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Data Mining
So you want to be a data miner?

Presented by 
Jay Pujara

The Goals of Data Mining

n Find interesting data or relationships from 
large datasets

n This can include problems such as: 
¡ Find frequently occurring attributes/items
¡ Clustering: group similar data together
¡ Deviation Monitoring: Flag suspicious values
¡ Classification – learn a function that uses data 

attributes to categorize the data into a class 
¡ Association Rules – Find correlations between 

frequently occurring attributes or items

Pertinent Examples of Data Mining
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The problem statement for 
Mining Association Rules

n Organizations can collect and store MASSIVE 
amounts of sales data known as basket data.

n Basket data consists of transactions which consist 
of the items purchased.

n Data is often sparse, as many different items are 
offered.

n The rules we’re interested in are 
some items ? some other items or X ? Y

n By finding association rules, companies can help 
people buy things they really need!

Lingo You Should Learn

n The problem requires us to find statistically 
frequent sets of items and find probable 
associations between them.

n The frequency is the support – the 
percentage of time the item(s) appear over 
transactions.

n Associations are judged based on 
confidence – the probability that some items
predict some other items.

The real problem

n Given parameters minsup & minconf:
n Generate sets of items with a support 

value greater than minsup (called 
“large” itemsets)

n Use large data sets to generate 
association rules with a confidence 
value greater than minconf.

n Do it (a) fast and (b) over lots of data.



3

Lecture Roadmap

n Introduction
n Paper Summary / Previous Work
n Algorithm and Variants
n Rule Discovery
n Performance Experiments
n Optimizing Tradeoffs
n Conclusion

Paper Summary: Main Points

R. Agrawal, R. Srikant, Fast Algorithms for Mining 
Association Rules:

n Use clever logic about sets to quickly find large 
itemsets (apriori -gen) and use a similar procedure 
(ap-genrules) to find association rules with high  
confidence.

n Avoid iterating over the entire data set when 
checking itemsets for support (aprioriTid) and 
attempt to maximize performance by adapting the 
representation of the dataset (aprioriHybrid).

n Validate performance on synthetic and commercial 
datasets and show incredible gains in performance!

The real problem, formalized
Let I= {i 1, i2,...,im}  be a set of literals called items.  Let D be 
the set of transactions, where each transaction T is a set of 
items such that T µ I.  Associated with each transaction is a 
unique identifier, called its TID.  

We say that T contains X, a set of some items in I, if X µ T.  
An association rule is an implication of the form X ! Y where  
X ½ I, Y ½ I, and X Å Y = ;.  

The rule X ! Y holds in the transaction set D with confidence
c, if c% of transaction in D that contain X also contain Y.  The 
rule X ! Y has support s in the transaction set D if s% of the 
transactions in D contain X U Y.
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Finding Large Sets

n The algorithms of interest approach 
this problem in a similar manner
¡ Generate a list of candidate sets 
¡ Check by counting candidates in xactions

n The critical difference between 
previous algorithms is how candidate 
sets are generated.

Previous Work: AIS 

L1 = {large 1-itemsets};
for (k=2; Lk-1 ≠ ;; k++){

Ck = ;;
forall transactions t 2 D {

Lt = subset(Lk-1,t);
forall large itemsets l t2 Lt {

Ct = 1-extensions of l t contained in t;
forall candidates c 2 Ct {

if(c 2 Ck)
add 1 to the count of c in Ck

else 
add c to Ck with a count of 1

}  }   }
Lk = {c 2 Ck |  c.count ¸ minsup
}
Large Itemsets = Uk Lk

• Iterate on k until no large 
itemsets of size k are found

• For each k, find all large 
subsets of lengths k- 1 
found in a transaction and 
add 1-extensions of these 
subsets to the candidate list

• For each candidate in the 
list, search the transaction 
for the subset.

