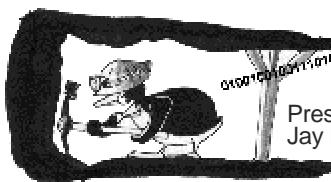


## Data Mining So you want to be a data miner?

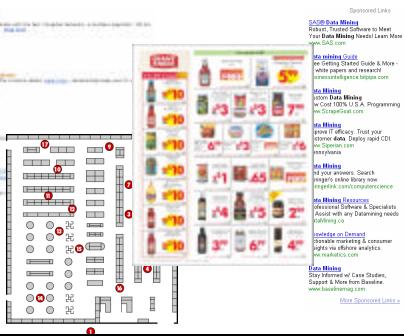


Presented by  
Jay Pujara

## The Goals of Data Mining

- Find interesting data or relationships from large datasets
- This can include problems such as:
  - Find frequently occurring attributes/items
  - Clustering: group similar data together
  - Deviation Monitoring: Flag suspicious values
  - Classification – learn a function that uses data attributes to categorize the data into a class
  - Association Rules – Find correlations between frequently occurring attributes or items

## Pertinent Examples of Data Mining



## [The problem statement for Mining Association Rules ]

- Organizations can collect and store MASSIVE amounts of sales data known as basket data.
- Basket data consists of *transactions* which consist of the *items* purchased.
- Data is often sparse, as many different items are offered.
- The rules we're interested in are *some items* ? *some other items* or *X* ? *Y*
- By finding association rules, companies can help people buy things they really need!

---

---

---

---

---

---

---

## [Lingo You Should Learn ]

- The problem requires us to find statistically frequent sets of items and find probable associations between them.
- The frequency is the support – the percentage of time the item(s) appear over transactions.
- Associations are judged based on confidence – the probability that *some items* predict *some other items*.

---

---

---

---

---

---

---

## [The *real* problem ]

- Given parameters *minsup* & *minconf*:
- Generate sets of items with a support value greater than *minsup* (called “large” itemsets)
- Use large data sets to generate association rules with a confidence value greater than *minconf*.
- Do it (a) fast and (b) over lots of data.

---

---

---

---

---

---

---

## Lecture Roadmap

- **Introduction**
- **Paper Summary / Previous Work**
- Algorithm and Variants
- Rule Discovery
- Performance Experiments
- Optimizing Tradeoffs
- Conclusion

---

---

---

---

---

---

---

---

## Paper Summary: Main Points

R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules:

- Use clever logic about sets to quickly find large itemsets (apriori-gen) and use a similar procedure (ap-genrules) to find association rules with high confidence.
- Avoid iterating over the entire data set when checking itemsets for support (aprioriTid) and attempt to maximize performance by adapting the representation of the dataset (aprioriHybrid).
- Validate performance on synthetic and commercial datasets and show *incredible gains in performance!*

---

---

---

---

---

---

---

---

## The real problem, formalized

Let  $I = \{i_1, i_2, \dots, i_m\}$  be a set of literals called items. Let  $D$  be the set of transactions, where each transaction  $T$  is a set of items such that  $T \subseteq I$ . Associated with each transaction is a unique identifier, called its TID.

We say that  $T$  contains  $X$ , a set of some items in  $I$ , if  $X \subseteq T$ . An association rule is an implication of the form  $X \rightarrow Y$  where  $X \subseteq I$ ,  $Y \subseteq I$ , and  $X \neq \emptyset$ .

The rule  $X \rightarrow Y$  holds in the transaction set  $D$  with *confidence*  $c$ , if  $c\%$  of transaction in  $D$  that contain  $X$  also contain  $Y$ . The rule  $X \rightarrow Y$  has *support*  $s$  in the transaction set  $D$  if  $s\%$  of the transactions in  $D$  contain  $X \cup Y$ .

---

---

---

---

---

---

---

---

## Finding Large Sets

- The algorithms of interest approach this problem in a similar manner
  - Generate a list of candidate sets
  - Check by counting candidates in transactions
- The critical difference between previous algorithms is how candidate sets are generated.

