrink shrinking pha:\zid
int
poin cascading
aborts
Theorem:

all Xacts well-formed and 2-phased = any S is serializable

e

© 2005 Anastassia Ailamaki

2PL — observations

- limits concurrency

- may lead to deadlocks (what to do, then?)

- 2PLC (keep locks until ‘commit’)

Q1: lock granularity?

Q2: how to trade-off correctness for
concurrency?

© 2005 Anastassia Ailamaki

™

—

Detailed Roadmap

o Reminders
o transactions / ACID properties
o serializability; Locking; 2PL
#: Multiple Granularity locks
o Degrees of consistency

© 2005 Anastassia Ailamaki

Motivation

- lock granularity — field? record? page?

table?
- Pros and cons?

- (ldeally, each transaction should obtain a

few locks)

© 2005 Anastassia Ailamaki

Multiple granularity

(o)
D <>
Creont1 D Creomaz > Crecoran
CICORET

© 2005 Anastassia Ailamaki

what types of locks?

a X/S locks for leaf level

a higher levels? X/S are too restrictive!
o Why not go directly to the proper level?

© 2005 Anastassia Ailamaki

what types of locks?

o X/S locks for leaf level +

o ‘intent’ locks, for higher levels

o IS: intent to obtain S-lock underneath
o IX: intent X-lock ...

o S: shared lock for this level

o X: ex- lock for this level

o (SIX: shared lock here; + IX)

© 2005 Anastassia Ailamaki

Protocol

- each xact obtains appropriate lock at

highest level

- proceeds to desirable lower levels
- must have I1S/IX lock on parent, for IS/S/IX

lock on children

- must have IX/SIX lock on parent, for
IX/X/SIX on children

- when done, unlock items, bottom-up

© 2005 Anastassia Ailamaki

Compatibility matrix

12| s

T1 IX S SIX

IS

© 2005 Anastassia Ailamaki

Compatibility matrix

S s | x| s | six

IS ok ok ok ok

no

© 2005 Anastassia Ailamaki

Compatibility matrix

12

Ti IS IX S SIX X
IS ok ok ok ok no
IX ok ok no no no
S
SIX
X
Compatibility matrix
S s | x| s | sx| x
IS ok ok ok ok no
IX ok ok no no no
S ok no ok no no
SIX
X
i © 2005 Anastassia Ailamaki 29
Compatibility matrix
S s | x| s | sx| X
IS ok ok ok ok no
IX ok ok no no no
S ok no ok no no
SIX ok no no no no
X

© 2005 Anastassia Ailamaki

Compatibility matrix

S s | x| s [sx | x
IS ok ok ok ok no
IX ok ok no no no
S ok no ok no no

SIX ok no no no no
X no no no no no
Examples

o T1 wants to update Smith’s record
olXon DB
a IX on EMPLOYEE table
o X on Smith’s record

© 2005 Anastassia Ailamaki

Examples - cont’d

o T2 wants to give 10% raise to everybody
that is below average salary
olXon DB
o SIX on EMPLOYEE
o X on appropriate employee tuples
o OR:
olXon DB
o X on EMPLOYEE

© 2005 Anastassia Ailamaki

Consistency

Definition: “Dirty” data: updates of un-
committed xacts

Definition: long locks: held until commit

Q: what is the impact of long/short S-
locks, and long X-locks on correctness

© 2005 Anastassia Ailamaki 34

Consistency levels

Degree 0: short write locks on updated
items

Degree 1: long write locks on updated items
("long" means to hold until the transaction finishes)

Degree 2: long write locks on updated
items, and short read locks on items read

Degree 3: long write locks on updated
items, and long read locks on items read

© 2005 Anastassia Ailamaki 35

Consistency levels (0)

(no locks: ERRORS!)

Degree 0: short write locks on updated
items

-> we may update uncommitted data ->
cascaded aborts

© 2005 Anastassia Ailamaki 36

Examples (0/1)

o Garbage reads
T1: update(X); T2: update(X)
o Who knows what value X will wind up holding?
o Solution: set short write locks. (— degree 0)

o Lost Updates
T1: update(X);
T2: update(X);
T1: abort (restoring X to pre-T1 value)
o At this point the update due to T2 is lost.
(note: log contains (T1, X, [oldval, newval])
o Solution: set long write locks. (— degree 1)

o

© 2005 Anastassia Ailamaki 37

Consistency levels (1)

Degree 0: short write locks on updated
items

Degree 1: long write locks on updated items
-> we may read uncommitted data

© 2005 Anastassia Ailamaki 38

Prevention of Inconsistency (1/2)

o Dirty Reads
T1: update(X)
T2: read(X)
T1: abort

o Now T2's read is bogus

o Solution: long exclusive locks + short read locks
(— degree 2)

a Systems often run long queries at level 2

© 2005 Anastassia Ailamaki 39

Consistency levels (2)

Degree 0: short write locks on updated
items

Degree 1: long write locks on updated items

Degree 2: long write locks on updated
items, and short read locks on items read

-> we read clean data, but repeated reads
may give different results

© 2005 Anastassia Ailamaki 40

Prevention of Inconsistency (2/3)

o Unrepeatable Reads
T1: update(X)
T1: complete transaction
T2: read(X)
T3: update(X)
T3: complete transaction
T2: read(X)

o Now T2 has read two different values for X
a Solution: long read locks. (- degree 3)

2-phase well-formed — degree 3 consistent
3 © 2005 Anastassia Ailamaki 41

Consistency levels (3)

Degree 0: short write locks on updated
items

Degree 1: long write locks on updated items

Degree 2: long write locks on updated
items, and short read locks on items read

Degree 3: long write locks on updated
items, and long read locks on items read

-> (= 2PLC): ‘correct’

Nirr

© 2005 Anastassia Ailamaki 42

Consistency Levels

o Concurrency increases conversely with
‘correctness’

o Degree 3 is the default.

© 2005 Anastassia Ailamaki

Conclusions

o (locks and 2PL for consistency)
o multiple granularity locks
o levels of consistency

]

© 2005 Anastassia Ailamaki

