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Abstract
In this paper, we summarize an approach for the
dissemination of robotics technologies.  In a manner
analogous to the personal computer movement of the early
1980’s, we propose that a productive niche for robotic
technologies is as a long-term creative outlet for human
expression and discovery.  To this end, this paper describes
our ongoing efforts to design, prototype and test a low-cost,
highly competent personal rover for the domestic
environment.

Introduction
Robotics occupies a special place in the arena of
interactive technologies. It combines sophisticated
computation with rich sensory input in a physical
embodiment that can exhibit tangible and expressive
behavior in the physical world.

In this regard, a central question that occupies our
research group pertains to the social niche of robotic
artifacts in the company of the robotically uninitiated
public-at-large: What is an appropriate first role for
intelligent human-robot interaction in the daily human
environment?  The time is ripe to address this question.
Robotic technologies are now sufficiently mature to enable
interactive, competent robot artifacts to be created
[4,10,18,22].

The study of human-robot interaction, while fruitful in
recent years, shows great variation both in the duration of
interaction and the roles played by human and robot
participants.  In cases where the human caregiver provides
short-term, nurturing interaction to a robot, research has
demonstrated the development of effective social
relationships [5,12,21].   Anthropomorphic robot design
can help prime such interaction experiments by providing
immediately comprehensible social cues for the human
subjects [6,17].

In contrast our interest lies in long-term human-robot
relationships, where a transient suspension of disbelief will
prove less relevant than long-term social engagement and
growth.  Existing research in this area is often functional,
producing an interactive robot that serves as an aide or
caregiver [13,16,19].  The CERO figure is of particular
interest due to its evaluation as a robot interface
representative in an office environment over a period of
several months.

Note that such long-term interaction experiments often
revisit the robot morphology design question.
Anthropomorphism can be detrimental, setting up long-
term expectations of human-level intelligence or
perception that cannot be met.  Robots such as eMuu and

Muu2 exemplify the same aesthetic principles of non-
anthropomorphic expressiveness sought by our research
group [3].

Most closely aligned to the present work are those
projects in which the robot’s role is to be a vessel for
exploration and creativity.  Billard’s Robota series of
educational robots provide rich learning experiences in
robot programming [4].  Coppin’s Nomad rover serves as a
telepresence vehicle for the public [8].  Although the
human-robot relationship is secondary, the robot
nonetheless provides displaced perception and exploration,
inspiring users with regard to both robotics and NASA
exploration programs.  Educational robotics kits such as
LEGO Mindstorms [14] also provide inspiration regarding
science and technology.  Such kits provide, in the best
case, an iconic programming interface.  Without depending
upon previous programming experience, this enables a
child to guide the behavior of their robotic creation over
the short term.  Teaching by example and durative
scheduling are aspects of robot expression that are not
addressed by these kits.

Our aim is to develop a comprehensive example of long-
term, social human-robot interaction.  Our functional goal
is to develop a robot that can enter a direct user
relationship without the need for a facilitator (e.g. an
educator) or a specially prepared environment (e.g. a
classroom).

We propose that an appropriate strategy is to develop a
robot functioning within the human domestic environment
that serves as a creative and expressive tool rather than a
productive appliance.  Thus the goal of the Personal Rover
Project is to design a capable robot suitable for children
and adults who are not specialists in mechanical or
electrical engineering. We hypothesize that the right robot
will help forge a community of creative robot enthusiasts
and will harness their inventive potential.  Such a personal
rover is highly configurable by the end user: a physical
artifact with the same degree of programmability as the
early personal computer combined with far richer and more
palpable sensory and effectory capabilities.

The challenge in the case of the personal rover is to
ensure that there will exist viable user experience
trajectories in which the robot becomes a member of the
household rather than a forgotten toy relegated to the
closet.

A User Experience Design study conducted with
Emergent Design, Inc., fed several key constraints into the
rover design process: the robot must have visual perceptual
competence both so that navigation is simple and so that it
can act as a videographer in the home; the rover must have
the locomotory means to travel not only throughout the



inside of a home but also to traverse steps to go outside so
that it may explore the back yard, for example; finally, the
interaction software must enable the non-roboticist to
shape and schedule the activities of the rover over minutes,
hours, days and weeks. In the following sections, we
present corresponding details of the comprehensive design
of the robot mechanics, teaching interface and scheduling
interface.

