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Abstract

Most software systems today are configurable. The flexibility to customize these systems,
however, comes with the cost of increased complexity. The large number of configuration
options makes tracking how options and their interactions affect performance, in terms of
execution time, and often directly correlated energy consumption and operational costs, a
difficult task. For this reason, users often struggle to configure their systems to run them
efficiently and developers often have difficulty debugging surprising performance behaviors.

Several approaches existing to understand how options and their interactions affect the
performance of configurable systems. The approaches, however, treat systems as black-boxes,
combining different sampling and machine learning techniques, resulting in tradeoffs between
measurement effort, accuracy, and interpretability of the analysis results. Additionally, the
techniques only analyze the end-to-end performance of the systems, whereas developers de-
bugging unexpected performance behaviors usually need to understand how options affect
the performance in the implementation.

In this thesis, we aim to analyze the performance of configurable systems using white-
box techniques. By analyzing the implementation of configurable systems, we efficiently and
accurately model the end-to-end performance of the systems, which allows users to make
informed tradeoff and configuration decisions to run systems efficiently and helps developers
understand how options affect the performance of their systems.

To further help developers debug the performance of their systems in the implementation,
we efficiently an accurately model the local performance of regions and aid developers to
trace how options affect the performance of those regions. This information helps developers
locate where options affect the performance of a system and how options are used in the
implementation to affect the performance.

The contributions in this thesis help reduce the energy consumption and operational costs
of running configurable systems by helping (1) users to make informed configurations deci-
sions and (2) developers to debug performance behavior issues in their systems.
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Chapter 1

Introduction

Most of today’s software systems, such as databases, Web servers, libraries, frameworks, and
compilers, provide configuration options to customize the behavior of a system to satisfy a
large variety of users’ requirements [Apel et al., 2013]. Configuration options allow a system
to be configured satisfy specific needs, in terms of functionality and quality attributes.

The flexibility provided by configuration options, however, comes at a cost. The large
number of configuration options makes tracking how options and their interactions influence
the functionality and quality attributes of systems a difficult task. For this reason, users are
often overwhelmed with the large number of options and change options in a trial-and-error
fashion without understanding the resulting effects [Apel et al., 2013; Hubaux et al., 2012; Xu
etal., 2015, 2013]. Likewise, a large number of options complicates the process that developers
follow to develop, test, and maintain large configuration spaces [Behrang et al., 2015; Halin
et al., 2018; Jin et al., 2014; Melo et al., 2016, 2017].

Performance, in terms of execution time, and often directly correlated energy consumption
and operational costs, is one of the most important quality attributes for users and developers
of configurable systems [Gelenbe and Caseau, 2015; Manotas et al., 2016; Pinto and Castor,
2017]. From the user’s perspective, they want to efficiently run systems to reduce energy
consumption and operational costs, but at the same time, with the functionality that satisfies
their specific needs, which may require making tradeoff decisions between operational costs
and functionality [Jabbarvand et al., 2015; Kern et al., 2011; Munoz, 2017; Wilke et al., 2013;
Zhang et al., 2014]. From the developer’s perspective, they want to release efficient config-
urable systems to provide high quality user experience for attracting new and retaining exist-
ing users [Chowdhury and Hindle, 2016; Gui et al., 2016; Hasan et al., 2016; Li et al., 2016; Malik
et al.,, 2015; Pereira et al., 2016]. However understanding how options and their interactions
affect the performance of these systems, for users to make informed configuration decisions
and for developers to design, implement, and maintain efficient software, is challenging due
to their large configuration spaces.

In this thesis, we seek to help users and developers understand the impact that options
have on the performance of configurable systems to empower users to make conscious con-
figuration decisions to run systems efficiently, in terms of performance, and aid developers in
the process of debugging the performance of configurable systems.

1
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1.1 Motivating Scenario

We next describe a scenario to showcase the challenge that users and developers face to under-
stand how options and their interactions affect the performance in large configuration spaces.

Berkeley DB is an open source embedded database library with over 50 options that affect
the functionality of the database, its components, and the quality attributes of the system,
including performance.' Fig. 1.1 shows a ranking of 2000 randomly selected configurations,
in terms of execution time, from the fastest to the slowest configurations when populating
a database with 500, 000 entries. In this system, the options not only drastically change the
execution time from the fastest to the slowest configurations, but they also produce complex
performance behavior (i.e., numerous steps in the figure) that hinders users and developers
from easily understanding how options affect the performance of the system.

BerkeleyDB__—_

Configurations where
| Larger cache is enabled

N
(&)

N
o

Default

Configurations where
Temporary is enabled

Performance (s)
o o

| Fastest

96

Configurations

Figure 1.1: Ranked performance behavior, from fastest to slowest execution time, of 2000 randomly
selected Berkeley DB configurations when populating a database with 500, 000 entries. Note the influ-
ence on the execution time of the interactions between Temporary and Larger cache. Enabling both
options decreases the execution time compared to the default configuration, while only enabling the
former increases the execution time.

User’s perspective

Users of Berkeley DB typically want to efficiently run the system for their specific needs, but
are often unaware of how options affect the functionality and performance of the system due
to the large and complex performance behavior of the configuration space. For instance, users
who want to populate a database could enable both Temporary and Large cache to reduce the
execution time if their requirements allow for an in-memory database and their environment
has large enough memory. However, identifying those configuration decisions and eftects

https://www.oracle.com/database/technologies/related/berkeleydb.html
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on the performance of the system is challenging in large configuration spaces with complex
performance behavior (e.g., 2° configurations if only considering two values for each option).
For these reasons, users often resort to using the default configuration, resulting in executing
their systems inefficiently and increase energy consumption and operational costs.