---



---



---



---



---



---

## Previous Work: AIS

```

L1 = {large 1-itemsets};
for (k=2; Lk-1 ≠ ∅; k++) {
    Ck = ∅;
    forall transactions t ∈ D {
        L1 = subset(Lk-1, t);
        forall large itemsets l1, 2 L1 {
            C1 = 1-extensions of l1 contained in t;
            forall candidates c ∈ C1 {
                if (c ⊂ Ck)
                    add 1 to the count of c in Ck
                else
                    add c to Ck with a count of 1
            }
        }
        Lk = {c ∈ Ck | c.count ≥ minsup}
    }
    Large itemsets = ∪k Lk
}

```

- Iterate on k until no large itemsets of size k are found
- For each k, find all large subsets of lengths k-1 found in a transaction and add 1-extensions of these subsets to the candidate list
- For each candidate in the list, search the transaction for the subset.

---



---



---



---



---



---



---

## Previous Work: SETM

```

L1 = {large 1-itemsets};
L1 = {large 1-itemsets and TIDs where they appear, sorted by TID);
for (k=2; Lk-1 ≠ ∅; k++) {
    Ck = ∅;
    forall transactions t ∈ D {
        L1 = {l1 | l1.TID = t.TID};
        forall large itemsets l1, 2 L1 {
            C1 = 1-extensions of l1 contained in t;
            Ck += {<t.TID, c> | c ∈ C1}
        }
    }
    sort Ck on itemset
    delete all itemsets 2 Ck for which c.count < minsup giving Lk
    Lk = {d.itemset, count of d in Lk} | 2 Lk
    sort Lk on TID;
}
Large itemsets = ∪k Lk;

```

- Keep versions of large itemsets and candidate itemsets that include an entry for each occurrence of the itemset, along with the TID of the occurrence
- For each transaction, compute all 1-extensions of large itemsets of length k-1 found in the large-itemset-list and add them to the candidate itemsets
- Sort candidate list by itemset and compute counts
- Resort large sets by TID for the next run

---



---



---



---



---



---



---

## Comparing AIS and SETM

- Both AIS and SETM use the same technique to generate candidates (1-extensions to large  $k-1$  sets found in the data)
- AIS reads through the dataset every time, while SETM keeps a copy of relevant data in memory
- SETM can be implemented using only SQL commands and requires no algorithm-specific data structures, but each pass of the algorithm requires two sorts

---

---

---

---

---

---

## Lecture Roadmap

- *Introduction*
- *Paper Summary / Previous Work*
- **Algorithm and Variants**
- Rule Discovery
- Performance Experiments
- Optimizing Tradeoffs
- Conclusion

---

---

---

---

---

---

---

---

## Apriori Algorithm

```
L1 = {large 1-itemsets}
for (k=2; Lk-1 ≠ ; ; k++){
    Ck = apriori-gen(Lk-1);
    forall transactions t ∈ D {
        Ct = subset(Ck, t);
        forall candidates c ∈ Ct
            c.count++;
    }
    Lk = {c ∈ Ck | c.count ≥ minsup}
}
Large Itemsets = ∪k Lk
```

- Iterate over  $k$ , and generate candidates based on  $L_{k-1}$ .
- For each candidate, go through the dataset and increment the count of candidate sets contained in that transaction
- The algorithm hinges on apriori-gen, an innovation that generates fewer candidates than 1-extension.

---

---

---

---

---

---

---

---

## Apriori improves on AIS and SETM

- Intuition: If a set of length  $k$  is large, all subsets of length  $k-1$  must also be large.
- Improve on the candidate generation of SETM and AIS by being smarter!
  - Generate candidates independent of transactions.
  - Use known large itemsets to find possible extensions that create large itemsets.
  - Prune the candidates by making sure all subsets of each candidate set are also large.
  - Fewer candidates means less memory is used!

