
White-box Analysis for Modeling
and Debugging the Performance

of Configurable Systems
Thesis Proposal

Miguel Velez

2

Most software is
configurable

3

Indexing Encryption Compression Logging

Core functionality

Configurable System

Design decisions affect functionality and quality
attributes

4

Different Users Have Different Needs

5

Indexing Encryption Compression Logging

Core functionality

Configurable System

Configuration: Configuration: Configuration:

6

Indexing Encryption Compression Logging

Core functionality

Configurable System

Developers Implement a Single System

7

Indexing Encryption Compression Logging

Core functionality

Configurable System

Developers Implement a Single System

But

8

Cassandra has 170 options

9

Jenkins has 186 options

10

Kafka’s Broker has 208 options

11

12

Challenging to understand how options
affect functionality and quality attributes in
exponentially large configuration spaces

13

14

15

Performance Execution time

Energy consumption Operational costs

16

Developer

User

• Make tradeoff decisions
• Answer what-if questions
• Run system efficiently
• Satisfy their needs and requirements

• Design, implement, and maintain efficient software
• Debug surprising performance behavior

17

Developer

User

• Make tradeoff decisions
• Answer what-if questions
• Run system efficiently
• Satisfy their needs and requirements

• Design, implement, and maintain efficient software
• Debug surprising behavior

Configuration space problem

Describe performance in exponentially
large configuration spaces

18

Optimization!

19

Optimization!

Reduces:

Execution time

Energy consumption

Operational cost

20

Optimization!

Reduces:

Execution time

Energy consumption

Operational cost— — help?

— — version?

21

DeveloperUser

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

22

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 25

TRUE FALSE FALSE TRUE … 34

TRUE FALSE TRUE FALSE … 28

TRUE FALSE TRUE TRUE … 37

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 29

TRUE TRUE TRUE FALSE … 23

TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

Brute-force Approach

23

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 25

TRUE FALSE FALSE TRUE … 34

TRUE FALSE TRUE FALSE … 28

TRUE FALSE TRUE TRUE … 37

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 29

TRUE TRUE TRUE FALSE … 23

TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

Brute-force Approach

Exponentially large configuration spaces

24

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Performance-Influence Models

Sparse linear models

Decision trees/
Random forests

Neural networks

25

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Performance-Influence Models

Sparse linear models

Decision trees/
Random forests

Neural networks

Useful for:
Making predictions
Understanding effect of options
Making tradeoff decisions