Users concerned with minimizing performance, energy consumption, and operational costs
could use a search strategy to optimize the performance of the system [Nair et al., 2017; Oh
et al., 2017]. However, such strategies only aim to find the fastest configurations and do not
take into account the functionality that users need.

Ideally, users would understand how options and their interactions affect the performance
of the system to make informed tradeoff and configuration decisions to run the system effi-
ciently for their specific needs, while reducing energy consumption and operational costs.

Developer’s perspective

When developers of Berkeley DB observe a surprising non-crashing performance behavior, for
the same inputs, workloads, environment, but different configurations, they are often unaware
which and how options interact to produce the observed performance behavior [Han and Yu,
2016; Nistor et al., 2013a]. For example, the slowest configuration in Fig. 1.1 might appear
to be performing unexpectedly, as the option Temporary is enabled, which should decrease
the execution time as indicated in the documentation. To debug this surprising performance
behavior, developers could compare the configuration changes with the default. However, the
changes differ in several options in addition to Temporary, requiring developers identify how
the changed options interact with each other, and with the options with default values, to
produce the unexpected performance behavior. Additionally, when developers narrow down
the options that are potentially producing the unexpected behavior, they need to debug the
implementation to understand where and how options are being used and interacting with
other options to produce the unexpected behavior. In this example, a developer would need
to identify in the implementation that a temporary database can page to disk if the cache is
not large enough to hold the database’s contents (i.e., Large cache should also be enabled to
reduce the execution time).

This debugging process of identifying potential options and analyzing where and how op-
tions interact in the implementation to produce the surprising behavior is challenging in large
configuration spaces with complex performance behavior (e.g., 2°° configurations if only con-
sidering two values for each option). Ideally, developers would understand how options and
their interactions affect the performance of the system both globally and in the implementation
to debug surprising performance behaviors. With this information, developers can determine
whether the system was misconfigured and is behaving as expected (such as in the example
presented above), or there is a performance bug that they need to fix.

Problem statement

On one hand, users of configurable systems want to make informed configuration decisions to
efficiently execute the systems, thus reducing energy consumption and operational costs. On
the other hand, developers of configurable systems want to debug surprising performance be-
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haviors and configuration-related performance bugs, similarly to reduce energy consumption
and operational costs. Both of these activities require understanding how options and their
interactions affect the performance of a system. However, understanding this information be-
comes intractable as the configuration spaces of the systems increase and their performance
behavior becomes more complex.

1.2 Existing research

Existing research to understand how configuration options influence the performance of con-
figurable systems has focused on building performance-influence models [Siegmund et al.,
2015], which describe the performance of a system in terms of its configuration options for a
specific workload and running in a specific environment. For example, the sparse linear model
17.2 4+ 9.2 - TEMPORARY — 7.9 - LARGER_CACHE - TEMPORARY — 7.9 - LARGER_CACHE + ... pre-
dicts how options and their interactions influence the performance of the system in Fig. 1.1 to
predict the performance of arbitrary configurations. This model can be used, for example, by
users and developers to determine that both Temporary and Larger cache need to be enabled
to reduce the execution time of Berkeley DB.

Most approaches to build performance-influence models treat the system as a black-box,
measuring the system’s execution time for a subset of all configurations and extrapolating a
model from those observations [Grebhahn et al., 2019; Ha and Zhang, 2019; Ha and Zhang,
2019; Kaltenecker et al., 2020; Sarkar et al., 2015; Siegmund et al., 2015]. One problem with such
approaches is that they typically need to measure a large number of configurations to build ac-
curate models, resulting in a tradeoff between the cost to build the models and their accuracy.
For example, fewer configurations are cheaper to measure, but usually lead to less accurate
models. This tradeoff affects users, as they might be mislead by an inaccurate model when
making configuration decisions, as well as developers, as they might spend an extremely long
time building an accurate model. In addition, the models only describe the influence that con-
figuration options have globally (i.e., end-to-end) on the performance of the system, whereas
developers debugging the performance the system usually also want to know where and how,
in the implementation, configuration options influence the performance of the system. With-
out this information, developers may need to navigate a large code base of many components
to answer those questions.

In this thesis, we seek to overcome the limitations of black-box approaches by analyzing
the performance of configurable systems, both globally and in the implementation, using a
white-box approach. By accurately analyzing the implementation of configurable systems, we
can help users understand how options affect the performance of these systems.

1.3 Thesis

The main goal of this thesis is to reduce the energy consumption and operational costs of
running configurable systems. The work in this thesis contributes towards that goal by using
white-box analyses to efficiently and accurately model the performance of configurable sys-
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tems to help users and developers understand how options and their interactions affect the
performance of such systems. With this information, users can make conscious configuration
decisions to efficiently run configurable systems. With additional white-box information of
where and how options interact in the implementation, developers can debug the performance
of configurable systems to reason and potentially fix unexpected performance behaviors.

— - - - - - - ~

[ Thesis Statement: White-box analysis of how options influence the performance of code-
I level structures in configurable systems (1) helps to efficiently build accurate and inter-
| pretable global and local performance-influence models and (2) guides developers to inspect,
|\ understand, and debug configuration-related performance behaviors.

N e e s s

Our white-box approach to model the performance of configurable systems analyzes and
instruments the source code to accurately capture configuration-specific performance behav-
ior, without using machine learning to extrapolate incomplete samples. We reduce measure-
ment cost by simultaneously analyzing and measuring multiple regions of the system, building
a local linear performance-influence model per region with a few configurations (an insight
that we call compression). Subsequently, we compose the local models into a global model for
the entire system. We use a taint analysis to identify where and how load-time configuration
options influence control-flow statements in the system, through control-flow and data-flow
dependencies.

Our empirical evaluation on several widely-used open-source systems demonstrates that
our white-box approach efficiently builds accurate performance-influence models with the
additional benefit of generating interpretable and local models, which not only predict perfor-
mance of configurations, but also quantify the influence on performance of individual options
and interactions and can even map the influence to code regions.