---

---

---

---

---

---

## What's behind apriori-gen?

**Join Step:**  
insert into  $C_k$   
select p.item<sub>1</sub>, p.item<sub>2</sub>, ..., p.item<sub>k-1</sub>, q.item<sub>k-1</sub>  
from  $L_{k-1}$  p,  $L_{k-1}$  q  
where p.item<sub>1</sub> = q.item<sub>1</sub>, p.item<sub>2</sub> = q.item<sub>2</sub>, ...,  
p.item<sub>k-2</sub> = q.item<sub>k-2</sub>, p.item<sub>k-1</sub> < q.item<sub>k-1</sub>

**Prune Step:**  
forall itemsets  $c \in C_k$   
forall  $(k-1)$ -subsets  $s$  of  $c$   
if  $(s \not\subseteq L_{k-1})$   
    delete  $c$  from  $C_k$

- In the join step, elements of  $L_{k-1}$  are joined with  $L_{k-1}$  on the first  $k-2$  elements.
- Strings are kept lexicographically ordered to avoid duplicates and maintain consistency.
- In the prune step, candidates are checked to ensure all subsets with  $k-1$  elements are in  $L_{k-1}$ .

---

---

---

---

---

---

## Example of apriori-gen

- $L_3 = \{\{1 2 3\} \{1 2 4\} \{1 3 4\} \{1 3 5\} \{2 3 4\}\}$
- **Join Step**
  - $\{1 2 3\}$  joins with  $\{1 2 4\}$  to form  $\{1 2 3 4\}$ ,  $\{1 2\}$  in common
  - $\{1 3 4\}$  joins with  $\{1 3 5\}$  to form  $\{1 3 4 5\}$ ,  $\{1 3\}$  in common
  - $\{2 3 4\}$  doesn't join with anything.
- **Prune Step**
  - $\{1 2 3\}$ ,  $\{1 2 4\}$ ,  $\{1 3 4\}$ ,  $\{2 3 4\}$  are all found in  $L_3$ , so  $\{1 2 3 4\}$  is kept in  $C_4$
  - $\{1 3 4\}$ ,  $\{1 3 5\}$  are found in  $L_3$ , but  $\{1 4 5\}$  and  $\{3 4 5\}$  are not,  $\{1 3 4 5\}$  is pruned from  $C_4$ .

---

---

---

---

---

---

## Looking at Apriori Ops

- To run Apriori, many set operations on itemsets are necessary
- If these set operations are expensive, AIS and SETM would outperform Apriori
- Set operations must be fast:
  - member: Is  $s \in L_{k-1}$ ?
  - subset: Are the items in  $c$  a subset of  $T$ ?

---

---

---

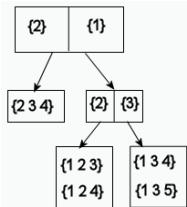
---

---

---

## Data Structures for Fast Set Operations

- member: Use a hash table to check if an itemset is in  $L_{k-1}$
- subset: Use a hash tree for  $C_k$ 
  - Interior nodes of the tree contain hash tables whose buckets contain pointers to the next node
  - Leaves contain candidate itemsets. The answer set contains references to these sets.
  - All nodes begin as leaves and are promoted when the size of the leaf exceeds some threshold.
  - Subset is determined by hashing every item in the transaction at the root, and recursively attempting to hash any possible item at interior nodes.



---

---

---

---

---

---

---

---

## Remember Memory Issues

- AIS generates candidates on the fly, requiring only the candidate list to be kept in memory.
- Apriori depends on using  $L_{k-1}$  to generate  $C_k$ .  $C_k$ ,  $L_{k-1}$ , and a buffer page for  $D$  must be memory-resident
  - $C_k$  might not fit in memory
    - Multiple passes of  $C_k$  generation and  $D$  counting
  - $L_{k-1}$  might not fit in memory
    - Externally sort  $L_{k-1}$ 
      - Bring in itemsets necessary for one join,  $k2$  common items
      - Generate candidates
      - Repeat
    - Cannot prune candidates (need all of  $L_{k-1}$ )

---

---

---

---

---

---

---

---

## Possible Bottlenecks in Apriori

- Data Structures – Set operations are slow
- Memory – candidate sets or large itemsets may not fit.
- DATA – Must scan the entire dataset for each value of k for counting

## Solving the data problem

- As k increases, fewer and fewer itemsets of length k are large.
- Despite this fact, we still read every item in every transaction – millions of transactions!
- Borrow an idea from SETM - why not keep only the items in question for each transaction?
- Apriori could run with only a single, initial scan of D !