26

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

23 seconds

28 seconds

20 seconds

27
Developer

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

23 seconds

28 seconds

20 seconds

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

25 seconds

34 seconds

20 seconds

28

System

Black-box Approaches

29

System

Black-box Approaches

c1
c3
c12
c25

Select

30

System

Black-box Approaches

t1
t3
t12
t25

c1
c3
c12
c25

MeasureSelect

31

System

Black-box Approaches

t1
t3
t12
t25

c1
c3
c12
c25

Measure LearnSelect

32

System

Black-box Approaches

T = …

t1
t3
t12
t25

c1
c3
c12
c25

Measure LearnSelect

33

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 20

TRUE FALSE FALSE TRUE … 23

TRUE FALSE TRUE FALSE … 20

TRUE FALSE TRUE TRUE … 23

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 23

TRUE TRUE TRUE FALSE … 29

TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

34

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 20

TRUE FALSE FALSE TRUE … 23

TRUE FALSE TRUE FALSE … 20

TRUE FALSE TRUE TRUE … 23

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 23

TRUE TRUE TRUE FALSE … 29
TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

35

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 20

TRUE FALSE FALSE TRUE … 23

TRUE FALSE TRUE FALSE … 20

TRUE FALSE TRUE TRUE … 23

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 23

TRUE TRUE TRUE FALSE … 29
TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

Might explore irrelevant interactions

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

36

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 20

TRUE FALSE FALSE TRUE … 23

TRUE FALSE TRUE FALSE … 20

TRUE FALSE TRUE TRUE … 23

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 23

TRUE TRUE TRUE FALSE … 29
TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

37

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 20

TRUE FALSE FALSE TRUE … 23

TRUE FALSE TRUE FALSE … 20

TRUE FALSE TRUE TRUE … 23

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 23

TRUE TRUE TRUE FALSE … 29
TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

Might miss relevant performance
interactions

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

38

Indexing Encryption Compression Logging … Time

TRUE FALSE FALSE FALSE … 20

TRUE FALSE FALSE TRUE … 23

TRUE FALSE TRUE FALSE … 20

TRUE FALSE TRUE TRUE … 23

TRUE TRUE FALSE FALSE … 20

TRUE TRUE FALSE TRUE … 23

TRUE TRUE TRUE FALSE … 29
TRUE TRUE TRUE TRUE … 32

FALSE FALSE FALSE FALSE … 25

… … … … … …

39

Learning type

Er
ro

r

*Equal number
of samples

X
X

X
XTradeoff between learning algorithm and

accuracy

40

Learning type

Er
ro

r

*Equal number
of samples

X
X

X
X

41

Learning type

Er
ro

r

*Equal number
of samples T = 25

 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

42

Learning type

Er
ro

r

*Equal number
of samples T = 25

 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Accurate predictions

43

Learning type

Er
ro

r

*Equal number
of samples T = 25

 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Accurate predictions

Understanding and debugging

44

Inherently interpretable

Not inherently interpretable

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

45

T = 25
 + 3 · Logging
 - 5 · Caching · Interrupt
 + 9 · Sequential

DeveloperUser

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

46

System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

47

System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

48

System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Make trade off decisions

Performance Execution time

Energy consumption Operational costs

49

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

50

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·EncryptionBut

51

System

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

52

System

Developer

53

System

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

54

DeveloperUser

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

System System

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

55

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

56

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

57

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

58

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

59

But why
white-box?

60

Not all options tend to affect the
performance for all workloads

Few options tend to interact in configurable
systems

Insights!

61

Performance in configurable systems tends
to change at control-flow statements

Insight!

62

Debugging requires analyzing the
implementation

63

DeveloperUser

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

64

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1

65

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 Debugging2

66

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 Debugging2

67

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 Debugging2

68

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 Debugging2

69

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 Debugging2

70

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 Debugging2

71

Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 2

White-box Performance Modeling
of Configurable Systems

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

73

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Load options

74

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Propagate options

75

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Use options

76

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

77

Compositionality Compression

Our insights!

Compositionality

Performance-influence models can be built by composing
models built independently for smaller regions of code

79

System Performance-Influence Model

Local Performance-Influence ModelRegion Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelRegionRegionRegion

Measure System

Decompose

Measure Regions

Compose

Compositionality

80

Performance-Influence Model

Local Performance-Influence ModelRegion Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelRegionRegionRegion

Measure System

Decompose

Measure Regions

Compose

Performance-influence models can be built by composing
models built independently for smaller regions of code

System

Compositionality

81

Performance-Influence Model

Local Performance-Influence ModelRegion Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelRegionRegionRegion

Measure System

Decompose

Measure Regions

Compose

Performance-influence models can be built by composing
models built independently for smaller regions of code

System

Compositionality

82

Performance-Influence Model

Local Performance-Influence ModelRegion Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelRegionRegionRegion

Measure System

Decompose

Measure Regions

Compose

Performance-influence models can be built by composing
models built independently for smaller regions of code

System

Compositionality

83

Performance-Influence Model

Local Performance-Influence ModelRegion Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelRegionRegionRegion

Measure System

Decompose

Measure Regions

Compose

Performance-influence models can be built by composing
models built independently for smaller regions of code

System

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

84

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

85

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Caching Time
TRUE
FALSE

86

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

87

Caching Time
TRUE 5
FALSE

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

88

Caching Time
TRUE 5
FALSE 0

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Tprocess = 5·Caching

89

Caching Time
TRUE 5
FALSE 0

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

90

Tprocess = 5·Caching

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Caching Interrupt Time
TRUE TRUE 3
TRUE FALSE 2

Tconvert = 2·Caching
+ 1·Caching·Interrupt

91

Tprocess = 5·Caching

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

92

Tconvert = 2·Caching
+ 1·Caching·Interrupt

Tprocess = 5·Caching

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Compositionality

93

+
Tconvert = 2·Caching
+ 1·Caching·Interrupt

Tprocess = 5·Caching

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Compositionality

T = 7·Caching + 1·Caching·Interrupt 94

+
Tconvert = 2·Caching
+ 1·Caching·Interrupt

Tprocess = 5·Caching

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x) // region depends on Caching
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x) // region depends on Interrupt
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

Compositionality

T = 7·Caching + 1·Caching·Interrupt 95

+
Tconvert = 2·Caching
+ 1·Caching·Interrupt

Tprocess = 5·Caching

Few options tend to interact in smaller
regions

Insight!