In an exploratory analysis, we demonstrate that local performance-influence models are
a useful tool for debugging, as they indicate where options affect the performance in config-
urable systems and help navigate more targeted components when debugging performance.
While these models help locate where options affect the performance of a system, the models
do not indicate how options, in the implementation, affect the performance of the regions.

To further help developers understand how options affect the performance of configurable
systems in the implementation, we propose to develop new tool support to provide developers
with relevant information for inspecting, understanding, and debugging the performance of
configurable systems. We propose to guide the design of the tool support based on user studies
that explore the process that developers follow and the information needs that they have when
debugging the performance of configurable systems. Subsequently, we propose to conduct a
user study to validate the usefulness of all the tools that we present in this thesis to help
developers in the process of debugging the performance of configurable systems.

In summary, we make the following contributions to support the thesis statement:
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Completed Work

We identify the limitations of current approaches to analyze, model, and debug the per-
formance of configurable systems (Chapter 2). These limitations serve as the motivation
to explore white-box techniques.

Inspired by white-box insights of how options interact and affect the performance of
configurable systems, we introduce the insights of compositionality and compression to
locally and globally model the performance of configurable systems, which help users
and developers understand how options and their interactions affect the performance
of systems (Chapter 3).

We compare two prototypes that operationalize the insights of composition and com-
pression. Our prototypes ConfigCrusher and Comprex are implemented consider dif-
ferent design decisions to model the performance of small-, medium-, and large-scale
configurable systems (Chapter 3).

Our evaluation on 13 configurable systems show that our prototypes can efficiently and
accurately model the performance of configurable systems, often more efficiently than
black-box approaches with comparable accuracy. Additionally, our models are inter-
pretable and can be mapped to specific code regions (Chapter 3).

Our comparison between the two prototypes shows that the design decisions made for
Comprex, namely (1) using a dynamic taint analysis to identify the influence of options
on regions of systems and (2) measuring the performance of methods as regions with an
off-the-shelf sampling profiler, scales our white-box analysis to model the performance
of medium- to large-scale configurable systems (Chapter 3).

Proposed Work

Inspired by the limitations of global performance-influence models to help developers
debug the performance of configurable systems, we propose to conduct a user study to
explore the process that developers follow and the information needs that they have
when debugging the performance of configurable systems (Chapter 4).

Guided by the insights of the study above, we propose to develop additional tool support
to compare performance profiles and trace how options are propagated through a system
to further help developers to debug the performance of configurable systems (Chapter 4).

We propose to conduct a user study to empirically validate the usefulness of the tools
that we present in this thesis, namely global and local performance-influence models,
and additional tools support, to help developers inspect, reason, and debug the perfor-
mance of configurable systems (Chapter 4).

The contributions in this thesis enable efficiently and accurately modeling the global per-
formance of configurable systems for users to make informed configuration decisions to run
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their systems efficiently. Additionally, the contributions help developers understand and de-
bug the global and local performance of configurable systems to improve software quality in
general. Overall, the work in this thesis contributes towards the goal of reducing the energy
consumption and operational costs of running configurable systems. Finally, we hope that our
contributions inspire the configurable systems and performance analysis research communi-
ties to use and develop new and scalable white-box techniques to benefit from the information
that can be obtained with such analyses.

The remainder of the proposal is structured as follows:

« Chapter 2 introduces existing research on analyzing, modeling, and debugging the per-
formance of configurable systems and the limitations of current approaches.

« Chapter 3 describes the key insights for efficient and accurate performance modeling of
configurable systems, the implementation of our two prototypes, and their evaluation.

« Chapter 4 outlines our proposed work to develop additional tool support, guided and
validated by user studies, to help developers debug the performance of configurable
systems.

+ Chapter 5 concludes the thesis proposal with a research plan.






Chapter 2

State of the Art on Performance
Analysis of Configurable Systems

This chapter introduces the state of the art of analyzing, modeling, and debugging the perfor-
mance of configurable systems. The insights and limitations that we identify in this discussion
motivate the work and the techniques used in this thesis.

The rest of this chapter is organized as follows: We first present the terminology used
in this thesis (Sec. 2.1) and describe configurable systems in general (Sec. 2.2). Subsequently,
we describe the state of the art black-box approaches for modeling the performance of con-
figurable systems (Sec. 2.3). Based on the limitations of such approaches, we explore how
white-box analysis have been used to analyze the performance and other characteristics of
configurable and (non-configurable) software systems (Sec. 2.4). Subsequently, we describe
how white-box approaches have been used specifically to debug the performance of config-
urable systems, but also to debug, more generally, configurable and (non-configurable) soft-
ware systems (Sec. 2.5).

This chapter is derived in part from our ASE Journal’20 article "ConfigCrusher: Towards
White-box Performance Analysis for Configurable Systems" [Velez et al., 2020a] and a con-
ference submission under review at the time of writing — "White-box Analysis over Machine
Learning: Modeling Performance of Configurable Systems" [Velez et al., 2020b].

2.1 Terminology

Performance analysis of configurable systems has been explored in the past using different
terminologies. We first establish and define the terms that we will use throughout the docu-
ment.

Option refers to an input that modifies the operation of a system. An option is also known
as variation, feature, or flag in the literature. The distinction between inputs and options is
subjective and domain specific. We consider options as a special type of inputs with a small
finite domain (e.g., Boolean options), that a user might explore to change functionality or
quality attributes. We consider fixed values for other inputs. For simplicity, we describe the

9
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work in this thesis in terms of Boolean options, but other non-binary option types can be
encoded or discretized as Boolean options.

Configuration refers to a complete setting of all options in a system [Apel et al., 2013].
Configuration space refers to all configurations of a system.

