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Cassandra has 170 options
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Jenkins has 186 options
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Kafka’s Broker has 208 options
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Challenging to understand how options 
affect functionality and quality attributes in 
exponentially large configuration spaces
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Performance                     Execution time

Energy consumption       Operational costs
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Developer

User

• Make tradeoff decisions
• Answer what-if questions
• Run system efficiently
• Satisfy their needs and requirements

• Design, implement, and maintain efficient software
• Debug surprising behavior

Configuration space problem

Describe performance in exponentially 
large configuration spaces
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Optimization!

Reduces:

Execution time

Energy consumption

Operational cost— — help?

— — version?
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DeveloperUser

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software
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T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Performance-Influence Models

Sparse linear models

Decision trees/
Random forests

Neural networks

Useful for:
Making predictions
Understanding effect of options
Making tradeoff decisions
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Learning type

Er
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*Equal number 
of samples T = 25

 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Accurate predictions

Understanding and debugging
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Inherently interpretable

Not inherently interpretable
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DeveloperUser

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software
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DeveloperUser

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

System System



Thesis Statement

White-box analysis of how options influence the 
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable 
global and local performance-influence models

(2) guides developers to inspect, understand, and debug 
configuration-related performance behaviors.
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Thesis Statement

White-box analysis of how options influence the 
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable 
global and local performance-influence models

(2) guides developers to inspect, understand, and debug 
configuration-related performance behaviors.
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But why 
white-box?
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Not all options tend to affect the 
performance for all workloads

Few options tend to interact in configurable 
systems

Insights!
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Performance in configurable systems tends 
to change at control-flow statements

Insight!
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Debugging requires analyzing the 
implementation



63

DeveloperUser

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software



64

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1



65

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 Debugging2



66

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 Debugging2



67

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 Debugging2



68

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 Debugging2



69

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 Debugging2



70

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 Debugging2



71

Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software
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White-box Performance Modeling 
of Configurable Systems



    1 def main() {
    2     boolean a = getOpt("Caching"); 
    3     boolean b = getOpt("Interrupt");
    4     boolean c = getOpt("Sequential");
    5     ...
    6     process(a, b);
    7 }
    8 def process(boolean x, boolean y) {
    9     if(x)
   10        convert(y);
   11        ... // execution time: 5 seconds
   12 }
   13 def convert(boolean x) {
   14     if(x)
   15        ... // execution time: 3 seconds
   16     else
   17        ... // execution time: 2 seconds
   18 }
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Our insights!
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Performance-influence models can be built by composing 
models built independently for smaller regions of code
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+
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Tprocess = 5·Caching

Few options tend to interact in smaller 
regions

Insight!
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Compression allow us to simultaneously explore paths in 
multiple independent regions with a few configurations
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Our insights!
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Taint Analysis



    1 def main() {
    2     boolean a = getOpt("Caching"); 
    3     boolean b = getOpt("Interrupt");
    4     boolean c = getOpt("Sequential");
    5     ...
    6     process(a, b);
    7 }
    8 def process(boolean x, boolean y) {
    9     if(x)
   10        convert(y);
   11        ... // execution time: 5 seconds
   12 }
   13 def convert(boolean x) {
   14     if(x)
   15        ... // execution time: 3 seconds
   16     else
   17        ... // execution time: 2 seconds
   18 }
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Sources

Sinks



    1 def main() {
    2     boolean a = getOpt("Caching"); 
    3     boolean b = getOpt("Interrupt");
    4     boolean c = getOpt("Sequential");
    5     ...
    6     process(a, b);
    7 }
    8 def process(boolean x, boolean y) {
    9     if(x)
   10        convert(y);
   11        ... // execution time: 5 seconds
   12 }
   13 def convert(boolean x) {
   14     if(x)
   15        ... // execution time: 3 seconds
   16     else
   17        ... // execution time: 2 seconds
   18 }
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Caching

Caching

Caching

Caching

Propagate taints



    1 def main() {
    2     boolean a = getOpt("Caching"); 
    3     boolean b = getOpt("Interrupt");
    4     boolean c = getOpt("Sequential");
    5     ...
    6     process(a, b);
    7 }
    8 def process(boolean x, boolean y) {
    9     if(x)
   10        convert(y);
   11        ... // execution time: 5 seconds
   12 }
   13 def convert(boolean x) {
   14     if(x)
   15        ... // execution time: 3 seconds
   16     else
   17        ... // execution time: 2 seconds
   18 }
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Caching