Previous Work: SETM
L1 = {large 1-itemsets}
L1 = {Large 1-itemsets and TIDs where they appear, sorted by 

TID}
for (k=2; Lk-1 ≠ ;; k++){

Ck = ;;
forall transactions t 2 D {

Lt = { l 2 Lk-1 |  l.TID = t.TID};
forall large itemsets l t 2 Lt { 

Ct = 1-extensions of l t contained in t;
Ck += {<t.TID, c> | c 2 Ct}

}
}
sort Ck on itemset
delete all itemsets 2 Ck for which c.count < minup giving Lk
Lk = {<l.itemset, count of l in Lk}> | l 2 Lk}}
sort Lk on TID;

}
Large Itemsets = [k Lk;

• Keep versions of large 
itemsets and candidate 
itemsets that include an 
entry for each occurrence 
of the itemset, along with 
the TID of the occurrence

• For each transaction, 
compute all 1-extensions of 
large itemsets of length k-1 
found in the large-itemset-
list  and add them to the 
candidate itemsets

• Sort candidate list by 
itemset and compute 
counts

• Resort large sets by TID 
for the next run
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Comparing AIS and SETM

n Both AIS and SETM use the same 
technique to generate candidates (1-
extensions to large k-1 sets found in the 
data)

n AIS reads through the dataset every time, 
while SETM keeps a copy of relevant data in 
memory

n SETM can be implemented using only SQL 
commands and requires no algorithm -
specific data structures, but each pass of 
the algorithm requires two sorts
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Apriori Algorithm
L1 = {large 1-itemsets}
for (k=2; Lk-1 ≠ ; ; k++){

Ck = apriori-gen(Lk-1);
forall transactions t 2 D {

Ct = subset(Ck,t);
forall candidates c 2 C t

c.count++

}
Lk = {c 2 Ck |  c.count ¸ minsup}

}
Large Itemsets = [k Lk

• Iterate over k, and generate 
candidates based on Lk-1.

• For each candidate, go through 
the dataset and increment the 
count of candidate sets contained 
in that transaction

• The algorithm hinges on apriori -
gen, an innovation that generates 
fewer candidates than 1-extension.
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Apriori improves on
AIS and SETM

n Intuition: If a set of length k is large, all 
subsets of length k-1 must also be large.

n Improve on the candidate generation of 
SETM and AIS by being smarter!
¡ Generate candidates independent of 

transactions.
¡ Use known large itemsets to find possible 

extensions that create large itemsets.
¡ Prune the candidates by making sure all subsets 

of each candidate set are also large.
¡ Fewer candidates means less memory is used!

What’s behind apriori-gen?

n In the join step, 
elements of Lk-1 are 
joined with Lk-1 on the 
first k-2 elements.

n Strings are kept 
lexicographically 
ordered to avoid 
duplicates and maintain 
consistency.

n In the prune step, 
candidates are checked 
to ensure all subsets 
with k- 1 elements are in 
Lk-1

Join Step:
insert into Ck
select p.item1, p.item2,...,p.itemk-1,q.itemk-1
from Lk-1 p, Lk-1 q
where p.item1 = q.item1, p.item2 = q.item2,..., 
p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1

Prune Step:
forall itemsets c 2 Ck

forall (k-1 )-subsets s of c
if (s 2 Lk-1)

delete c from Ck

Example of apriori-gen

n L3 = { {1 2 3} {1 2 4} {1 3 4} {1 3 5} {2 3 4} } 
n Join Step

¡ {1 2 3} joins with {1 2 4} to form {1 2 3 4}, {1 2} in 
common

¡ {1 3 4} joins with {1 3 5} to form {1 3 4 5}, {1 3} in 
common

¡ {2 3 4} doesn’t join with anything.
n Prune Step

¡ {1 2 3}, {1 2 4}, {1 3 4}, {2 3 4} are all found in L3, so 
{1 2 3 4} is kept in C k

¡ {1 3 4}, {1 3 5} are found in L3, but {1 4 5} and {3 4 5} 
are not, {1 3 4 5} is pruned from C k.
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Looking at Apriori Ops

n To run Apriori, many set operations on 
itemsets are necessary

n If these set operations are expensive, 
AIS and SETM would outperform 
Apriori

n Set operations must be fast:
¡ member: Is s 2 Lk-1?
¡ subset: Are the items in c a subset of T?

Data Structures for 
Fast Set Operations

n member: Use a hash table to 
check if an itemset is in Lk-1

n subset: Use a hash tree for Ck

¡ Interior nodes of the tree contain 
hash tables whose buckets 
contain pointers to the next node

¡ Leaves contain candidate 
itemsets. The answer set contains 
references to these sets.

¡ All nodes begin as leaves and are 
promoted when the size of the leaf 
exceeds some threshold.