Rover Mechanics and Control

Rover Hardware
The rover’s size and shape are born from practical
constraints regarding the home environment together with
the goal of emulating the aesthetics of the NASA
exploratory rovers.  Users should be able to easily
manipulate the rover physically.  Also, the rover must be
small enough to navigate cramped spaces and large enough
to traverse outdoor, grassy terrain and curbs.

The fabricated rover’s physical dimensions are
18”x12”x24” (length, width, height).  Four independently
powered tires are joined laterally via a differential.  Each
front wheel is independently steered by a servomotor,
enabling not only conventional Ackerman steering but also
the selection of any center of rotation along the interior
rear axle.  Two omni-wheels behind the main chassis
provide protection against falling backward during step
climbing and also enable a differential-drive motion mode.
The most unusual mechanical feature of the personal rover
is the swinging boom, which is discussed below due to its
critical role for step climbing.

The CMUcam vision system [20] is mounted atop a pan-
tilt head unit at the top end of the swinging boom (Fig. 1).
This vision sensor is the single most important perceptual
input for the personal rover.  Images are sufficient for basic
robot competencies such as obstacle avoidance and
navigation [1,2,11,23,24].  But even more importantly
images are an exciting data collection tool: the personal
rover can act as a video and photo documentary producer.
At the interaction design level, a robot that responds
visually, and does so using fast pan-tilt control,
communicates a compelling level of awareness [5].

 
Figure 1: A CMUcam is mounted in the rover’s head,

where it can pan and tilt.

A Compaq iPAQ on the rover provides 802.11
networking, communicates with the CMUcam, and sends
motion commands to the Cerebellum microcontroller [7].
The iPAQ serves both as a wireless to serial bridge for
networked communication and as a fast sensorimotor
controller that can servo the rover’s pan-tilt mechanism to
physically follow an object being tracked by CMUcam.
The Cerebellum controls the servo motors, reads infrared
(IR) range finders, and provides four PIC-based daughter
boards (one for each wheel) with speed commands.  Based
on quadrature encoders attached to the motors, the
daughter boards use proportional integral derivative (PID)
control to adjust the duty cycle and report current levels to
the Cerebellum as feedback.

Low-level Control
Command packets from the controlling computer to the
rover can specify any combination of the following
commands: speed, turn angle, boom position, camera pan
and tilt angles, and finally all camera commands.  Each
single-threaded communication episode consists of one or
more directives regarding the above degrees of freedom.
The rover responds with a state vector packet containing
rover velocity, encoder counts, wheel duty cycles, IR range
readings, servo positions and boom position.
Encoders.  The controlling computer calculates the rover’s
approximate position and angle by integrating the encoder
values.  Because the turning radius can be inferred from
steering servo positions, only one wheel’s encoder value is
required for the calculations.  With four encoders, the
problem is over constrained, but this redundancy enables
limited error handling and improves accuracy empirically.
Encoder values that are kinematically inconsistent are
discarded, then remaining values are averaged.

Position integration is performed classically, computing
the distance the robot has moved on a circle of fixed
radius. Given r, the positive radius, and α, the angle in
radians the rover has moved around the circle, we can
calculate the new location of the rover with the following
formulas:

x1 = r*[cos(θ0 + α - π/2) + cos(θ0+π/2) + x0]
y1 = r*[sin(θ0 + α - π/2) + sin(θ0+π/2) + y0]
θ1 = θ0+ α.

Motion Control.  Two simple movement functions, GoTo
and TurnTo, use closed-loop control to translate and rotate
the rover to new goal poses.  While the rover is moving, a
global x, y, and theta are continuously updated.  We
implement vision-relative motion control functions using
the CMUcam tracking feedback loop executed on the
iPAQ. The function called “landmark lateral” moves the
rover to a specified offset relative to a visually tracked
landmark, using the pan angle of the camera to keep the
rover moving straight, and using the global coordinate
frame to track the rover’s overall position.  We calculate
the position of the landmark in the global coordinate frame
by using the pan and tilt angles of the camera, together
with the known height of the camera above the ground



(Fig. 2).

Figure 2: The rover uses landmarks to navigate.

Climbing.  One of the biggest engineering challenges in
deploying a personal rover is creating the locomotory
means for a robot to navigate a typical domestic
environment.  Houses have steps and a variety of floor
surfaces.  Most homes have staircases, doorjambs between
interior rooms and steps between rooms and outside
porches.   Although brute force solutions to step climbing
clearly exist (e.g. treaded and very large robots), it is a
daunting task to create a mechanism that is both safe for
the robot and safe for the environment.