Caching

Caching

Caching

Influencing options

Caching



    1 def main() {
    2     boolean a = getOpt("Caching"); 
    3     boolean b = getOpt("Interrupt");
    4     boolean c = getOpt("Sequential");
    5     ...
    6     process(a, b);
    7 }
    8 def process(boolean x, boolean y) {
    9     if(x)
   10        convert(y);
   11        ... // execution time: 5 seconds
   12 }
   13 def convert(boolean x) {
   14     if(x)
   15        ... // execution time: 3 seconds
   16     else
   17        ... // execution time: 2 seconds
   18 }
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Caching

Caching

Caching

Caching Caching Time
TRUE
FALSE

Configurations to measure



    1 def main() {
    2     boolean a = getOpt("Caching"); 
    3     boolean b = getOpt("Interrupt");
    4     boolean c = getOpt("Sequential");
    5     ...
    6     process(a, b);
    7 }
    8 def process(boolean x, boolean y) {
    9     if(x)
   10        convert(y);
   11        ... // execution time: 5 seconds
   12 }
   13 def convert(boolean x) {
   14     if(x)
   15        ... // execution time: 3 seconds
   16     else
   17        ... // execution time: 2 seconds
   18 }
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Caching

Caching

Caching

Caching

Caching
Caching

Caching

Tracking implicit flows



 Analyze Regions

 Measure Performance

 Build Model
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 Taint Analysis

 Compression

 Compositionality



 ConfigCrusher  Comprex

ASEJ’20

Static Taint Analysis 

Regions: Control-flow 
statements

Under submission 

(Iterative) Dynamic Taint Analysis

Regions: Methods
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 ConfigCrusher  Comprex

ASEJ’20

Static Taint Analysis 

Regions: Control-flow 
statements

Under submission 

(Iterative) Dynamic Taint Analysis

Regions: Methods
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Both prototypes efficiently build accurate 
and interpretable models

Dynamic taint analysis scales to larger 
systems

Method-level granularity does not 
sacrifices compression potential



Evaluation
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ConfigCrusher

ASEJ’20

Comprex

Under submission

Evaluate cost, accuracy, interpretability

32 combinations of sampling and machine learning approaches

13 open-source Java systems



Subject systems
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System # SLOC # Options # Configurations
Pngtastic Counter 1250 5 32
Pngtastic Optimizer 2553 5 32
Elevator 575 6 20
Grep 2152 7 128
Kanzi 20K 7 128
Email 696 9 40
Prevayler 1328 9 512
Sort 2163 12 4096
H2 142K 16 65K
Berkeley DB 164K 16 65K
Apache Lucene 396K 17 131K
Density Converter 49K 22 4.9M



Density Converter
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Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

# Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations
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Density Converter
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Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

# Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations
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Inherently interpretable

Not inherently interpretable

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption



Density Converter
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Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

# Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficient and accurate predictions

Understanding and debugging



Density Converter
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Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

# Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficiently build accurate performance-
influence models



Density Converter
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Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

# Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficiently build accurate performance-
influence models

Models are interpretable and can be 
mapped to regions



Density Converter
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Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

# Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations
Proposed Work

Analyze all subject systems with both prototypes

Compare both prototypes to all state of the art approaches



White-box Performance Modeling 
of Configurable Systems



Thesis Statement

White-box analysis of how options influence the 
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable 
global and local performance-influence models

(2) guides developers to inspect, understand, and debug 
configuration-related performance behaviors.
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System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption
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System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption
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DeveloperUser

Modeling
Global

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1

Local
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Developer
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 + 3·Logging
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Global

Understand how options affect performance
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DeveloperUser

Modeling
Global

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1

Local

But
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System

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption
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 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption
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System

Developer



White-box Performance Debugging 
in Configurable Systems



System
136

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption
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Recall Compositionality

Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence Model

Local performance-influence models explain how options and 
their interactions affect the performance of regions

System



Exploratory Study of 
Local Performance-Influence Models

Goal: 
Investigate the usefulness of local performance-influence 
models 
Understand how options affect the performance of a system in 
the implementation
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Exploratory Study of 
Local Performance-Influence Models

Goal: 
Investigate the usefulness of local performance-influence 
models 
Understand how options affect the performance of a system in 
the implementation
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Symptoms vs causes
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    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

Symptom Causes

Tprocess = 2 + 1·Caching
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    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

Symptom Causes

Tprocess = 2 + 1·Caching

Local performance-influence models useful 
for locating performance changes

Still need addtional information and help



Design Tool Support

Goal: Design and develop debugging tool support
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Two-Part Exploratory Study

Research Question: What is the process and information needs 
when debugging the performance of configurable systems?
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Begin debugging 
performance

Debug Performance 
of Hotspot Regions

Study 1.1

Goal: Are global and local 
performance-influence models 
helpful?