## Introducing AprioriTID

```
L1 = {large 1-itemsets};  
C1 = database D;  
for (k=2; Lk-1 ≠ ∅; k++) {  
    Ck = apriori-gen(Lk-1);  
    Ck = ∅;  
    forall entries t 2 Ck-1 {  
        Ct = {c 2 Ck |  
                (c - c[k]) 2 t.itemsets} ∪  
                (c - c[k+1]) 2 t.itemsets};  
    forall candidates c 2 Ct {  
        c.count++;  
        if (c.count > minsup) { Ck += c; }  
    }  
    Lk = {c 2 Ck | c.count > minsup};  
}  
Large Itemsets = ∪k Lk
```

- If L<sub>k</sub> can be generated by L<sub>k-1</sub>, C<sub>k</sub> can be checked using transaction information about the itemsets of C<sub>k-1</sub>
- Store relevant dataset in C<sub>k-1</sub>, with candidates tagged with TID.
- If c-c[k] ∪ c-c[k+1] are both in C<sub>k-1</sub>, tagged with TID, then that transaction contains c

## Modifying Data Structures for AprioriTID

- No longer need to maintain a hash-tree
- Assign each candidate itemset an ID.  $C_k$  stored as an array index by ID,  $C_{k-1}$  has form  $\langle TID, \{ID\} \rangle$
- Create *generators* and *extensions*
  - Generators are the IDs to the two large ( $k-1$ ) itemsets that created a candidate  $c_k$
  - Extensions are the IDs of size  $k$  candidates created by extending a large  $k-1$  itemset.
- Check to see if the generators of  $c_k$  show up in  $t.TID$

---

---

---

---

---

---

## Buffer Management in AprioriTID

- Candidate generation is the same, must keep  $L_{k-1}$  and  $C_k$
- Counting is different, instead of just  $C_k$  must also keep  $C_{k-1}$  (for ID ! itemsetmap), and a buffer page for each  $C_k$  and  $C_{k-1}$ .
- Fill only half the buffer during candidate generation, ensuring that all itemsets generated from a single join are produced so the generators can be discarded.
- No pruning!

---

---

---

---

---

---

## Lecture Roadmap

- *Introduction*
- *Paper Summary / Previous Work*
- *Algorithm and Variants*
- **Rule Discovery**
- *Performance Experiments*
- *Optimizing Tradeoffs*
- *Conclusion*

---

---

---

---

---

---

## Rule Discovery

- For a large subset  $I$ , find rules for some  $a \subseteq I$  of the form,  $a \rightarrow (I - a)$ .
- This occurs when  $\frac{\text{support}(I)}{\text{support}(a)} \geq \text{minconf}$
- Use basic inclusion to avoid unnecessary rules: go from general to specific – if  $ABC \rightarrow D$ , adding another item, ie.  $AB \rightarrow CD$ , will not create a valid rule.

---

---

---

---

---

---

## Rule Discovery Algorithm

```
forall large itemsets  $I_k$ ,  $k \geq 2$ 
call genrules( $I_k$ ,  $I_k$ );

genrules( $I_k$ ,  $a_m$ ) {
   $A = \{(m-1)$  itemsets  $a_{m-1} \mid a_{m-1} \subseteq a_m\}$ 
  forall  $a_{m-1} \in A$  {
    conf = support( $I_k$ )/support( $a_{m-1}$ );
    if (conf > minconf) {
      output " $a_{m-1} \rightarrow (I_k - a_{m-1})$ 
              with conf, support( $I_k$ ));"
      if( $m-1 > 1$ )
        call genrules( $I_k$ ,  $a_{m-1}$ );
    }
  }
}
```

- Recursion on  $a_{m-1}$  to create successively larger consequents.