¡ Subset is determined by hashing 
every item in the transaction at the 
root, and recursively attempting to 
hash any possible item at interior 
nodes.

Remember Memory Issues

n AIS generates candidates on the fly, requiring only 
the candidate list to be kept in memory.

n Apriori depends on using L k-1 to generate Ck. Ck,   
Lk-1, and a buffer page for D must be memory-
resident
¡ Ck might not fit in memory

n Multiple passes of Ck generation and D counting

¡ Lk-1 might not fit in memory
n Externally sort Lk-1

n Bring in itemsets necessary for one join, k-2 common items
n Generate candidates
n Repeat
n Cannot prune candidates (need all of Lk-1)
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Possible Bottlenecks in Apriori

n Data Structures – Set operations are 
slow

n Memory – candidate sets or large 
itemsets may not fit.

n DATA – Must scan the entire 
dataset for each value of k for 
counting

Solving the data problem

n As k increases, fewer and fewer itemsets of 
length k are large.

n Despite this fact, we still read every item in 
every transaction – millions of transactions!

n Borrow an idea from SETM - why not keep 
only the items in question for each 
transaction?

n Apriori could run with only a single, initial 
scan of D !

Introducing AprioriTID

n If Lk can be generated by 
Lk-1, Ck can be checked 
using transaction 
information about  the 
itemsets of Ck-1

n Store relevant dataset in 
Ck-1, with candidates 
tagged with TID.

n If c-c[k] Æ c-c[k+1] are both 
in Ck-1, tagged with TID, 
then that transaction 
contains c

L1 = {large 1=itemsets };
C1 = database D ;
for (k=2; Lk-1 ≠ ;; k++){

Ck = apriori -gen(Lk-1);
Ck = ; ;
forall entries t 2 Ck-1 {

C t = {c 2 Ck |  
(c - c [ k]) 2 t.itemsets) Æ
(c - c [ k-1]) 2 t.temsets}

forall candidates c 2 Ct
c.count++;

if (Ct ≠ ;) { Ck += <t.TID, C t>;
}
Lk = {c 2 Ck |  c.count > minsup}

}
Large Itemsets = [k Lk
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Modifying Data Structures 
for AprioriTID

n No longer need to maintain a hash-tree
n Assign each candidate itemset an ID. Ckstored as an array index by ID, Ck-1 has form 

<TID, {ID}>
n Create generators and extensions

¡ Generators are the IDS to the two large (k-1) 
itemsets that created a candidate ck

¡ Extensions are the IDs of size k candidates 
created by extending a large k-1 itemset.

n Check to see if the generators of ck show up 
in t.TID

Buffer Management 
in AprioriTID

n Candidate generation is the same, must 
keep Lk-1 and Ck

n Counting is different, instead of just Ck, must 
also keep Ck-1 (for ID ! itemsetmap), and a 
buffer page for each Ck and Ck-1.

n Fill only half the buffer during candidate 
generation, ensuring that all itemsets
generated from a single join are produced 
so the generators can be discarded.

n No pruning!

Lecture Roadmap

n Introduction
n Paper Summary / Previous Work
n Algorithm and Variants
n Rule Discovery
n Performance Experiments
n Optimizing Tradeoffs
n Conclusion



10

n For a large subset l, find rules for 
some a ½ l of the form, a ! (l-a).

n This occurs when
n Use basic inclusion to avoid 

unnecessary rules: go from general to 
specific – if ABC 9 D, adding another 
item, ie. AB ! CD, will not create a 
valid rule.

Rule Discovery

Rule Discovery Algorithm

n Recursion on 
am-1 to create 
successively 
larger 
consequents.

forall large itemsets lk, k ¸ 2
call genrules(l k, lk);

genrules(l k, am){
A = {(m -1 itemsets am-1 |   am-1 ½ am}
forall am-1 2 A {

conf = support(l k)/support(am-1);
if (conf ¸ minconf ) {

output "a m-1 ! (lk - a m-1) 
with conf, support(l k);”

if(m-1) > 1)
call genrules(l k, am-1);

}
}

Apply what you’ve learned:
a Better Rule Discovery Algorithm

n Basic Intuition: AB ! CD holds only if ABC 
! D Æ ABD ! C.

n If ABD 9 C, no reason to check AB ! CD
n Generalization: All rules involving the 

subsets of a consequent must hold for the 
consequent to hold. (Think: all subsets of an 
itemset must be large...)