Compositionality Compression

Our insights!

Compression

Compression allow us to simultaneously explore paths in
multiple independent regions with a few configurations

97

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 if(a) // variable depends on Caching
 7 ... // execution time: 1 second

 8 if(b) // variable depends on Interrupt
 9 ... // execution time: 2 seconds

 10 if(c) // variable depends on Sequential
 11 ... // execution time: 3 seconds
 12 }

98

Caching Interrupt Sequential
FALSE FALSE FALSE
TRUE FALSE FALSE
TRUE TRUE FALSE

Compression

Caching Time
TRUE
FALSE

Interrupt Time
TRUE
FALSE

Sequential Time
TRUE
FALSE

99

Compression Caching Interrupt Sequential
FALSE FALSE FALSE
TRUE FALSE FALSE
TRUE TRUE FALSE

Caching Time
TRUE
FALSE 0

Interrupt Time
TRUE
FALSE 0

Sequential Time
TRUE
FALSE 0

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 if(a) // variable depends on Caching
 7 ... // execution time: 1 second

 8 if(b) // variable depends on Interrupt
 9 ... // execution time: 2 seconds

 10 if(c) // variable depends on Sequential
 11 ... // execution time: 3 seconds
 12 }

100

Compression Caching Interrupt Sequential
FALSE FALSE FALSE
TRUE TRUE TRUE
TRUE TRUE FALSE

Caching Time
TRUE 1
FALSE 0

Interrupt Time
TRUE 2
FALSE 0

Sequential Time
TRUE 3
FALSE 0

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 if(a) // variable depends on Caching
 7 ... // execution time: 1 second

 8 if(b) // variable depends on Interrupt
 9 ... // execution time: 2 seconds

 10 if(c) // variable depends on Sequential
 11 ... // execution time: 3 seconds
 12 }

101

Compression Caching Interrupt Sequential
FALSE FALSE FALSE
TRUE TRUE TRUE
TRUE TRUE FALSE

Caching Time
TRUE 1
FALSE 0

Interrupt Time
TRUE 2
FALSE 0

Sequential Time
TRUE 3
FALSE 0

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 if(a) // variable depends on Caching
 7 ... // execution time: 1 second

 8 if(b) // variable depends on Interrupt
 9 ... // execution time: 2 seconds

 10 if(c) // variable depends on Sequential
 11 ... // execution time: 3 seconds
 12 }

Few different options tend to interact in
different regions

Insight!

Compositionality Compression

Our insights!

102

Taint Analysis

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

104

Sources

Sinks

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

105

Caching

Caching

Caching

Caching

Propagate taints

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

106

Caching

Caching

Caching

Caching

Influencing options

Caching

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

107

Caching

Caching

Caching

Caching Caching Time
TRUE
FALSE

Configurations to measure

 1 def main() {
 2 boolean a = getOpt("Caching");
 3 boolean b = getOpt("Interrupt");
 4 boolean c = getOpt("Sequential");
 5 ...
 6 process(a, b);
 7 }
 8 def process(boolean x, boolean y) {
 9 if(x)
 10 convert(y);
 11 ... // execution time: 5 seconds
 12 }
 13 def convert(boolean x) {
 14 if(x)
 15 ... // execution time: 3 seconds
 16 else
 17 ... // execution time: 2 seconds
 18 }

