15-721 Database Management Systems

Buffer Management: DBMin

Instructor: Anastassia Ailamaki
http.//www.cs.cmu.edu/~natassa

Review

o DB accesses are page-oriented
o Need to cache DBMS disk pages

o Buffer pool: a set of page frames, each
of which can hold a disk page.

=
frames~

— Interface

o Hash table maps pagelD to BP index entries
o getpage(pageNo) — returns memory address
o Check buffer pool for page
o If not found, get from disk
o Fix page in buffer pool
a Note the reference
o Return address of page

Interface (cont’d) —

o unfixpage(pageNo) — decrements fix count

o flushpage(pageNo) — force page to disk

Chou and DeWitt - Outline

o Review of Algorithms
o Domain separation (Reiter)
o Extensions to domain separation algorithm
o “new” algorithm
o Hot-set algorithm
o DBMIN - ideas and algorithms
o Experiments

Domain Separation [Reiter76]

o Classify pages as types
o Each type has a domain of buffers
o “borrow” page from one domain to another
o LRU within domain
o Example: B*-tree index
o One domain per index level
a One domain per leaf/data pages

Domain Separation: Problems

a Problems ?

Domain Separation: Problems

o Problems with this approach
o Static domains (relative importance depends
on query)
a Doesn'’t prevent interference among users
o No load control => thrashing may occur

]

Domain Separation: Extensions

a Group LRU (GLRU) [Nybe84]
o Fixed priority ranking for domains to find free
pages
o Search for free buffers in lowest priority group
o Working-set-like partitioning [Effe84]
o Dynamically vary domain size

o Do not replace pages in domain i referenced in
last ti references

“New” algorithm [Kaplan80]

o Page priority a property of the relation
o Therefore, each relation needs a working set
o INGRES proposal: “new” algorithm
o Each active relation is assigned part of buffer pool
o Resident sets linked in priority order
o Global free list on top
o Page fault: search for free page via priority chain

o Use MRU for resident sets (but keep >=1 active
buffer)

“New” algorithm: Problems

a Problems ?

“New” algorithm: Problems

o How to determine priority?

o MRU not always good

o Costly search under high loads

o Not multi-user (hard to determine priority)
o Didn’t improve LRU performance

Hot Set [Sacc82]

o Query behavior model

o hot set: set of pages over which there is
looping behavior

o hot set in memory = efficient query
processing

o #page faults vs. size of buffers in partitions
o Discontinuities: hot points

Hot Set: key ideas

o Give query |hot set| pages

o Allow < 1 deficient query to execute

a Query optimizer determines hot set size
o LRU within each partition

a New query
o Allowed in if hot set size <=free space
o New buffer # pages = hot set size

Hot Set (cont’d)

a Problems ?

Hot Set (cont’d)

a Problems

o LRU not always fast => allocate more memory!
o MRU better for looping

o Over-allocates pages for some phases of query
o => under-utilized memory

Chou and DeWitt - Outline

o Review of Algorithms
o Domain separation (Reiter)
a

#u DBMIN - ideas and algorithms
o Experiments

DBMIN [Chou & DeWitt 85]

o Based on “Query Locality Set Model”
o DBMS support a limited set of operations

o Reference patterns exhibited are
predictable

o Decompose complex patterns into simple
a Identify locality sets

Which patterns?

o Sequential (+ variations)
o Random
o Hierarchical

Sequential Patterns

table R
o Straight sequential (SS) wi)
a File scan
R3]
o #pages? E
o Replacement algorithm? [R |

]

Sequential Patterns (cont.)

i X table R
o Straight sequential (SS) 1]
a File scan
o Need one page
o Replacement algorithm? [Ro |

Sequential Patterns (cont.)

table R

o Straight sequential (SS) &)
a File scan Rz
[R3 |

o Need one page

o Replaced with next one [Ro]

f

Sequential Patterns (cont.)

Clustered sequential (CS)

o Like inner S for merge-join
(sequential w/ backup)

o Join condition: R.a=S.a

o # of pages? -
o Replacement algorithm? -

table R table S

Ul

Sequential Patterns (cont.)

Clustered sequential (CS)

o Like inner S for merge-join
(sequential w/ backup)

table R table S

f

Sequential Patterns (cont.)

Clustered sequential (CS)
o Like inner S for merge-join
(sequential w/ backup)

o # of pages in largest cluster
a FIFO or LRU

table R table S

Ul

Sequential Patterns (cont.)

Looping sequential (LS)
o Like inner S for nested-
loop-join

o # of pages?
o Replacement algorithm?

table R table S

Ul

Sequential Patterns (cont.)

Looping sequential (LS)
o Like inner S for nested-loop-
join

o As many pages as possible
o Replacement algorithm?

table R table S

f

Sequential Patterns (cont.)