Misconfiguration a configuration error under which the system behaves correctly, but not
as desired.

Control-flow statement refers to a program statement that affects the flow of execution of
a system based on a decision. Examples of control-flow statements include if and switch
statements and for and while loops.

Control-flow decision refers to an actual execution of a control-flow statement in which a
decision is made and a specific branch is executed.

Environment refers to the underlying software and hardware in which the system executes.
We consider the environment to be fixed when developers model and debug the performance
of a configurable system.

Performance refers to the execution time of a system or a region in a system.

Performance-influence model describes the performance behavior of a system, in terms of
options and interactions, for a specific workload running on a specific environment.

2.2 Configurable Systems

Most software systems today are configurable, which allow users to customize the function-
ality and quality attributes of the systems to satisfy their requirements and needs [Apel et al.,
2013]. The systems are usually built with some reusable core functionality and implement
some deferred design decisions, such as which specific algorithm implementation to use or
whether to enable or disable some functionality, as configuration options [Becker et al., 2009;
Esfahani et al., 2013], allowing users to choose between multiple alternative and optional im-
plementations.

The benefits of developing and customizing configurable systems, however, come with the
cost of increased complexity. The large number of options makes tracking how options and
their interactions influence the functionality and quality attributes of systems a difficult task.
For this reason, users are often overwhelmed with the large number of options and change
options in a trial-and-error fashion without understanding the resulting effects [Apel et al.,
2013; Hubaux et al,, 2012; Xu et al.,, 2015, 2013]. Likewise, a large number of options com-
plicates the process that developers follow to develop, test, and maintain large configuration
spaces [Behrang et al., 2015; Halin et al., 2018; Jin et al., 2014; Melo et al., 2016, 2017].

Performance in Configurable Systems. Performance, in terms of execution time, and of-
ten directly correlated energy consumption and operational costs, is one of the most important
quality attributes for users and developers of configurable systems [Gelenbe and Caseau, 2015;
Manotas et al., 2016; Pinto and Castor, 2017]. The options enable or disable functionality, and
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execute different implementations that affect the performance of the systems. For example,
enabling encryption increase the security of a system, but encryption usually also increases
the execution time. Likewise, selecting which algorithm to use when compressing a video
will affect, among several aspects, the quality of the output video and the time to compress
the video. However understanding how options and their interactions affect the performance
of these systems is challenging due to their large configuration spaces.

In this thesis, we seek to help users and developers understand the impact that options
have on the performance of configurable systems, for users to make informed tradeoff and
configuration decisions to run systems efficiently [Jabbarvand et al., 2015; Kern et al.,, 2011;
Munoz, 2017; Wilke et al., 2013; Zhang et al.,, 2014] and for developers to debug the perfor-
mance of the systems [Chowdhury and Hindle, 2016; Gui et al., 2016; Hasan et al., 2016; Li
et al,, 2016; Malik et al., 2015; Pereira et al., 2016].

2.3 Modeling Performance in Configurable Systems

In this section, we describe how existing performance modeling research helps users and de-
velopers understand how options influence the performance of configurable systems.

In the design state of a project, designers and developers usually model the performance of
a system’s architecture (e.g., using Queuing networks, Petri Nets, and Stochastic Process Al-
gebras) and workload [Harchol-Balter, 2013; Kounev, 2006; Serazzri et al., 2006]. At this state,
design decision are usually modeled as configuration options [Becker et al., 2009; Esfahani
et al., 2013], allowing users to choose between multiple alternative and optional implementa-
tions.

When a configurable system has been implemented, performance-influence models are typ-
ically used to explain the performance of a system in terms of configuration options and their
interactions, and predict the performance of the entire configuration space [Guo et al., 2013;
Ha and Zhang, 2019; Ha and Zhang, 2019; Jamshidi et al., 2017a, 2018, 2017b; Kolesnikov
et al., 2018; Siegmund et al., 2015; Valov et al., 2017]. For example, the sparse linear model
8 + 15A + 10C + 3AB + 30AC captures the execution time of the system in Fig. 2.1, which
predicts the performance of arbitrary configurations, and explains how the options A, B, and C
and their interactions influence the system’s performance. The models are typically built by
executing the system with an specific workload and in a specific environment under different
configurations, to learn how configuration options affect the performance of the system. The
model are useful for users to make deliberate configuration decisions and for developers to
understand and debug how configuration options affect the performance of their systems.

2.3.1 Use Cases of Performance-Influence Modeling
Performance-influence models can be used for different tasks in different scenarios, which

benefit from different characteristics of the type of model that is used.

Performance optimization. Inthe simplest case, a user wants to optimize the performance
of a system by selecting the fastest configuration for a specific workload and running the sys-



12 CHAPTER 2. PERFORMANCE ANALYSIS OF CONFIGURABLE SYSTEMS

tem in a specific environment. Performance-influence models have been used for optimiza-
tion [Guo et al., 2013; Nair et al., 2017; Oh et al., 2017; Zhu et al., 2017], though metaheuristic
search (e.g., hill climbing) is often more effective at pure optimization problems [Hutter et al.,
2011; Jamshidi and Casale, 2016; Oh et al., 2017; Olaechea et al., 2014; Zhu et al., 2017], as they
do not need to understand the entire configuration space.