108

Caching

Caching

Caching

Caching

Caching
Caching

Caching

Tracking implicit flows

 Analyze Regions

 Measure Performance

 Build Model

109

 Taint Analysis

 Compression

 Compositionality

 ConfigCrusher Comprex

ASEJ’20

Static Taint Analysis

Regions: Control-flow
statements

Under submission

(Iterative) Dynamic Taint Analysis

Regions: Methods

110

 ConfigCrusher Comprex

ASEJ’20

Static Taint Analysis

Regions: Control-flow
statements

Under submission

(Iterative) Dynamic Taint Analysis

Regions: Methods

111

Both prototypes efficiently build accurate
and interpretable models

Dynamic taint analysis scales to larger
systems

Method-level granularity does not
sacrifices compression potential

Evaluation

112

ConfigCrusher

ASEJ’20

Comprex

Under submission

Evaluate cost, accuracy, interpretability

32 combinations of sampling and machine learning approaches

13 open-source Java systems

Subject systems

113

System # SLOC # Options # Configurations
Pngtastic Counter 1250 5 32
Pngtastic Optimizer 2553 5 32
Elevator 575 6 20
Grep 2152 7 128
Kanzi 20K 7 128
Email 696 9 40
Prevayler 1328 9 512
Sort 2163 12 4096
H2 142K 16 65K
Berkeley DB 164K 16 65K
Apache Lucene 396K 17 131K
Density Converter 49K 22 4.9M

Density Converter

114

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations

Density Converter

115

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations

Density Converter

116

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations

Density Converter

117

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations

Density Converter

118

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficient and accurate predictions

Density Converter

119

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations

120

Inherently interpretable

Not inherently interpretable

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Density Converter

121

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficient and accurate predictions

Understanding and debugging

Density Converter

122

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficiently build accurate performance-
influence models

Density Converter

123

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurationsEfficiently build accurate performance-
influence models

Models are interpretable and can be
mapped to regions

Density Converter

124

Metric 200 Random & Stepwise
 Linear Regression

200 Random & 
Random Forest Comprex

Configurations 200 200 88

Measuring time 40.4 minutes 40.4 minutes 16.6 minutes

Learning/Analysis Time 1.6 minutes 0.2 seconds 8.5 minutes

MAPE (lower is better) 434.5 5.5 9.4

Interpretability Easy Difficult Easy

22 options, 4.9 million configurations
Proposed Work

Analyze all subject systems with both prototypes

Compare both prototypes to all state of the art approaches

White-box Performance Modeling
of Configurable Systems

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

126

127

System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

128

System

User

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

129

DeveloperUser

Modeling
Global

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1

Local

130

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

131

DeveloperUser

Modeling
Global

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1

Local

132

DeveloperUser

Modeling
Global

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1

Local

But

133

System

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

134

System

Developer

White-box Performance Debugging
in Configurable Systems

System
136

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

137

Recall Compositionality

Local Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence ModelLocal Performance-Influence Model

Local performance-influence models explain how options and
their interactions affect the performance of regions

System

Exploratory Study of
Local Performance-Influence Models

Goal:
Investigate the usefulness of local performance-influence
models
Understand how options affect the performance of a system in
the implementation

138

Exploratory Study of
Local Performance-Influence Models

Goal:
Investigate the usefulness of local performance-influence
models
Understand how options affect the performance of a system in
the implementation

139

Symptoms vs causes

140

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

Symptom Causes

Tprocess = 2 + 1·Caching

141

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

Symptom Causes

Tprocess = 2 + 1·Caching

Local performance-influence models useful
for locating performance changes

Still need addtional information and help

Design Tool Support

Goal: Design and develop debugging tool support

142

Two-Part Exploratory Study

Research Question: What is the process and information needs
when debugging the performance of configurable systems?

143

Begin debugging
performance

Debug Performance
of Hotspot Regions

Study 1.1

Goal: Are global and local
performance-influence models
helpful?

Study 1.2

Later in the debugging process

Identified options and locations
of interest

Goal: Guide design of new tool
support

144

145

Conducted studies with 14 researchers/developers working
in academia

Expect to conduct studies with 5 developers working in
industry

146

Conducted studies with 14 researchers/developers working
in academia

Expect to conduct studies with 5 developers working in
industry

1. Which options affect performance the
most?
Hypothesis: Global performance-influence models

Preliminary Results - Study 1.1 - Process

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

147

Conducted studies with 14 researchers/developers working
in academia

Expect to conduct studies with 5 developers working in
industry

2. Where do options affect performance
the most?

Preliminary Results - Study 1.1 - Process

Tmain = 2

Hypothesis: Local performance-influence models

Tconvert = 7·Compression·Encryption

Tprocess = 2·Compression·Encryption

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

Preliminary Results - Study 1.2 - Information needs

148

Compare performance profilesTrace options

 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

Preliminary Results - Study 1.2 - Information needs

149

Compare performance profilesTrace options
Proposed Work

Conduct studies with 5 developers working in industry

Quantitatively and qualitatively analyze process and information
needs

Design Tool Support

Goal: Design and develop debugging tool support

150

Examples of Tool Support

151

Compare performance profiles
 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