Several recent robots have made significant advances in
efficient climbing.  The EPFL Shrimp can climb a range of
terrain types, including regular steps, using six powered
wheels and an innovative passive jointed chassis [9].  The
RHex robot demonstrates highly terrainable legged
locomotion using sophisticated leg position control [15].

For the personal rover we pursued a wheeled design due
to efficiency on flat ground, the anticipated environment
for most rover travels.  In order to surmount large obstacles
such as steps, the rover employs a heavy swinging boom
that contains the main processor, daughter boards, batteries
and CMUcam.  By moving its center of gravity, the rover
can climb up steps many times the diameter of its wheels.
Currently the omni-wheels can be moved to allow the
rover to climb up steps 7 inches tall.

Figure 3 shows several stages in the step climbing
process.  During this process, motor current data is used by
the control program to infer the terrain beneath the rover
(Fig. 4).  With the boom moderately aft, the rover
approaches the step edge while monitoring wheel currents.
When both front wheels have contacted the step edge, the
back wheels are moving forward with full power and the

front wheels are actually applying current in the negative
direction to keep them from moving too quickly, due to the
geometry of this fixed-speed approach.

Next, the rover moves the boom aft, causing the rover to
fall backwards onto the omni-wheels, and detects this
event.  Finally, with the front wheels over the top face of
the step, the rover moves the boom fore, positioning its
center of gravity just behind the front wheels.  Because
there are necessarily no omni-wheels at the front of the
robot, it is in danger of falling forward during the step
climbing procedure, and thus the boom position must be
modulated to maintain maximum pressure on the front
wheels while keeping the center of gravity behind the front
wheels.

Interaction Design
The interaction design process started, as described earlier,
using a user-centered experience design process commonly
used for commercial toy and vehicle development.  A
critical requirement borne from this analysis was that the
non-technological user must be able to shape and schedule
the activities of the rover over hours, days and weeks.
Two basic requirements of such an interface have been
addressed thus far: teaching and scheduling.  First, a
successful interface should facilitate teaching the rover
new types of tasks to perform while maximally building
upon the rover’s prior competencies.  Second, a scheduling
interface should enable the long-term behavior of the rover
to be planned, monitored and changed.

Perception Based Teaching
A successful interface must address the question of how
one can teach the rover to navigate a home environment
reliably.  Given price and complexity constraints, we are
strongly biased toward vision as a multi-use sensor.  As an
incremental step toward passive, vision-based navigation,
we simplify the visual challenge by placing high-saturation
landmarks in static locations throughout the test area.

Our goals in developing a teaching interface for the
rover include:

•  The user environment must be highly intuitive.
•  The language must be expressive enough to navigate a

house.
•  The navigation information must be stable to

perturbations to the physical environment.

     
Figure 3: Four different stages in climbing up a step.
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Figure 4: Back-EMF trajectories during step climb

Definitions.  The basic data structures underlying the
teaching environment are Actions, LandmarkViews,
Landmarks, Locations, and Paths.
Action:  any basic task that the rover can perform.  Actions
include things such as pure dead-reckoning, driving to
landmarks, turning in place, and checking for the presence
of landmarks.  Examples of Actions include:

- ClimbAction:  climb up or down a step
- DriveToAction:  dead-reckon driving
- DriveTowardMarkAction:  drive toward a landmark,

stopping after a set distance
- LookLandmarkAction:  check for the presence of a

landmark
- SendMessageAction:  send the user a message
- StopAtMarkAction:  drive toward a landmark, stopping

at a location relative to the landmark (e.g. two feet to
the left, twelve inches in front, etc.)

- TurnToAction:  turn a set number of degrees
- TurnToMarkAction:  turn until facing a landmark