Performance prediction. In other scenarios, users want to predict the performance of in-
dividual configurations. Scenarios include automatic reconfiguration and runtime adaptation,
where there is no human-in-the-loop and online search is impractical. For example, when
dynamically deciding during a robot’s mission which options to change to react to low bat-
tery levels [Jamshidi et al., 2018, 2017b; Wang et al., 2018; Zhu et al., 2017]. In these scenarios,
the model’s prediction accuracy over the entire configuration space is important, but under-
standing the structure of the model is irrelevant. In this context, deep regression trees [Guo
et al., 2013, 2017; Sarkar et al., 2015], Fourier Learning [Ha and Zhang, 2019], and neural net-
works [Ha and Zhang, 2019] are commonly used, which build accurate models, with a large
enough number of sampled configurations, but are not easy to interpret by humans [Greb-
hahn et al., 2019; Kaltenecker et al., 2020; Kolesnikov et al., 2018; Molnar, 2019; Siegmund
et al., 2015].

Performance understanding. When users want to make deliberate configuration deci-
sions [Grebhahn et al., 2019; Kaltenecker et al., 2020; Kolesnikov et al., 2018; Siegmund et al.,
2015; Wang et al., 2018; Xu et al., 2013] (e.g., whether to accept the performance overhead of en-
cryption), which is one of the concerns that we address in this thesis, interpretability regarding
how options and interactions influence performance becomes paramount. In these settings,
researchers usually suggest sparse linear models, suchas 8 +15-A+10-C+3-A-B+30-A-C,
typically learned with stepwise linear regression or similar variations [Kaltenecker et al.,
2019; Siegmund et al., 2015, 2012a,b]. Such models are generally accepted as inherently in-
terpretable [Molnar, 2019], as the information of how configuration options and their interac-
tions influence the performance of a system is easy to inspect and interpret by users [Kalte-
necker et al., 2020; Kolesnikov et al., 2018; Molnar, 2019]. By contrast, opaque machine-
learned models (e.g., random forests and neural networks) are not considered inherently in-
terpretable [Molnar, 2019]. While there are many approaches to provide post-hoc explana-
tions [Lundberg and Lee, 2017; Molnar, 2019; Ribeiro et al., 2016; Strumbelj and Kononenko,
2014], such approaches are not necessarily faithful and may provide misleading and limited
explanations [Rudin, 2019].

Performance debugging. In addition to users who configure a system, developers who
maintain the system can also benefit from performance-influence models to understand and
debug the performance behavior of their systems, which is one of the concerns that we address
in this thesis. For example, when presenting performance-influence models to developers in
high-performance computation, Kolesnikov et al. [2018] reported that a developer “was sur-
prised to see that [an option] had only a small influence on system performance,” indicating
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1 def main(List workload)

2 a = getOpt("A"); b = getOpt("B");
3 c = getOpt("C"); d = getOpt("D");
4 . // execution time: 1s

5 int i = 0;

6 if(a)

7 ... // execution time: 1s

8 foo(b);

9 i=20;

10 else

11 ... // execution time: 2s

12 i=25;

13 while(i > 0)

14 bar(c);

15 i—;

16 def foo(boolean x)

17 if(x) ... // execution time: 4s
18 else ... // execution time: 1s

19 def bar(boolean x)

20 if(x) ... // execution time: 3s
21 else ... // execution time: 1s

Figure 2.1: Example configurable system with 4 configuration options that influence the performance
of the system.

a potential bug. In such setting, understanding how individual options and interactions influ-
ence performance is again paramount, favoring interpretable models.

- N\
Partial thesis goal: We aim to build interpretable performance-influence models to help |
|
|
)

users understand and help developers debug how options and their interactions affect the

performance of configurable systems.
~— —_————— S
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2.3.2 Building Performance-Influence Models

Performance-influence models are typically built by measuring the execution time of a system
with a specific workload in a specific environment under different configurations [Siegmund
et al,, 2015]. Almost all existing approaches are black-box in nature: They do not take the sys-
tem’s implementation into account and measure the end-to-end execution time of the system.

Brute-force. The simplest approach is to observe the execution of all configurations in a
brute-force approach. The approach obviously does not scale, but for the smallest configura-
tion spaces, as the number of configurations grows exponentially with the number of options.
In our example system in Fig. 2.1, the approach will measure all configurations, inefficiently
exploring interactions with option D, which does not affect the performance of the system.
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Sampling and Learning. In practice, most current approaches measure executions only
for a sampled subset of all configurations and extrapolate performance behavior for the rest
of the configuration space using machine learning [Grebhahn et al., 2019; Ha and Zhang, 2019;
Ha and Zhang, 2019; Kaltenecker et al., 2020; Sarkar et al., 2015; Siegmund et al., 2015], which
we collectively refer to as sampling and learning approaches. Specific approaches differ in
how they sample, learn, and represent models: Common sampling techniques include uni-
form random, feature-wise, and pair-wise sampling [Medeiros et al., 2016], design of experi-
ments [Montgomery, 2006], and combinatorial sampling [Al-Hajjaji et al., 2016; Halin et al.,
2018; Hervieu et al.,, 2011, 2016; Nie and Leung, 2011]. Common learning techniques in-
clude linear regression [Kaltenecker et al., 2019; Siegmund et al., 2015, 2012a,b], regression
trees [Grebhahn et al., 2019; Guo et al., 2013, 2017; Sarkar et al., 2015], Fourier Learning [Ha
and Zhang, 2019], Gaussian Processes [Jamshidi et al., 2017b], and neural networks [Ha and
Zhang, 2019].

Different sampling and learning techniques yield different tradeoffs between measurement
effort, prediction accuracy, and interpretability of the learned models [Grebhahn et al., 2019;
Kaltenecker et al., 2020; Kolesnikov et al., 2018]. For example, larger samples are more expen-
sive, but usually lead to more accurate models; random forests, with large enough samples,
tend to learn more accurate models than those built with linear regressions, but the models
are harder to interpret when users want to understand performance or developers want to
debug their systems [Grebhahn et al., 2019; Kaltenecker et al., 2020; Molnar, 2019].

