Data Mining
So you want to be a data miner?

[Presented by
1 Jay Pujara

The Goals of Data Mining

Find interesting data or relationships from
large datasets

This can include problems such as:

o Find frequently occurring attributes/items

o Clustering: group similar data together
Deviation Monitoring: Flag suspicious values

o Classification — learn a function that uses data
attributes to categorize the data into a class

o Association Rules — Find correlations between
frequently occurring attributes or items

Pertinent Examples of Data Mining

[~
[}

OEFHFH B H
a o
e mae

g

|

000

000

=)

HR000HK Y
Q

L
DREDEIORAMES

=3
[-}
iz

000
g0l
[efeXe]

I LR

The problem statement for
[Mining Association Rules

Organizations can collect and store MASSIVE
amounts of sales data known as basket data.
Basket data consists of transactions which consist
of the items purchased.

Data is often sparse, as many different items are
offered.

The rules we're interested in are

some items? some other itemsor X ? Y

By finding association rules, companies can help
people buy things they really need!

[Lingo You Should Learn

The problem requires us to find statistically
frequent sets of items and find probable
associations between them.

The frequency is thesupport — the
percentage of time the item(s) appear over
transactions.

Associations are judged based on

confidence — the probability that some items
predict some other items.

[The real problem

Given parameters minsup & minconf:
Generate sets of items with a support
value greater than minsup (called
“large” itemsets)

Use large data sets to generate
association rules with a confidence
value greater than minconf.

Do it (a) fast and (b) over lots of data.

Lecture Roadmap

Introduction

Paper Summary / Previous Work
Algorithm and Variants

Rule Discovery

Performance Experiments
Optimizing Tradeoffs

Conclusion

Paper Summary: Main Points

R. Agrawal, R. Srikant, Fast Algorithms for Mining
Association Rules:
Use clever logic about sets to quickly find large
itemsets (apriori fgen) and use a similar procedure
(ap-genrules) to find association rules with high
confidence.
Avoid iterating over the entire data set when
checking itemsets for support (aprioriTid) and
attempt to maximize performance by adapting the
representation of the dataset (aprioriHybrid).
Validate performance on synthetic and commercial
datasets and show incredible gains in performance!

The real problem, formalized

Let 1={i4, ip,....im} be a set of literals called items. Let D be
the set of transactions, where each transaction T is a set of
items such that T 1. Associated with each transaction is a
unique identifier, called its TID.

We say that T contains X, a set of some items in I, if Xt T.
An association rule is an implication of the form X ¥ Y where
X% 1L, Y% lL,andXAY = ;.

The rule X ¥ Y holds in the transaction set D with confidence
¢, if ¢% of transaction in D that contain X also contain Y. The
rule X ¥ Y has support sin the transaction set D if s% of the
transactions in D contain X U Y.

Finding Large Sets

The algorithms of interest approach
this problem in a similar manner
Generate a list of candidate sets

Check by counting candidates in xactions
The critical difference between
previous algorithms is how candidate
sets are generated.

Previous Work: AIS

L, = {large Litemsets}; N Iterate on k until no large
for (k=2; Lt 55 k) itemsets of size k are found
C=3 X
forall transactions t2 D { * For each k, find all large
L, = subset(Ly ;); subsets of lengths k1
foralllarge itemsets 1,2 L { found in a transaction and

C, = lextensions of contained in t; .
forall candidates 02 C. { add 1-extensions of these
t

if(c 2 G) subsets to the candidate list

dd 1 to th tof ci . .
e|5ae o the countof ¢in G » For each candidate in the

add ¢ to G withacountof 1 list, search the transaction
for the subset.
L, ={c2 G| c.count _ minsup

Large Itemsets = U, L,

Previous Work: SETM

« Keep versions of large

L, ={large litemsets} itemsets and candidate
L, ={Large 1-temsets and TIDs where they appear, sorted by jiomsets that include an
TID}

entry for each occurrence
of the itemset, along with
forall transactions t2 D { the TID of the occurrence
L,={12 L, |.TID=tTID};
forall largeitemsets|, 2 L, {
C, = 1-extensions ofl, contained in t;

for (k=2; Ly 55 k)
Ce=1

« For each transaction,
compute all 1-extensions of

C, +={<tTID, c>| c2 C} large itemsets of length k-1
} found in the large-itemset-
} list and add them to the
sort G, on itemset candidate itemsets
delete all itemsets 2 C, for whichc.count < minup giving Ly
L, = {d.itemset, countof lin L}> |12 L} « Sort candidate list by
sortL,onTID; itemset and compute

counts

}
Large Itemsets = ;
9 Lk « Resort large sets by TID

for the next run

[Comparing AlS and SETM

Both AIS and SETM use the same
technique to generate candidates (1-
extensions to large k-1 sets found in the
data)