Trace options

Examples of Tool support

152

Compare performance profiles
 1 def main() {
 2 boolean a = getOpt(“Caching");
 3 boolean z;
 4 if(a)
 5 z = true;
 6 else
 7 z = false;
 8 process(z)
 9 }
 10 def process(boolean x) {
 11 if(x)
 12 ... // 3 seconds
 13 else
 14 ... // 2 seconds
 15 }

Trace options
Proposed Work

Guided by our studies, design and develop tool support that
provides relevant information for debugging

Validation Study

Study 2

Research Questions: To what extend are
(1) Global performance-influence models
(2) Local performance-influence models
(3) Additional tool support

useful to debug the performance of configurable systems?

154

Expect to conduct studies with 10 researchers/developers
working in academia

No control group: Participants cannot debug without tool
support (Study 1.1 and Study 1.2)

155

Expect to conduct studies with 10 researchers/developers
working in academia

No control group: Participants cannot debug without tool
support (Study 1.1 and Study 1.2)

Proposed Work

Conduct studies with 10 researchers/developers working in
academia

Optional Validation Study in the Field

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports
and real systems

156

157

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports
and real systems

Optional Validation Study in the FieldOption 1: Deploy tools in the field

Option 2: Collaborate with developers

Option 3: Case studies

158

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports
and real systems

Optional Validation Study in the FieldOption 1: Deploy tools in the field

Option 2: Collaborate with developers

Option 3: Case studies

159

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports
and real systems

Optional Validation Study in the FieldOption 1: Deploy tools in the field

Option 2: Collaborate with developers

Option 3: Case studies

Optional Validation Study in the Field

Optional Study 3

Goal: Validate the usefulness of our tools in real bug reports
and real systems

160

White-box Performance Debugging
in Configurable Systems

Thesis Statement

White-box analysis of how options influence the
performance of code-level structures in configurable systems:

(1) helps to efficiently build accurate and interpretable
global and local performance-influence models

(2) guides developers to inspect, understand, and debug
configuration-related performance behaviors.

162

163

 System

Developer

T = 25
 + 3·Logging
 - 5·Indexing
 + 9·Compression·Encryption

Tcompress = 5·Indexing

Tprocess = 9·Compression·Encryption

164

Debugging

Developer

Modeling
Global Local

Understand how options affect performance

•Debug surprising
behavior

•Develop and maintain
efficient software

1 2

165

Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 2

166

Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 2

Research
Plan

167

Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 2•Polish Comprex
•Compare all approaches
•Analyze all subject systems

168

Debugging

DeveloperUser

Modeling
Global Local

Understand how options affect performance

•Make informed tradeoff
decisions

•Run systems efficiently

•Debug surprising
behavior

•Develop and maintain
efficient software

1 2•Polish Comprex
•Compare all approaches
•Analyze all subject systems •Finish Studies 1.1 and 1.2

•Analyze Studies
•Implement new tool support
•Study 2
•Optional Study 3

169

White-box Analysis for Modeling and
Debugging the Performance of

Configurable Systems

Extra slides

170

Sparse Linear Models

171

Apache Lucene H2 Berkeley DB Density Converter

Terms 27 33 77 47

Regions 24 5 17 9

Debugging

Modeling
Polish Comprex writing

Thesis writing and defense 2 months

11 months

Writing

2 months

6 months

2 months

1 month

2 weeks

2 weeksCompare prototypes with all approaches

Analyze all subject systems with both prototypes

Study 1.1 and Study 1.2 (Exploration)

Design and implement new tool support

Study 2 (Validation)

Optional Study 3 (Validation in the field) 2 months

2 weeks

1.5 months

172

Implicit flows

173

Region Analysis

174

Preliminary Results - Study 1.1 - Process

175

Start
debugging

Read options’
documentation

Profile
system

Measure
end-to-end

Code
inspection