Although some sampling strategies rely on a coverage criteria to sample specific interac-
tion degrees, such as t-wise sampling [Medeiros et al., 2016; Nie and Leung, 2011], the strate-
gies might miss important interactions, leading to inaccurate models, or measure interactions
that are not relevant for performance. In our example system in Fig. 2.1, a sampling strat-
egy might inefficiently measure interactions between options B and C, which do not affect the
performance of the system, or interactions with option D.

( Limitation of existing black-box approaches: Current black-box performance mod-
eling approaches do not consider the internals of the system that they analyze. Instead,
the approaches rely on sampling strategies to potentially capture performance relevant
interactions to learn the performance behavior of a system from incomplete samples. Us-
ing sampling strategies results in either under-approximating or over-approximating the
number of configurations that are measured, which affects the cost to build models and
the accuracy of the models. The approaches are also extremely sensitive to the learn-
ing technique that is used, in terms of the accuracy of the models that are built and the
interpretability of the models.

In this thesis, we seek to overcome the limitations of black-box approaches by analyzing
the performance of configurable systems using a white-box approach, with the goal of effi-
ciently building accurate and interpretable performance-influence models.
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2.4 Analyzing Performance in Configurable Systems

In this thesis, we seek to use white-box analyses to overcome the limitations of black-box ap-
proaches to analyze and help debug the performance of configurable systems. To determine
which program analysis techniques are applicable for the work in this thesis, we first discuss,
in this section, program analyses in general (Sec. 2.4.1), and then explore how the techniques
have been used to analyze the performance of software systems (Sec. 2.4.2) and various char-
acteristics of configurable systems (Sec. 2.4.3) Finally, we explore how the techniques, have
been used, specifically, to analyze the performance of configurable systems (Sec. 2.4.4).

In Sec. 2.5, we explore how these program analyses have been used, specifically, for de-
bugging the performance of configurable systems.

2.4.1 Analysis of Software Systems

White-box analysis seeks to automatically inspect the source code to study the behavior of
software systems regarding some property, such as correctness, safety, complexity, and per-
formance [Arzt et al., 2014; Bell and Kaiser, 2014; King, 1976; Nielson et al., 2010; Schwartz
et al., 2010; Vallée-Rai et al., 1999; Weiser, 1981]. While the realm of program analysis is
to broad to cover in a single chapter (e.g., data-flow analyes [Nielson et al., 2010; Vallée-Rai
et al., 1999], Hoare logic [Hoare, 1969], Satisfiability Modulo Theories [Barrett and Tinelli,
2018], program synthesis [Gulwani et al., 2017], concolic execution [Sen, 2007], model check-
ing [Clarke Jr et al., 2018]), here we describe the program analyses techniques more relevant
to the context of analyzing and debugging configurable systems, and subsequently describe
how the analyses have been used, specifically, for these tasks.

Static and dynamic program analyses have been used extensively to analyze and debug
configurable and (non-configurable) software systems.

Symbolic execution is an approach to execute a system abstractly to cover the execution of
multiple inputs [King, 1976; Schwartz et al., 2010]. During the execution of a system, symbolic
values, in terms of inputs and variables in the system, are propagated to analyze the behavior
of the system, such as which inputs cause each part of the system to execute. In the context
of this thesis, the technique has been used for performance debugging [Bornholt and Torlak,
2018] and studying characteristics of configurable systems [Reisner et al., 2010].

In contrast to symbolic execution, variational execution is an approach to dynamically an-
alyze the effects of multiple inputs by tracking concrete values [Meinicke et al., 2016; Wong
et al., 2018]. In other communities (e.g., security), this technique is called faceted execu-
tion [Austin and Flanagan, 2012]. In the context of this thesis, the technique has been used
to debug configurable systems [Meinicke et al., 2018], exhaustively test configurable sys-
tems [Wong et al., 2018], as well as, similarly to symbolic execution, to study characteristics
of configurable systems [Meinicke et al., 2016].

Taint analysis, also known as information flow analysis, is a static [Arzt et al., 2014] or dy-
namic [Austin and Flanagan, 2009; Bell and Kaiser, 2014] data-flow analysis typically used in
security research to detect, for example, information leaks and code injection attacks [New-
some and Song, 2005; Schwartz et al., 2010]. A value is initially marked as tainted, and all
values derived (directly or indirectly) from the initial value are tainted as well, which is used
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to identify if the values are used in locations where they should not (e.g., sent over the net-
work). In the context of this thesis, the technique has been used to track how options are
used [Lillack et al., 2018] and modify data [Toman and Grossman, 2016a,b] in configurable
systems. Additionally, we use both static and dynamic taint analysis to track how options
influence the execution of specific regions in a system (see Chapter 3).

In contrast to taint analysis, program slicing is an approach to compute the relevant frag-
ments of a system based on a criteria either statically [Weiser, 1981] and dynamically [Agrawal
and Horgan, 1990; Korel and Laski, 1988]. While the approach has not been used in the con-
text of configurable systems, the approach has been successful in helping developers debug
software systems [Ko and Myers, 2004; LaToza and Myers, 2011; Xu et al., 2005], making it a
promising technique to be used for debugging configurable systems by helping developers un-
derstand how options affect the code structures of a system (see Chapter 4). For example, the
technique has been used for narrowing the parts of the system that developers need to analyze
when debugging software systems [Agrawal and Horgan, 1990; Korel and Laski, 1988; Weiser,
1981], as well as in the backend of visualization tools, which help developers navigate [LaToza
and Myers, 2011] and debug software systems [Ko and Myers, 2004].