LandmarkView:  what a landmark looks like; its “view.”
This can be thought of as a landmark “type,” that is, it
contains information about a landmark but not positional
information.  It keeps track of the color, name, and image
of the landmark.
Landmark:  a landmark with positional information.  A
Landmark object contains a LandmarkView object as well
as pan and tilt values for where the rover expects to see this

landmark.
Location:  a location is identified by a set of Landmarks
and a unique name.  A Location also stores the known
paths leading away from that location.  The rover neither
independently determines where it is, nor compares stored
images with what the camera currently sees.  Rather, the
user must initially tell the rover where it is, at which point
it can verify whether it can see the landmarks associated
with that location.  If it cannot see these landmarks, then it
can query the user for assistance.
Path:  a series of Actions, used to get the rover from one
Location to another.  A Path executes linearly; one action
is performed, and if it completes successfully, the next
executes.  Paths actually have a tree structure, so that they
have the capability of having alternate Actions specified.
Thus, for example, a Path from point A to point B might be
“drive to the red landmark, but if for some reason you can’t
see the red landmark, drive to the green one and then turn
ninety degrees.”
User Interface.  While the rover can dead-reckon locally
with a high degree of accuracy, navigation robustness in
the long term depends on the reliable use of visual
landmarks.  Designing the user’s teaching method to be a
wizard-based interface is a promising direction.  The
wizard constrains user control of the rover to the atomic
actions available to the rover itself as an autonomous
agent.  Without the ability to manipulate the rover’s



degrees of freedom directly, the user must view the world
from the robot’s point of view, then identify the
appropriate visual cues and closed-loop controls to effect
the desired motion.  This is critical to overall system
stability because each atomic rover behavior can be
designed to be robust to local perturbations (i.e. rover
translation and rotation).

For example, the teaching interface allows the user to
specify a landmark by outlining a box around the desired
landmark on the displayed camera frame (Fig. 5).  If the
rover is able to track the landmark that the user selected, it
compares the new landmark to all the previously seen and
named LandmarkViews.  If no match is found, the rover
asks the user whether she would like to save this new type
of landmark.  Saved landmarks can then be used offline in
mission design, discussed below.

To begin teaching the rover, the user must first specify
the rover’s current location.  To do this, the user selects
one or more landmarks, so that the rover can identify the
location in the future (Fig. 5).

To teach the rover paths between points in a home, the
user is presented with a wizard-based interface to define
each step of the path.  Each of these steps maps directly to
Actions, and may be something like “drive until you are
directly in front of a landmark,” “climb up a step,” or “turn
ninety degrees.”  Figure 6 depicts the start of path teaching.
The user is presented with an image of what the rover can
see, the wizard for instructing the rover, a box where the

history of the actions performed will be displayed, and
other information relevant to this path.  By progressing
through a series of panels, such as those shown in the
screen shots in Figures 7 through 10, the user can instruct
the rover exactly as necessary.  The full wizard, along with
the Actions that can be produced, is shown in Figure 11.

Figure 5: This screen shot, taken during a trial run, shows
the user selecting a landmark while saving a location.



Figure 6: This screen shot, taken during a trial run, shows the start of path teaching.

 

Figure 7: Driving options Figure 8: Selection of a landmark



Figure 9:  Stopping conditions Figure 10:  Summary

   Figure 11: Flow of ActionPanels in action design wizard. Actions are shown in dark gray, panels which request user input
are shown in light gray, and panels which merely provide information are shown in white.
Mission Design, Scheduling, and Execution
The rover’s daily activities are controlled through the
design and execution of autonomous missions.  Each
mission is a task or experiment that the user has
constructed from a set of individual rover movements and
actions.  Personal rover missions may mimic the
exploratory and scientific missions performed by NASA’s
Mars Rover or may accomplish new goals created by the
user.  For example, the rover could make a map of the
house or chart the growth of a plant.  Missions are fairly
autonomous, with varying degrees of user interaction in the
case of errors or insurmountable obstacles. Mission
scheduling allows the rover to carry out missions without
requiring the user’s presence.

Our goals in developing a user interface for mission
design, scheduling, and execution include:

•  The mission design interface should allow the user to
design and program creative missions by combining
individual actions.  The interface should be intuitive
enough so that the user can begin using it
immediately, but flexible enough so as not to limit the
user’s creativity as they grow familiar with the rover.

•  Mission scheduling should make the user think beyond
the rover’s immediate actions to the rover’s long-term
future over days and even months.

•  Mission execution should offer adjustable degrees of
human-machine interaction and control for mission
reporting and error handling.

•  The software should support communication of the
rover’s status through different means such as email,
PDA, or cell phone.

Mission Development.  To build a mission, the user first
clicks on the Mission Development tab of the user
interface. Here there is a set of blocks grouped by function,



with each block representing a different action that the
rover can perform. Some of the blocks are static, such as
the block used to take a picture. Others can be defined and
changed by the user through the teaching interface. For
example, the block used to follow a path allows the user to
choose any path that they have previously taught the rover.