n Idea: Use single-item consequents to 
generate possible two-item consequents. 
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Faster Rule Discovery
n Instead of 

generating all 
possible itemsets
for the antecedent, 
generate longer 
consequents from 
shorter 
consequents using 
apriori-gen.

forall large itemsets lk, k ¸ 2 {
H1 = {one -item consequents 

of rules derived from lk};
call ap-genrules(l k, H1);

}

ap-genrules(l k, Hm ){
if (k > m+1){

Hm+1 = apriori -gen(Hm );
forall hm+1 2 Hm+1 {

conf = support(l k)/support(l k - h m+1);
if (conf ¸ minconf)

output "(lk - h m+1) ! h m+1
with conf, support(l k)"

else
delete hm+1 from H m+1;

}
call ap-genrules(l k, Hm+1);

}
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Comparing Performance:
AIS, SETM, Apriori, AprioriTID

n Experiments run on IBM RS/6000, 33 MHz, 64 MB 
RAM, 2GB HD at 2MB/s

n Tested using synthetic data and two retail datasets.
n Naming scheme for datasets: 

¡ #Transactions: \cD
¡ Average items in a transaction: T
¡ Average size of maximal large itemset: I
¡ Number of maximal large itemsets : L
¡ Number of items: N

n N = 1000, L = 2000, vary T, I, D
n Naming Scheme T5.I2.D100K
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Tests on Synthetic Data
Apriori Wins!

• SETM was often terminated due to extreme run 
times. Sorts are expensive.

• Apriori beats AIS by a factor of two for high 
levels of support and more than a factor of 
10 for low levels of support

• Apriori and AprioriTID have 
comparable run times for 
small problems, but TID is 
twice as slow in large problems

How much difference 
could apriori-gen make?

• Notice the logarithmic
scale for the number of 
candidate itemsets
generated for different 
values of k.

• Apriori -gen quicky drops 
from millions to hundreds 
while on-the-fly generation 
results in hundreds of 
thousands of candidates.

• SETM and APrioriTID
must keep many itemsets!

Performance Tests 
on Retail Data

• Left: Single orders:  N = 16K, T=2.6, D = ~3M

• AprioriTID twice as slow for low supports

• Apriori = 2 -6x AIS, 15x SETM

• Right: All customer orders: N = 16K, T=31, D = ~200K

• AprioriTID twice as slow for low supports

• Apriori = 3 -30x AIS, SETM fills disk

N = 63, D = ~50K, T = 2.5
Aprioris = 3X AIS, 4x SETM
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Can Apriori beat itself?
n Apriori does well, but AprioriTID

didn’t perform well.
n Look at the execution time vs. 

pass! AprioriTID is instantaneous 
after pass 4!

n We want the minimum of the two 
lines.

n How can we leverage the 
strengths of both these 
algorithms? 
¡ Avoid the space constraints of 

AprioriTID without paying the data 
scanning penalty of Apriori?

AprioriHybrid: 
best thing since sliced bread.

n Begin with Apriori
n When the estimated size of Ck meets 

some heuristic (smaller than D or fits in 
memory), switch to AprioriTID

n On the next pass, create Ck while 
scanning dataset- performance penalty

n Future passes will avoid scanning the 
entire dataset!



14

But does it work? Why, yes, it does!
Proof by blurry graphs. 

Scale-up properties: good

n Scale-up measured with respect to D, N, &T
¡ Linear scale-up with increasing D 
¡ As N increases, faster performance, less support
¡ Gradual increase as T increases
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Conclusions about Apriori

n Generating candidate sets on-the-fly was 
fast, but not very smart.  Fewer candidates 
really pays off.

n Good data structures make these algorithms 
possible.

n Buffer management isn’t too big of a 
problem.

n Even today, Apriori is considered the best 
rule association algorithm.

Future Directions for 
Mining Association Rules

n Use hierarchical items
¡ table is dining furniture is furniture 

n Take quantities into account
n Work on finding “interesting” rules 

using heuristics

Other Data Mining:
Classification

n Frequently use decision trees to learn 
F: data ! class

n Classical machine learning uses a 
recursive DF algorithm to generate 
DTs.

n Data Mining builds trees breadth first, 
performs split computations at once.