AIS reads through the dataset every time,
while SETM keeps a copy of relevant data in
memory

SETM can be implemented using only SQL
commands and requires no algorithm -
specific data structures, but each pass of
the algorithm requires two sorts

[Lecture Roadmap

Introduction

Paper Summary / Previous Work
Algorithm and Variants

Rule Discovery

Performance Experiments
Optimizing Tradeoffs

Conclusion

[Apriori Algorithm

L, = {large 1-itemsets} « Iterate over k, and generate
for (k=2; Lyt 55 k++){ candidates based on L, ;.
C, = apriori-gen(L_,); « For each candidate, go through
forall transactionst 2 D { the dataset and increment the
C,= subset(C, t); count of candidate sets contained
forall candidates ¢ 2 C, in that transaction
c.count++ « The algorithm hinges on apriori-

gen, an innovation that generates
fewer candidates than l-extension.
L ={c2 C,| c.count _ minsup}

Large ltemsets = [L,

Apriori improves on
AlS and SETM

Intuition: If a set of length k is large, all
subsets of length k-1 must also be large.

Improve on the candidate generation of

SETM and AlS by being smarter!
Generate candidates independent of

transactions.

Use known large itemsets to find possible
extensions that create large itemsets.

Prune the candidates by making sure all subsets
of each candidate set are also large.

Fewer candidates means less memory is used!

[What’s behind apriori-gen?

Join Step:

insertinto C

select p.item,, p.item,,...,p.item,_,,q.item, ;.
fromL;p. Ls@

where p.item, = g.item,, p.item, = q.item,,...,
p.item,, = g.item,_,, p.item,_; < q.item, ;

Prune Step:
forall itemsets ¢ 2 C,
forall (k-1)-subsets s of ¢
if (52 Lyy)
delete c from C,

In the join step,
elements of L, are
joined with L,_, on the
first k2 elements.
Strings are kept
lexicographicall
ordered to avoi
duplicates and maintain
consistency.

In the prune step,
candidates are checked
to ensure all subsets
with k1 elements are in

Lia

Example of apriori-gen

L,={{123}{124}{134}{135}{234}}

Join Step

{1 2 3} joins with {1 2 4} to form {1 2 3 4}, {1 2} in

common

{1 3 4} joins with {1 3 5} to form {1 3 4 5}, {1 3} in

common

{2 3 4} doesn't join with anything.

Prune Step

{123}, {124}, {13 4},{23 4} are all found in L, so

{123 4}is keptin C,

{134}, {{1 3 5} are found in Lg, but {1 4 5} and {3 4 5}

are not,

13 4 5}is pruned from C,.

Looking at Apriori Ops

To run Apriori, many set operations on
itemsets are necessary

If these set operations are expensive,
AIS and SETM would outperform
Apriori
Set operations must be fast:

member: Iss2 L, ,?

subset: Are the items in ¢ a subset of T?

Data Structures for
Fast Set Operations

member: Use a hash table to

check if an itemsetis in L,

subset: Use a hash tree for C, 2 {1
Interior nodes of the tree contain
hash tables whose buckets
contain pointers to the next node
Leaves contain candidate
itemsets. The answer set contains
references to these sets.
All nodes begin as leaves and are
promoted when the size of the leaf {123 | (134
exceeds some threshold.

13

Subset is determined by hashing 24 35
every item in the transaction at the
root, and recursively attempting to
hash any possible item at interior
nodes.

Remember Memory Issues

AIS generates candidates on the fly, requiring only
the candidate list to be kept in memory.
Apriori depends on using L, to generate C,. Cy,
L1, and a buffer page for D must be memory-
resident
C, might not fit in memory
Multiple passes of G, generation and D counting
L., might not fit in memory
Externally sort L,
Bring in itemsets necessary for one join, k2 common items
Generate candidates
Repeat
Cannot prune candidates (need all of L, ;)

Possible Bottlenecks in Apriori

Data Structures — Set operations are
slow

Memory — candidate sets or large
itemsets may not fit.

DATA — Must scan the entire
dataset for each value of k for
counting

Solving the data problem

As k increases, fewer and fewer itemsets of
length k are large.