Looping sequential (LS)
o Like inner S for nested-loop-
join

o As many pages as possible
o MRU

table R table S

Ul

Random Patterns
Independent Random (IR)
o Non-clustered index scan

o # of pages?
o Replacement algorithm?

non-clustered index

Ul

Random Patterns (cont.)

Independent Random (IR)
o Non-clustered index scan

o One page
(assuming low prob. of reaccess)

o Replacement algorithm?
non-clustered index

f

Random Patterns (cont.)

Independent Random (IR)
o Non-clustered index scan

o One page
(assuming low prob. of reaccess)

o Any replacement algorithm!
non-clustered index

Random Patterns (cont.)

Clustered Random (CR)
a Inner, non-clustered index
on join column

o # of pages?
o Replacement algorithm?

table R table S

J

Random Patterns (cont.)

Clustered Random (CR)
o Inner, non-clustered index on

join column

o # of records in largest cluster
o Replacement algorithm?

table R table S

Random Patterns (cont.)

Clustered Random (CR)

a Inner, non-clustered index on
join column

o # of records in largest cluster
o asin CS (FIFO or LRU)

table R table S

Hierarchical Patterns

Straight Hierarchical (SH)

o Access index pages ONCE
(retrieve a single tuple)

o # of pages?
o Replacement algorithm?

]

Hierarchical Patterns (cont.)

Straight Hierarchical (SH)

o Access index pages ONCE
(retrieve a single tuple)

o Like SS

Hierarchical Patterns (cont.)

Hierarchical w/
straight/clustered sequential

(H/SS or H/CS)

o Hierarchical w/ SS or CS leaf
scan

a Like SS/CS

e.g., clustered index

Hierarchical Patterns (cont.)
Looping Hierarchical (LS)

o When inner index in join is repeatedly
accessed

o LIFO need to keep root

]

Chou and DeWitt - Outline

o Review of Algorithms
o Domain separation (Reiter)

Q

q, DBMIN - ideas and algorithms
o Experiments

DBMIN policy

o Buffers allocated on a per-file-instance basis

o Different BP for each active instance of file i
o Set of pages of a file instance = locality set (Iset)
o Locality sets are independently managed

o Each page in buffer belongs to at most 1 Iset
o Files share pages through global buffer table

Parameters

o N — total number of buffers

a [;— max number of buffers for file instance
jof query i (desired size)

o ry—number of buffers allocated for file
instance j of query i (actual size)

DBMIN Algorithm

Query requests page => search global table:
1) Found in global table and locality set
o Update usage stats
2) In memory, not in locality set
o If already owned by someone else, return it
o Else, return to locality set and increment r;
o Ifr;>1;, release a page to global free list

DBMIN Algorithm (cont.)

3) Not in memory
o Get a free buffer
o Schedule a read, then do “in memory” (step 2)

On file open/close, do load control:

(Open): if £;%; I; < N, query can proceed,
otherwise waits

(Close): release buffers to free list, unblock one or
more waiters

Chou and DeWitt - Outline

o Review of Algorithms

o Domain separation (Reiter)

Q...
o DBMIN - ideas and algorithms
q Experiments

Performance Results

Compared to
o Rand

o FIFO

o Clock

o WS

o Hot Set

o DBMIN

Workload

Queries:

1) q1: selection (clustered index)

2) q2: selection (non-clustered index)

3) q3: selection (cl-index) + join (index-join)

4) q4: seq scan + index join (non-cl-index)

5) gb5: selection (cl-index) + join (nested loops)
6) q6: selection (cl-ind) + hash join

Workload

Mixes:

1) Mix1: all 6 queries equally

2) Mix2: more of q1 and g2 (selections)
3) Mix3: much more of q1, g2

]

Typical results

Throughput
Mix 1
0.35 C no data sharing
0.30 @' who is who?
0.200 /X}
RAND
, FIFO |
4 8 12 NCQ

Typical results

Throughput

Mix 1

0.35 w/ data sharing
0.30, , /N HOT what changes?
0.20 NS
CL

RAND

I‘IFR'U

WS

4 8 12 NCQ

Typical results

Throughput

Mix 1
0.35F w/ data sharing
0.30] HoT what changes?
A: all move up
0.20
o WS
RAND
 FIFO
4 8 12 NCQ

]

Typical results

o What about the ‘lighter’, M2 and M3
mixes?

Typical results

o What about the ‘lighter’, M2 and M3
mixes?
a A: similar performance (higher throughput)

Performance Results (cont.)

o DBMIN did best
o Hot set was next
o WS was next (trouble with join loops)

o Then: clock, FIFO, rand (thrashing as
multiprogramming level increases)

o Load control helps
o However: too complex

o Believe it or not, better algorithms just
appeared (2Q, ARC)!

