11-712: NLP Lab

Noah A. Smith

Spring 2013
version 4 (1/27/13)

The focus of this lab is natural language morphology. To successfully complete the laboratory exercise,
you will design, implement, evaluate, document, and openly release a finite-state morphological analyzer for
a language of your choice.

1 Background and Goals

Morphological analysis is an essential part of NLP for many languages. Despite major advances in formal
machinery and descriptive linguistics relevant for building morphological models, morphological analyzers
are only available for a few languages. Many of them are proprietary, not open-source, and/or not built for
iterative improvement and adaptation.

The goal of this lab is to give you hands-on experience developing and documenting an open-source NLP
tool. It is our hope that you will build a tool with good enough performance to be useful to others, and that
you will design it in such a way that it can be extended and improved by others.

Some useful readings:

e Beesley and Kartunnen (2003)

e Roche and Schabes (1997), chapters 14, 11

e Roark and Sproat (2007), chapters 1-5

e (Coltekin (2010)

e Pirinen (2011)

e Lindén et al. (2013)

e FOMA tutorial: https://code.google.com/p/foma/wiki/MorphologicalAnalysisTutorial
e Apertium wiki: http://wiki.apertium.org/wiki/Category:Morphological_analysers
Some useful tools:

e GitHub (http://github.com): version control and software publishing platform

e FOMA (http://code.google.com/p/foma): open-source library for developing morphology
FSTs

e HFST (http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst): another
open-source library for developing morphology FSTs



OpenFST (http://www.openfst.org): useful for dealing with weighted transducers (which
you are unlikely to need in this lab)

XFST (http://www. fsmbook.com): Xerox tools, not yet open-source (FOMA may essentially
make this obsolete)

FSM Library (http://www2.research.att.com/~fsmtools/fsm): AT&T’s tools (made
obsolete by OpenFST)

2 Schedule

The lab is tightly structured across 15 weeks. You will be writing documentation from the very beginning.
There are deadlines every one or two weeks. The amount of work each week is relatively small, but you
must complete each milestone on schedule.

1.

6.

By 1/18: Select a language.' If possible, you should identify a native speaker to whom you can turn
for judgments. Ideally this person will have enough linguistics training to have conversations with you
about stems, inflections, parts of speech, and so on. This person will need to agree to spend roughly
two hours judging analysis output with you, three times during the semester. If you cannot find a native
speaker, try to find someone who knows the language (other than yourself). If this is a major difficulty,
discuss alternatives with the instructor. Also, create an open-source project on GitHub where you
will openly develop your project and write your report. Write part 1 of the report. Read Beesley and
Kartunnen (2003), chapters 5 and 6.

There will be a meeting January 21, 3—4 pm (GHC 6501).

By 1/25: Identify and review past work on this language’s morphology. You must choose a language
with a writing system in which tokenization into words will be easy. This includes linguistics papers,
computational modeling papers, and system descriptions. To the greatest extent possible, you will
want to incorporate previous work. Write part 2 of the report.

. By 2/1: Identify existing resources that might be useful in building your analyzer. Open-source lexi-

cons, corpora, and reference grammars are worth looking for. You will need two development corpora
of at least 1,000 words, which you should not directly inspect, and a third corpus of at least 10,000
words. Call these A, B, and C. Write part 3 of your report.

By 2/8: Catalog the attested phenomena in the language, based on your literature search, the resources
you’ve identified, and a meeting with your informant. Don’t forget about spelling rules, since you
need to handle text. Prioritize this list. Write part 4 of your report.

By 2/15: Based on complete set of phenomena you would eventually cover, organize the problem into
modules. For example, you might include a lexicon of open-class stems for each major part of speech,
FSTs for inflections on different parts of speech, spelling rules, and so on. Some modules might be
developed in stages, so identify for each what the first version, second version, and so on will need to
be capable of handling. Prioritize these, based on the phenomena you need to handle. Implement your
first module: a “guesser” that gives a sensible default analysis for any input (and marks it explicitly as
a “guess”). Write part 5 of your report.

2/16-3/1: Based on your prioritized list, first round of development.

"Because we want you to produce a tool that is useful, it is not recommended that you choose a language for which sophisticated
tools are already available. But this is not a hard constraint.



10.
11.

12.

. By 3/8: First round of evaluation. For every word in corpus A, run it through your analyzer. Organize

the output in a way that will make it easier for your informant to give feedback. Come up with a
performance measure appropriate to the language and dataset (probably something like precision and
recall per word form). Write part 6 of your report.

The meeting scheduled for March 7, 9-10 am (GHC 6501) will need to be moved. You’ll hear
from the instructor about this soon.

By 3/15: Write up the lessons you learned and any revisions to the design of your analyzer and
prioritized list (part 7 of your report) .

3/16-3/29: Continue development, based on the revised plan.
By 4/5: Repeat the evaluation, this time with corpus B. Write part 8 of your report.

By 4/6-4/25: Continued development, based on the outcomes of the second evaluation. Ensure that
the model runs on all the words in corpus C. Write up part 9 of your report.

By 4/26: Upload the words and their analyses for inspection by potential users of your tool. Write up
the future work (part 10 of your report), based on the prioritized items you didn’t get to. Turn in your
report and release version 1.0 of your tool.

There will be a meeting 4/26, 4:30-6 pm (GHC 6501).

3 Report

Your report should be written in I&TEX, using the template provided at http://www.cs.cmu.edu/
~nasmith/NLPLab/report-template.tex. The outline for your report is fixed:

1.
2.

10.

Basic information about the language

Past work on morphology for this language
Available resources, including your corpora
Survey of phenomena

Initial design

System analysis on corpus A

Lessons learned and revised design

. System analysis on corpus B

Final revisions

Future work

You must write each portion of the report on schedule and maintain the report in your GitHub repository.



References

Kenneth R. Beesley and Lauri Kartunnen. Finite State Morphology. CSLI Publications, 2003.

Cagr1 Coltekin. A freely available morphological analyzer for turkish. In Proceedings of the Seventh Inter-
national Conference on Language Resources and Evaluation, 2010. URL http://www.lrec—conf.
org/proceedings/lrec2010/pdf/109_Paper.pdf.

Krister Lindén, Erik Axelson, Senka Drobac, Sam Hardwick, Miikka Silfverberg, and Tommi Pirinen.
Using HFST for creating computational linguistic applications. In Adam Przepirkowski, Maciej Pi-
asecki, Krzysztof Jassem, and Piotr Fuglewicz, editors, Computational Linguistics, volume 458 of
Studies in Computational Intelligence, pages 3—25. Springer Berlin / Heidelberg, 2013. URL http:
//dx.doi.org/10.1007/978-3-642-34399-5_1.

Tommi Pirinen. Modularisation of finnish finite-state language description—towards wide collaboration in
open source development of a morphological analyser. In Proceedings of the 18th Nordic Conference
of Computational Linguistics, 2011. URL http://dspace.utlib.ee/dspace/bitstream/
handle/10062/17358/0Pirinen_b58.pdf.

Brian Roark and Richard Sproat. Computational Approaches to Morphology and Syntax. Oxford University
Press, 2007.

Emmanuel Roche and Yves Schabes, editors. Finite-State Language Processing. MIT Press, 1997.