---

---

---

---

---

---

## Apply what you've learned: a Better Rule Discovery Algorithm

- Basic Intuition:  $AB \rightarrow CD$  holds only if  $ABC \rightarrow D \wedge ABD \rightarrow C$ .
- If  $AB \rightarrow C$ , no reason to check  $AB \rightarrow CD$
- Generalization: All rules involving the subsets of a consequent must hold for the consequent to hold. (Think: all subsets of an itemset must be large...)
- Idea: Use single-item consequents to generate possible two-item consequents.

---

---

---

---

---

---

## Faster Rule Discovery

```

forall large itemsets  $I_k, k \geq 2$  {
   $H_1 = \{\text{one-item consequents}$ 
  of rules derived from  $I_k\};$ 
  call ap-genrules( $I_k, H_1$ );
}

ap-genrules( $I_k, H_m$ );
if ( $k > m+1$ ) {
   $H_{m+1} = \text{apriori-gen}(H_m);$ 
  forall  $h_{m+1}, 2 \leq h_{m+1} \leq$ 
  conf = support( $I_k$ )/support( $I_k - h_{m+1}$ );
  if (conf < minconf)
    output " $(I_k - h_{m+1}) \rightarrow h_{m+1}$ 
    with conf, support( $I_k$ )"
  else
    delete  $h_{m+1}$  from  $H_{m+1};$ 
}
call ap-genrules( $I_k, H_{m+1}$ );
}

```

- Instead of generating all possible itemsets for the antecedent, generate longer consequents from shorter consequents using apriori-gen.

## Lecture Roadmap

- *Introduction*
- *Paper Summary / Previous Work*
- *Algorithm and Variants*
- *Rule Discovery*
- **Performance Experiments**
- Optimizing Tradeoffs
- Conclusion

## Comparing Performance: AIS, SETM, Apriori, AprioriTID

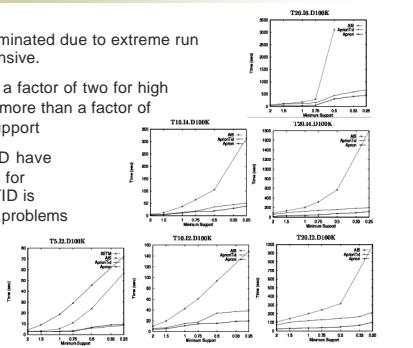
- Experiments run on IBM RS/6000, 33 MHz, 64 MB RAM, 2GB HD at 2MB/s
- Tested using synthetic data and two retail datasets.
- Naming scheme for datasets:
  - #Transactions: \cD
  - Average items in a transaction: T
  - Average size of maximal large itemset: I
  - Number of maximal large itemsets: L
  - Number of items: N
- N = 1000, L = 2000, vary T, I, D
- Naming Scheme T5.I2.D100K

## Tests on Synthetic Data Apriori Wins!

- SETM was often terminated due to extreme run times. Sorts are expensive.

- Apriori beats AIS by a factor of two for high levels of support and more than a factor of 10 for low levels of support

- Apriori and AprioriTID have comparable run times for small problems, but TID is twice as slow in large problems

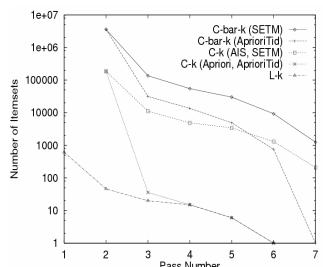


## How much difference could apriori-gen make?

- Notice the *logarithmic* scale for the number of candidate itemsets generated for different values of  $k$ .

- Apriori-gen quickly drops from millions to hundreds while on-the-fly generation results in hundreds of thousands of candidates.

- SETM and APrioriTID must keep many itemsets!