Despite this fact, we still read every item in
every transaction — millions of transactions!

Borrow an idea from SETM - why not keep

only the items in question for each

transaction?

Apriori could run with only a single, initial

scanof D!

Introducing AprioriTID

L, = {large 1=itemsets};

C, = database D;

for (k=2; L1t 50 k++){
C, = apriori-gen(L,_,);

fokrall entriest2 C, {
C={c2¢|
(c-c[K) 2 t.itemsets) £
(c-c[k1]) 2 t.temsets}
forall candidates ¢ 2 C,
c.count++;
if (C;* ;){ C +=<t.TID,C>;
}

L, ={c 2 C| c.count >minsup}

Large Itemsets = [, Ly

If L, can be generated by
Li1, Ck can be checked
using transaction
information about the
itemsets of C,.;

Store relevant dataset in
Cy.1, with candidates
tagged with TID.

If c-c[K] £ c—c[k+1_g are both
in Cy.1, tagged with TID,
then that transaction
contains ¢

Modifying Data Structures
[for AprioriTID

No longer need to maintain a hash-tree

Assign each candidateitemsetan ID. C

stored as an array index by ID, C, , has form

<TID, {ID}>

Create generators and extensions

o Generators are the IDS to the two large (k-1)
itemsets that created a candidate cy

o Extensions are the IDs of size k candidates
created by extending a large k-1 itemset.

Check to see if the generators of ¢, show up

in t.TID

Buffer Management
[in AprioriTID

Candidate generation is the same, must
keep L,,and C,

Counting is different, instead of just C,, must
also keep C,, (for ID ¥ itemsetmap), and a
buffer page for each C and C.

Fill only half the buffer during candidate
generation, ensuring that all itemsets
generated from a single join are produced
so the generators can be discarded.

No pruning!

[Lecture Roadmap

Introduction

Paper Summary / Previous Work
Algorithm and Variants

Rule Discovery

Performance Experiments
Optimizing Tradeoffs
Conclusion

[Rule Discovery

For a large subset I, find rules for
some a % | of the form, a ¥ (l-a).

This occurs when % > mincon f
Use basic inclusion to avoid
unnecessary rules: go from general to
specific — if ABC 9 D, adding another
item, ie. AB ¥ CD, will not create a
valid rule.

forall large itemsets I,k _ 2

[Rule Discovery Algorithm

Recursion on

call genrules(l,, 1,); an.; to create

successively

genrules(ly, a){
A={m-litemsetsa, | a,;%a,} |a|"ge|’
foralla,, ; 2 A{

}

conf = support(l,)/support(a, ;); Consequents.
if (conf _ minconf) {
output "a,; ¥ (I -apn.4)
with conf, support(l,);"
if(m-1) > 1)
call genrules(ly, a,,,);

}

Apply what you've learned:
a Better Rule Discovery Algorithm

Basic Intuition: AB ¥ CD holds only if ABC
" DEABD T C.

If ABD O C, no reason to check AB ¥ CD
Generalization: All rules involving the
subsets of a consequent must hold for the
consequent to hold. (Think: all subsets of an
itemset must be large...)

Idea: Use single-tem consequents to
generate possible two-tem consequents.

}

ap-genrules(l,, H, X

Faster Rule Discovery

forall large itemsets I,k , 2 {

H, = {one-item consequents InStead Of

of rules derived from I, };
call ap-genrules(l,, H,);

generating all
possible itemsets
for the antecedent,

fle>mel) _ generate longer
Hp,1 = apriori-gen(H,,);
forall Ny 2 Hopa{ consequents from

}

}

conf = support(l,)/support(l, -h .,); Shorter

if (conf _ minconf)

output “(I ~hyuq) T g
with conf, support(l,)*

else

delete h,

consequents using
apriori-gen.
from H

m+1 m+1

call ap-genrules(l,, H,,);

Lecture Roadmap

Introduction

Paper Summary / Previous Work
Algorithm and Variants

Rule Discovery

Performance Experiments
Optimizing Tradeoffs
Conclusion

omparing Performance:

AlIS, SETM, Apriori, AprioriTID

Experiments run on IBM RS/6000, 33 MHz, 64 MB
RAM, 2GB HD at 2MB/s
Tested using synthetic data and two retail datasets.
Naming scheme for datasets:

#Transactions: \cD

Average items in a transaction: T

Average size of maximal large itemset |

Number of maximal large itemsets: L

Number of items: N
N = 1000, L =2000, vary T, I, D
Naming Scheme T5.12.D100K

Apriori Wins!

times. Sorts are expensive.

levels of support and more than a factor of

« SETM was often terminated due to extreme run

< Apriori beats AIS by a factor of two for high

Tests on Synthetic Data

TH10D100K

TIOWDI00K

10 for low levels of support

< Apriori and AprioriTID have
comparable run times for
small problems, but TID is
twice as slow in large problems

Tt
[EEEREEN]

TsDI0K

TwRDIOK 20120100k

,‘:

syscaey

7

could apriori-gen

 Notice the logarithmic

How much difference

make?