The user can select a block by clicking on it with the
mouse. While a block is selected, clicking in the Mission

Plan section will place the block and cause a gray shadow
to appear after it. This shadow indicates where the next
block in the mission should be placed. To build a mission,
the user strings together a logical set of blocks (Fig. 12).

As each block is placed, a popup window is displayed.
Here the user can enter the necessary details for the action,
for example, the starting and ending location of a path (Fig.
13).

Figure 12: Screen shot of a user building a mission by placing individual action blocks together.



Figure 13: Screen shots of the popup window that prompts the user to select a starting location and then an appropriate
ending location to create a path.  Ending locations that would create an invalid or unknown path are disabled.

We have currently implemented two different types of
blocks. The first simply represents a single action that can
be followed directly by another action, for example
sending a message (Fig. 14). The second represents a
conditional action, in which different actions can be taken
based on the outcome. For example, when looking for a
landmark, one action can be taken if a landmark is found
and a different action can be taken if the landmark is not
found (Fig. 14).  These blocks can have any number of
conditions.  As well as the true and false conditions shown
in the landmark example, blocks can condition on equality
and inequality.  For example, one could implement a block
for checking if the IR range finder value is less than x,
equal to x, or greater than x.

          
Figure 14: Sending a message is an unconditional

action.  Looking for a landmark is a conditional action
with two different possible outcomes.

It is possible to build a mission that cannot be run by the
rover. For example, the simple mission “follow a path from
A to B then follow a path from C to D” does not make
sense. A red X icon indicates the blocks where there are
errors (Fig. 15). The user can delete the bad blocks, or right
click on a block to display the popup window and edit the
details for that block. Other than mismatched locations,
currently supported errors are invalid paths and invalid
landmark selections.

One planned future improvement in the area of mission
development is to implement two new block types. One
type of block will allow sections of the mission to be
repeated.  The user will be able to choose a number of
times to repeat the section, or to repeat until a certain
condition is met. The other block type will allow the user
to define her own subroutine blocks.  These user-defined
blocks can then be used as functions, allowing a set of
actions to be added to the mission as a group.  The user-
defined blocks will also allow the same set of actions to be
easily added to multiple missions.

Figure 15: A red X icon indicates any blocks with
errors. The mission may not be run or scheduled until the
errors are corrected or removed.
Mission Scheduling and Execution.  After designing a
mission, the user has the option to run the mission
immediately or schedule the mission to run at a later time.
Scheduling the mission allows the user to select a starting



time and date as well as how often and how many times the
mission should be repeated. The user also gives the
mission a unique name. Figure 16 shows the scheduling
wizard.

Before accepting a mission schedule, we check for
conflicts with all of the previously scheduled missions. If
any conflicts are found, we prompt the user to reschedule
the mission, cancel the mission, reschedule the conflicts, or
cancel the conflicts as shown in Figure 17. In the future,
we plan to allow both the precise scheduling currently
implemented and a less rigid scheduling method.  For
example, the user could schedule a mission to run around a

certain time or whenever the rover has free time. For these
more flexible missions, the rover will handle conflict
avoidance without requiring additional user input.

All of the scheduled missions can be viewed by clicking
on the Mission Scheduling tab of the user interface. The
user can select any of the scheduled missions to view the
details of the schedule. The user can also cancel a mission
or edit the schedule. In the future we plan to implement a
graphical view of the rover’s schedule. The Mission
Scheduling panel will include a calendar showing all of the
scheduled missions.

 
Figure 16: When scheduling a mission the user selects the start time and date as well as how often and how many times to

repeat the mission.

Figure 17:  When there is a scheduling conflict, a dialog prompts the user to resolve the conflict.



Conclusions
The personal rover combines mechanical expressiveness
with a simple-to-use interface designed explicitly for a
long-term human-robot relationship.  Currently, three
prototype rovers have been fabricated to prepare for
preliminary user testing.  Both from a mechanical and user
interface point of view, the rover is not yet sufficiently
advanced to accompany a subject home for the month.
Thus, initial user testing of the interface will take place at
Carnegie Mellon University’s campus over the duration of
a day.  Planned rover improvements include making
landmark recognition less dependent on lighting
conditions, increasing feedback and interaction during path
following and mission execution, giving the rover the
ability to ask for and receive help, increasing battery life,
and making step climbing faster.
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