Study 1.2

Later in the debugging process

Identified options and locations 
of interest

Goal: Guide design of new tool 
support

144
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Conducted studies with 14 researchers/developers working 
in academia

Expect to conduct studies with 5 developers working in 
industry
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Conducted studies with 14 researchers/developers working 
in academia

Expect to conduct studies with 5 developers working in 
industry

1. Which options affect performance the 
most?
Hypothesis: Global performance-influence models

Preliminary Results - Study 1.1 - Process

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption
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Conducted studies with 14 researchers/developers working 
in academia

Expect to conduct studies with 5 developers working in 
industry

2. Where do options affect performance 
the most?

Preliminary Results - Study 1.1 - Process

Tmain = 2

Hypothesis: Local performance-influence models

Tconvert = 7·Compression·Encryption

Tprocess = 2·Compression·Encryption



    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

Preliminary Results - Study 1.2 - Information needs

148

Compare performance profilesTrace options



    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

Preliminary Results - Study 1.2 - Information needs
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Compare performance profilesTrace options
Proposed Work

Conduct studies with 5 developers working in industry

Quantitatively and qualitatively analyze process and information 
needs



Design Tool Support

Goal: Design and develop debugging tool support
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Examples of Tool Support
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Compare performance profiles
    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

Trace options



Examples of Tool support
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Compare performance profiles
    1 def main() {
    2       boolean a = getOpt(“Caching"); 
    3       boolean z;
    4       if(a)
    5          z = true;
    6       else
    7          z = false;
    8       process(z)
    9 }
   10 def process(boolean x) {
   11       if(x)
   12          ... // 3 seconds
   13       else
   14          ... // 2 seconds 
   15 }

Trace options
Proposed Work

Guided by our studies, design and develop tool support that 
provides relevant information for debugging



Validation Study

Study 2

Research Questions: To what extend are
(1) Global performance-influence models
(2) Local performance-influence models
(3) Additional tool support

useful to debug the performance of configurable systems?
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Expect to conduct studies with 10 researchers/developers 
working in academia

No control group: Participants cannot debug without tool 
support (Study 1.1 and Study 1.2)
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Expect to conduct studies with 10 researchers/developers 
working in academia

No control group: Participants cannot debug without tool 
support (Study 1.1 and Study 1.2)

Proposed Work

Conduct studies with 10 researchers/developers working in 
academia



Optional Validation Study in the Field

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports 
and real systems
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Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports 
and real systems

Optional Validation Study in the FieldOption 1: Deploy tools in the field

Option 2: Collaborate with developers

Option 3: Case studies  
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Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports 
and real systems

Optional Validation Study in the FieldOption 1: Deploy tools in the field

Option 2: Collaborate with developers

Option 3: Case studies  



Optional Validation Study in the Field

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports 
and real systems

160



White-box Performance Debugging 
in Configurable Systems



Thesis Statement

White-box analysis of how options influence the 
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable 
global and local performance-influence models

(2) guides developers to inspect, understand, and debug 
configuration-related performance behaviors.
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 System

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Tcompress = 5·Indexing

Tprocess = 9·Compression·Encryption
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Debugging

Developer

Modeling
Global Local

Understand how options affect performance

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 2
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Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 2
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Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 2

Research 
Plan
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Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 2•Polish Comprex
•Compare all approaches
•Analyze all subject systems
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Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff 
decisions

•Run systems efficiently

•Debug surprising 
behavior

•Develop and maintain 
efficient software

1 2•Polish Comprex
•Compare all approaches
•Analyze all subject systems •Finish Studies 1.1 and 1.2

•Analyze Studies
•Implement new tool support
•Study 2
•Optional Study 3
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White-box Analysis for Modeling and 
Debugging the Performance of 

Configurable Systems



Extra slides
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Sparse Linear Models
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Apache Lucene H2 Berkeley DB Density Converter

Terms 27 33 77 47

Regions 24 5 17 9



Debugging

Modeling
Polish Comprex writing

Thesis writing and defense 2 months

11 months

Writing

2 months

6 months

2 months

1 month

2 weeks

2 weeksCompare prototypes with all approaches

Analyze all subject systems with both prototypes

Study 1.1 and Study 1.2 (Exploration)

Design and implement new tool support

Study 2 (Validation)

Optional Study 3 (Validation in the field) 2 months

2 weeks

1.5 months
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Implicit flows

173



Region Analysis
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Preliminary Results - Study 1.1 - Process

175

Start 
debugging

Read options’
documentation

Profile 
system

Measure 
end-to-end

Code
inspection


