
1

15-721 Database Management Systems

Buffer Management: DBMin

Instructor: Anastassia Ailamaki
http://www.cs.cmu.edu/~natassa

2

Review

DB accesses are page-oriented
Need to cache DBMS disk pages
Buffer pool: a set of page frames, each
of which can hold a disk page.

frames

3

Interface

Hash table maps pageID to BP index entries
getpage(pageNo) – returns memory address

Check buffer pool for page
If not found, get from disk
Fix page in buffer pool
Note the reference
Return address of page

2

4

Interface (cont’d)

unfixpage(pageNo) – decrements fix count

flushpage(pageNo) – force page to disk

5

Chou and DeWitt - Outline

Review of Algorithms
Domain separation (Reiter)
Extensions to domain separation algorithm
“new” algorithm
Hot-set algorithm

DBMIN - ideas and algorithms
Experiments

6

Domain Separation [Reiter76]

Classify pages as types
Each type has a domain of buffers
“borrow” page from one domain to another
LRU within domain
Example: B+-tree index

One domain per index level
One domain per leaf/data pages

3

7

Domain Separation: Problems

Problems ?

8

Domain Separation: Problems

Problems with this approach
Static domains (relative importance depends
on query)
Doesn’t prevent interference among users
No load control => thrashing may occur

9

Domain Separation: Extensions

Group LRU (GLRU) [Nybe84]
Fixed priority ranking for domains to find free
pages
Search for free buffers in lowest priority group

Working-set-like partitioning [Effe84]
Dynamically vary domain size
Do not replace pages in domain i referenced in
last ti references

4

10

“New” algorithm [Kaplan80]

Page priority a property of the relation
Therefore, each relation needs a working set
INGRES proposal: “new” algorithm

Each active relation is assigned part of buffer pool
Resident sets linked in priority order
Global free list on top
Page fault: search for free page via priority chain
Use MRU for resident sets (but keep >=1 active
buffer)

11

“New” algorithm: Problems

Problems ?

12

How to determine priority?
MRU not always good
Costly search under high loads
Not multi-user (hard to determine priority)
Didn’t improve LRU performance

“New” algorithm: Problems

5

13

Hot Set [Sacc82]

Query behavior model
hot set: set of pages over which there is
looping behavior
hot set in memory ⇒ efficient query
processing
#page faults vs. size of buffers in partitions

Discontinuities: hot points

14

Hot Set: key ideas

Give query |hot set| pages
Allow ≤ 1 deficient query to execute
Query optimizer determines hot set size
LRU within each partition
New query

Allowed in if hot set size <=free space
New buffer # pages = hot set size

15

Hot Set (cont’d)

Problems ?

6

16

Hot Set (cont’d)

Problems
LRU not always fast => allocate more memory!

MRU better for looping
Over-allocates pages for some phases of query

=> under-utilized memory

17

Chou and DeWitt - Outline

Review of Algorithms
Domain separation (Reiter)
...

DBMIN - ideas and algorithms
Experiments

18

DBMIN [Chou & DeWitt 85]

Based on “Query Locality Set Model”
DBMS support a limited set of operations
Reference patterns exhibited are
predictable

Decompose complex patterns into simple
Identify locality sets

7

19

Which patterns?

Sequential (+ variations)
Random
Hierarchical

20

Sequential Patterns

Straight sequential (SS)
File scan

#pages?
Replacement algorithm?

R1

R3

R2

R5

R4

R6

table R

21

Sequential Patterns (cont.)

Straight sequential (SS)
File scan

Need one page
Replacement algorithm?

R1

R3

R2

R5

R4

R6

table R

8

22

Sequential Patterns (cont.)

Straight sequential (SS)
File scan

Need one page
Replaced with next one

R1

R3

R2

R5

R4

R6

table R

23

Sequential Patterns (cont.)

Clustered sequential (CS)
Like inner S for merge-join
(sequential w/ backup)
Join condition: R.a=S.a

of pages?
Replacement algorithm?

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

a=4
a=4
a=4
a=4

a=7

a=7

a=4
a=4
a=4
a=7
a=7
a=8

table R table S

24

Sequential Patterns (cont.)

Clustered sequential (CS)
Like inner S for merge-join
(sequential w/ backup)

of pages in largest cluster
Replacement algorithm?

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

a=4
a=4
a=4
a=4

a=7

a=7

a=4
a=4
a=4
a=7
a=7
a=8

table R table S

9

25

Sequential Patterns (cont.)

Clustered sequential (CS)
Like inner S for merge-join
(sequential w/ backup)

of pages in largest cluster
FIFO or LRU

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

a=4
a=4
a=4
a=4

a=7

a=7

a=4
a=4
a=4
a=7
a=7
a=8

table R table S

26

Sequential Patterns (cont.)

Looping sequential (LS)
Like inner S for nested-
loop-join

of pages?
Replacement algorithm?

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

table R table S

27

Sequential Patterns (cont.)

Looping sequential (LS)
Like inner S for nested-loop-
join

As many pages as possible
Replacement algorithm?

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

table R table S

10

28

Sequential Patterns (cont.)