2.4.2 Performance Analysis of Software Systems

Static and dynamic program analyses have been used extensively to analyze the performance
of software systems. Typically developers use off-the-shelf performance profilers, such as
JProfiler [JPR, 2019], Valgrind [Nethercote and Seward, 2007], and VisualVM [VVM, 2020], to
analyze the performance of software systems. These profilers either instrument the systems
or use sampling techniques to measure the performance as the system executes. In addition
to performance profilers, researchers have developed more targeted program analyses that
identify inefficient code structures [Bornholt and Torlak, 2018; Grechanik et al., 2012; Han
et al., 2012; Jin et al., 2012; Jovic et al., 2011; Liu et al,, 2014; Nistor et al., 2015, 2013b; Song
and Lu, 2014, 2017] and synchronization bottlenecks [Alam et al., 2017; Curtsinger and Berger,
2016; Yu and Pradel, 2016, 2018].

Performance profilers and targeted performance analyses seek to help developers to debug
the performance of software systems, which we discuss in more detail in Sec. 2.5. In the context
of this thesis, we use an off-the-self sampling profiler to measure the performance of specific
regions under different configurations to build performance-influence models (see Chapter 3).

2.4.3 Analysis of Configurable Systems

In the context of configurable systems, several researchers have leveraged some kind of static
and dynamic program analyses to track and characterize options [Dong et al., 2016; Hoffmann
etal., 2011; Lillack et al., 2018; Meinicke et al., 2016; Nguyen et al., 2016; Rabkin and Katz, 2011;
Reisner et al., 2010; Souto and d’Amorim, 2018; Toman and Grossman, 2016a,b; Wang et al.,
2013; Xu et al,, 2016]. Thiim et al. [2014] presented a comprehensive survey of analyses for
software product lines also applicable to configurable systems.

Taint analysis has been used to track how options are propagated and used in configurable
systems [Hoffmann et al., 2011; Lillack et al., 2018; Toman and Grossman, 2016a,b]. For exam-
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ple, Lotrack [Lillack et al., 2018] used a static analysis to identify under which configurations
code fragments may be executed. Likewise, Staccato [Toman and Grossman, 2016b] used dy-
namic taint analysis to identify the use of stale configuration data. In the context of this thesis,
we use both static and dynamic taint analysis to track how options influence the execution of
specific regions in a system (see Chapter 3).

Other program analysis techniques have been used to analyze the behavior of interactions
in configurable systems [Meinicke et al., 2016; Nguyen et al., 2016; Reisner et al., 2010; Wong
et al., 2018]. Reisner et al. [2010] and Meinicke et al. [2016] used symbolic execution and varia-
tional execution, respectively, to identify that (1) not all options tend to affect the execution of
a system on a given workload, (2) not all options tend to interact with each other in a system,
and (3) options tend to interact only with a few other options in specific parts of a system. In
the context of this thesis, these insights helped us identify additional insights for efficiently
and accurately modeling the performance of configurable systems (see Chapter 3).

Insights of how options interact in configurable systems: Not all options tend to
affect the execution of a system on a given workload. Not all options tend to interact with
each other in a system. Options tend to interact only with a few other options in specific
parts of a system.

2.4.4 Performance Analysis of Configurable Systems

Static and dynamic approaches have been scarcely used to analyze the performance of con-
figurable systems [Li et al., 2020; Siegmund et al., 2013], which is one of the concerns that we
address in this thesis.

For several years, the only existing white-box approach to analyze the performance of
configurable systems was Family-Based Performance Measurement [Siegmund et al., 2013].
Similarly to black-box approaches (see Sec. 2.3.2), the approach builds performance-influence
models to help users and developers understand how options interact and affect the perfor-
mance of a system.

Specifically, the approach uses a static mapping between options to code regions and in-
struments the system to measure the execution time spent in the regions. Subsequently, it exe-
cutes the system once with all options enabled, tracking how much each option contributes to
the execution time. The approach works well when all options are directly used in control-flow
statements and only contribute extra behavior. That is, an option would not switch between
two implementations, but only activate additional code. Current implementations, however,
derive the static map from compile-time variability mechanisms (preprocessor directives) and
do not handle systems with load-time variability (i.e., loading and processing options in vari-
ables at runtime). Furthermore, the static map only covers direct control-flow interactions
from nested preprocessor directives, and can lead to inaccurate models when indirect data-
flow interactions occur. In our example system in Fig. 2.1, data-flow analysis is needed to
detect that the while loop in line 13 indirectly depends on the option A, with implicit data-
flow through the variable i, leading to an inaccurate performance-influence model otherwise.
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Limitation of the existing white-box modeling approach: The only existing white-
box approach for performance modeling imposes strict constraints on the structure of
the system and the performance behavior of the options of the system.

More recently, LearnConf [Li et al.,, 2020] used static taint analysis with intraprocedural
control-flow analysis to identify usage patterns of individual options in the source code for
predicting performance properties based on the patterns (e.g., linear relationship). The ap-
proach, however, is orthogonal to performance-influence modeling, as the approach can only
predict the performance property of an option (e.g., selecting an option would increase the
performance by a constant amount), not the actual performance effect, in terms of execution
time, which is relevant information that users need to make informed tradeoff decisions and
developers need to debug the performance of a system. Additionally, the approach does not
consider how interacting options might affect the performance of a system.

We are inspired by the goal of the Family-Based approach to overcome the limitations of
black-box approaches, but we seek, in this thesis, to lift its strict limitations. Additionally, we
aim to build performance-influence models that indicate the actual performance effect that
options and their interactions have on the performance of configurable systems.

In this section, we sought to determine which program analysis techniques are applicable
for the work in this thesis. To achieve this goal, we first discussed program analyses in gen-
eral, and then explored, more relevant to the context of this thesis, how the techniques have
been used to analyze the performance and other characteristics of configurable and (non-
configurable) software systems. As we will discuss in Chapter 3, we use a taint analysis,
tracking data-flow and control-flow dependencies, including implicit flows, to identify how
options influence the execution of specific regions in a system and use an off-the-shelf sam-
pling performance profiler to measure the execution time of these regions.