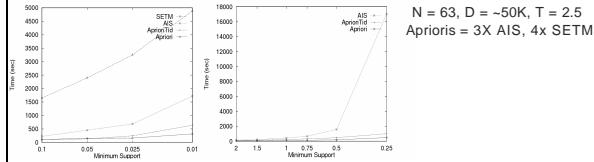
## Performance Tests on Retail Data

- Left: Single orders:  $N = 16K$ ,  $T=2.6$ ,  $D = \sim 3M$

- AprioriTID twice as slow for low supports
- Apriori = 2-6x AIS, 15x SETM

- Right: All customer orders:  $N = 16K$ ,  $T=31$ ,  $D = \sim 200K$

- AprioriTID twice as slow for low supports
- Apriori = 3-30x AIS, SETM fills disk



## Lecture Roadmap

- *Introduction*
- *Paper Summary / Previous Work*
- *Algorithm and Variants*
- *Rule Discovery*
- *Performance Experiments*
- **Optimizing Tradeoffs**
- Conclusion

---

---

---

---

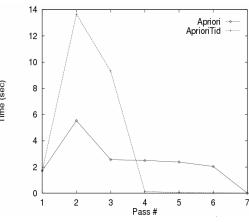
---

---

---

## Can Apriori beat itself?

- Apriori does well, but AprioriTID didn't perform well.
- Look at the execution time vs. pass! AprioriTID is instantaneous after pass 4!
- We want the minimum of the two lines.
- How can we leverage the strengths of both these algorithms?
  - Avoid the space constraints of AprioriTID without paying the data scanning penalty of Apriori?



---

---

---

---

---

---

---

## AprioriHybrid: best thing since sliced bread.

- Begin with Apriori
- When the estimated size of  $C_k$  meets some heuristic (smaller than  $D$  or fits in memory), switch to AprioriTID
- On the next pass, create  $C_k$  while scanning dataset- performance penalty
- Future passes will avoid scanning the entire dataset!

---

---

---

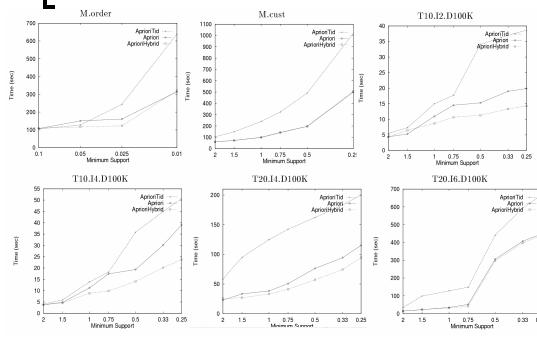
---

---

---

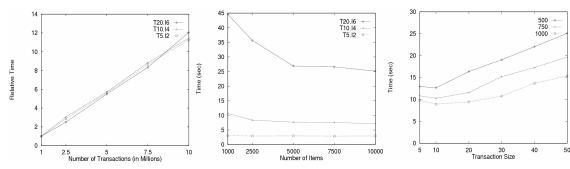
---

But does it work? Why, yes, it does!  
Proof by blurry graphs.



Scale-up properties: good

- Scale-up measured with respect to D, N, & T
  - Linear scale-up with increasing D
  - As N increases, faster performance, less support
  - Gradual increase as T increases



Lecture Roadmap

- *Introduction*
- *Paper Summary / Previous Work*
- *Algorithm and Variants*
- *Rule Discovery*
- *Performance Experiments*
- *Optimizing Tradeoffs*
- *Conclusion*

## Conclusions about Apriori

- Generating candidate sets on-the-fly was fast, but not very smart. Fewer candidates really pays off.
- Good data structures make these algorithms possible.
- Buffer management isn't too big of a problem.
- Even today, Apriori is considered the best rule association algorithm.

---

---

---

---

---

---

## Future Directions for Mining Association Rules

- Use hierarchical items
  - table is dining furniture is furniture
- Take quantities into account
- Work on finding “interesting” rules using heuristics

---

---

---

---

---

---

## Other Data Mining: Classification

- Frequently use decision trees to learn F: data ! class
- Classical machine learning uses a recursive DF algorithm to generate DTs.
- Data Mining builds trees breadth first, performs split computations at once.

---

---

---

---

---

---