Looping sequential (LS)
Like inner S for nested-loop-
join

As many pages as possible
MRU

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

table R table S

29

Random Patterns

Independent Random (IR)
Non-clustered index scan

of pages?
Replacement algorithm?

R1

R3

R2

R5

R4

R6

non-clustered index

B-tree
on a

30

Random Patterns (cont.)

Independent Random (IR)
Non-clustered index scan

One page
(assuming low prob. of reaccess)

Replacement algorithm?

R1

R3

R2

R5

R4

R6

non-clustered index

B-tree
on a

11

31

Random Patterns (cont.)

Independent Random (IR)
Non-clustered index scan

One page
(assuming low prob. of reaccess)

Any replacement algorithm!

R1

R3

R2

R5

R4

R6

non-clustered index

B-tree
on a

32

Random Patterns (cont.)

Clustered Random (CR)
Inner, non-clustered index
on join column

of pages?
Replacement algorithm? B-tree

on a

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

table R table S

33

Random Patterns (cont.)

Clustered Random (CR)
Inner, non-clustered index on
join column

of records in largest cluster
Replacement algorithm? B-tree

on a

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

table R table S

12

34

Random Patterns (cont.)

Clustered Random (CR)
Inner, non-clustered index on
join column

of records in largest cluster
as in CS (FIFO or LRU) B-tree

on a

R1

R3

R2

R5

R4

R6

S1

S3

S2

S5

S4

S6

table R table S

35

Hierarchical Patterns

Straight Hierarchical (SH)
Access index pages ONCE
(retrieve a single tuple)

of pages?
Replacement algorithm?

R1

R3

R2

R5

R4

R6

index

B-tree
on a

36

Hierarchical Patterns (cont.)

Straight Hierarchical (SH)
Access index pages ONCE
(retrieve a single tuple)

Like SS

R1

R3

R2

R5

R4

R6

index

B-tree
on a

13

37

Hierarchical Patterns (cont.)

Hierarchical w/
straight/clustered sequential

(H/SS or H/CS)

Hierarchical w/ SS or CS leaf
scan
Like SS/CS

a2=Lo

a2=Hi

R1

R3

R2

R5

R4

R6

e.g., clustered index

B-tree
on a2

38

Hierarchical Patterns (cont.)

Looping Hierarchical (LS)

When inner index in join is repeatedly
accessed
LIFO need to keep root

39

Chou and DeWitt - Outline

Review of Algorithms
Domain separation (Reiter)
...

DBMIN - ideas and algorithms
Experiments

14

40

DBMIN policy

Buffers allocated on a per-file-instance basis
Different BP for each active instance of file i

Set of pages of a file instance = locality set (lset)
Locality sets are independently managed

Each page in buffer belongs to at most 1 lset
Files share pages through global buffer table

41

Parameters

N – total number of buffers
Iij – max number of buffers for file instance
j of query i (desired size)
rij –number of buffers allocated for file
instance j of query i (actual size)

42

DBMIN Algorithm

Query requests page => search global table:
1) Found in global table and locality set

Update usage stats
2) In memory, not in locality set

If already owned by someone else, return it
Else, return to locality set and increment rij

If rij > Iij , release a page to global free list

15

43

DBMIN Algorithm (cont.)

3) Not in memory
Get a free buffer
Schedule a read, then do “in memory” (step 2)

On file open/close, do load control:
(Open): if Σi Σj Iij < N, query can proceed,

otherwise waits
(Close): release buffers to free list, unblock one or

more waiters

44

Chou and DeWitt - Outline

Review of Algorithms
Domain separation (Reiter)
...

DBMIN - ideas and algorithms
Experiments

45

Performance Results

Compared to
Rand
FIFO
Clock
WS
Hot Set
DBMIN

16

46

Workload

Queries:
1) q1: selection (clustered index)
2) q2: selection (non-clustered index)
3) q3: selection (cl-index) + join (index-join)
4) q4: seq scan + index join (non-cl-index)
5) q5: selection (cl-index) + join (nested loops)
6) q6: selection (cl-ind) + hash join

47

Workload

Mixes:
1) Mix1: all 6 queries equally
2) Mix2: more of q1 and q2 (selections)
3) Mix3: much more of q1, q2

48

Typical results

NCQ

Throughput
Mix 1
no data sharing
who is who?

4 8 12

0.35
0.30

0.20

DBMIN

HOT

WSCLOCK
RAND
FIFO

17

49

Typical results

NCQ

Throughput
Mix 1
w/ data sharing
what changes?

4 8 12

0.35
0.30

0.20

DBMIN

HOT

WSCLOCK
RAND
FIFO

50

Typical results

NCQ

Throughput
Mix 1
w/ data sharing
what changes?
A: all move up

4 8 12

0.35
0.30

0.20

DBMIN

HOT

WSCLOCK
RAND
FIFO

51

Typical results

What about the ‘lighter’, M2 and M3
mixes?

18

52

Typical results

What about the ‘lighter’, M2 and M3
mixes?
A: similar performance (higher throughput)

53

Performance Results (cont.)

DBMIN did best
Hot set was next
WS was next (trouble with join loops)
Then: clock, FIFO, rand (thrashing as
multiprogramming level increases)
Load control helps
However: too complex
Believe it or not, better algorithms just
appeared (2Q, ARC)!