1e+07
scale for the number of
candidate itemsets fox0
generated for different 2 100000
values of k. g 10000
. Aprior_i—_gen quicky drops : -
from millions to hundreds & N

. . B

while on-the-fly generation 10
results in hundreds of 10
thousands of candidates. .

C-bark (SETM) ~—
C-bark (AproriTid)
Ck (AIS, SETM) =
C-k (Aprior, AprioriTid)
Lk =

12000
- g 1o

T (el

005, 0025
Minimum Sueport

I 1 2 3 4 5 6 7
* SETM and APrioriTID Pass Number
must keep many itemsets!
Performance Tests
on Retail Data
« Left: Single orders: N = 16K, T=2.6, D = ~3M g e
« AprioriTID twice as slow for low supports 5 -
« Apriori = 2-6x AIS, 15x SETM : j
« Right: All customer orders: N = 16K, T=31, D = ~200K : 3f
* AprioriTID twice as slow for low supports Ta
« Apriori = 3-30x AIS, SETM fills disk T T o1
ot s s N =63, D=~50K T=25
posl ot oo i Aprioris = 3X AIS, 4x SETM

[Lecture Roadmap

Introduction

Paper Summary / Previous Work
Algorithm and Variants

Rule Discovery

Performance Experiments
Optimizing Tradeoffs
Conclusion

[Can Apriori beat itself?

Apriori does well, but AprioriTID
didn’t perform well.

Look
pass!

after pass 4!
We want the minimum of the two

lines.

How can we leverage the
strengths of both these

14

Apriori
1 AprioriTid

at the execution time vs. °
AprioriTID is instantaneous g

Time (:

°c v & o w

algorithms? TR ke 00
Avoid the space constraints of
AprioriTID without Payin_g the data

scanning penalty o

Apriori?

prioriHybrid:

A
[best thing since sliced bread.

Begin with Apriori

When the estimated size of C, meets
some heuristic (smaller than D or fits in
memory), switch to AprioriTID

On the next pass, create C, while
scanning dataset- performance penalty

Future passes will avoid scanning the
entire dataset!

[But does it work? Why, yes, it does!
Proof by blurry graphs.

M.order M.cust 110.12.D100K

2 15 1 _om_ 05 om 0z
Meimum Support
120.14.D100K 120.16.D100K
0
ApnrTa
gt
&0 gt
w0
] 3
. 0
o
o
o 0 o
2 1 2 15 B 05 om oz 2 15 s o5 om oz
nnnnnnnnnnnn i Suppos

Scale-up properties: good

Scale-up measured with respecttoD, N, &T
Linear scale-up with increasing D
As N increases, faster performance, less support
Gradual increase as T increases

" s @
2008 T2008 50
. Tiok o Tl 50
2 i T 2 1000
)
1 » «
J 2 g
! S
s)
1 10
.
10
s
g B
o o o
T2 5 75 10 o0 2500 5000 7500 o000 5 10 B) ©
Nurmoe o Transacsons n hons) Numoer o tems. Transacton Sze

Lecture Roadmap

Introduction

Paper Summary / Previous Work
Algorithm and Variants

Rule Discovery

Performance Experiments
Optimizing Tradeoffs
Conclusion

[Conclusions about Apriori

Generating candidate sets on-the-fly was
fast, but not very smart. Fewer candidates
really pays off.

Good data structures make these algorithms
possible.

Buffer management isn’t too big of a
problem.

Even today, Apriori is considered the best
rule association algorithm.

ining Association Rules

[Future Directions for
M

Use hierarchical items
, table is dining furniture is furniture
Take quantities into account

Work on finding “interesting” rules
using heuristics

£

ther Data Mining:
lassification

Frequently use decision trees to learn
F:data ¥ class

Classical machine learning uses a
recursive DF algorithm to generate
DTs.

Data Mining builds trees breadth first,
performs split computations at once.