In the next section, we explore how program analyses have been used, specifically, for
debugging the performance of configurable systems.

2.5 Debugging Performance in Configurable Systems

In this thesis, we seek to use white-box analyses to overcome the limitations of black-box ap-
proaches to analyze and help debug the performance of configurable systems. To determine
which program analysis techniques are applicable for the work in this thesis, we discussed, in
Sec. 2.4, program analyses in general, and then explored how the techniques have been used
to analyze the performance and other characteristics of configurable and (non-configurable)
software systems. To determine how to use program analysis techniques to help developers
inspect, understand, and debug the performance of configurable systems, we explore, in this
section, how the techniques are used to help developers debug software systems in general
(Sec. 2.5.1), debug the performance of software systems (Sec. 2.5.2), debug configurable sys-
tems in general (Sec. 2.5.3), and, relevant to the context of this thesis, debug the performance
of configurable systems (Sec. 2.5.4).
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2.5.1 Debugging in Software Systems

Debugging software systems is the process of inspecting and understanding the behavior of
a system when an unexpected behavior occurs [Zeller, 2009]. Regardless of the root cause of
the unexpected behavior (e.g., software bugs or misconfigurations), systems often misbehave
with similar symptoms, such as crashes, missing functionality, incorrect results [Andrzejew-
ski et al.,, 2007; Attariyan and Flinn, 2010; Medeiros et al., 2016; Meinicke et al., 2018; Zeller,
1999, 2009], and, in terms of performance, long execution times and increased energy con-
sumption [Han and Yu, 2016; He et al., 2020; Jin et al., 2012; Li et al., 2016; Song and Lu, 2017;
Wilke et al., 2013]. When a system misbehaves, users usually report the problem to develop-
ers, who often spend a long time diagnosing the system to localize and fix a bug or determine
that the system was misconfigured [Breu et al., 2010; Chaparro et al., 2017; Han and Yu, 2016;
Jovic et al., 2011; Park et al., 2012; Parnin and Orso, 2011; Zeller, 2009].

In the simplest case, developers could manually analyze the implementation of a system
to debug an unexpected behavior. This approach, however, is limited to small systems and
simple bugs, as even expert developers of large systems need automatic techniques or tool
support to understand, locate, and diagnose unexpected behaviors [Burg et al., 2013; Ko and
Myers, 2008; Ko et al., 2006; LaToza and Myers, 2010; Lawrance et al., 2013; Scaffidi et al., 2011;
Zeller, 2009].

Traditionally, developers rely on some kind of technique or tool support to narrow down
and debug the set of potential causes for unexpected behaviors [Burg et al., 2013; Ko et al.,
2006; Lawrance et al., 2013; Parnin and Orso, 2011; Scaffidi et al., 2011; Zeller, 2009]. While
some techniques can automatically fix bugs [Le Goues et al., 2012], we consider debugging and
repairing as two different processes, in which the latter is focused on automatically finding a
patch for a buggy system, whereas the former is the process that a developer follows to inspect
and understand unexpected behaviors in a system.

There are several prominent program analysis techniques that facilitate debugging of soft-
ware systems [Agrawal and Horgan, 1990; Andrzejewski et al., 2007; King, 1976; Korel and
Laski, 1988; Weiser, 1981; Zeller, 1999]. Delta debugging [Zeller, 1999] has helped developers
debug unexpected behaviors by automatically and systematically narrowing down the inputs
that are relevant for causing a fault. Likewise, program slicing [Agrawal and Horgan, 1990;
Korel and Laski, 1988; Weiser, 1981] also facilitates debugging by providing developers with
a slice of the relevant fragments of a system based on a criteria. These and similar techniques
have been useful for developers, since the techniques narrow down and isolate relevant inputs
and parts of a system where developers should focus their debugging efforts. In the context of
this thesis, we aim to guide developers to relevant parts of the systems to analyze and debug
unexpected configuration-related performance behaviors (see Chapter 4).

Researchers have also implemented program analyses in the backend of tools to help de-
velopers debug software systems [Burg et al., 2013; Ko and Myers, 2004; LaToza and Myers,
2011; Pothier et al., 2007]. For instance, the Whyline [Ko and Myers, 2004] combines static and
dynamic slicing to allow developers to ask "why did " and "why did not" questions directly
about a system’s output. The tool then presents relevant code to answers those questions.
Similarly, Reacher [LaToza and Myers, 2011] uses static data-flow analysis to help developers
answer reachability questions as they navigate call graphs. These and similar tools have been
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useful for developers, since the tools provide relevant and useful information to guide devel-
opers through the implementation to understand and debug the behavior of the system. In the
context of this thesis, we aim to develop tool support that provides developers with relevant
information to analyze and debug unexpected configuration-related performance behaviors
(see Chapter 4).

2.5.2 Performance Debugging in Software Systems

When developers debug the performance of software systems, developers typically use off-
the-shelf performance profilers [JPR, 2019; VVM, 2020; Nethercote and Seward, 2007] (either
sampling- or instrumentation-based). Profilers are typically used to identify the places in a
system that are taking the most time to execute, commonly known as hotspots [Castro et al.,
2015; Cito et al., 2018; Curtsinger and Berger, 2016; Gregg, 2016; Yu and Pradel, 2018]. After
identifying hotspots, developers locate them in the code for analysis and potentially optimize
and performance issues. In the context of this thesis, we use an off-the-shelf sampling profiler
to measure the performance of code regions under different configurations (see Chapter 3).

In addition to performance profilers, researchers have developed targeted techniques to
help developers identify inefficient code structures [Bornholt and Torlak, 2018; Grechanik
et al., 2012; Han et al,, 2012; Jin et al., 2012; Jovic et al., 2011; Liu et al., 2014; Nistor et al.,
2015, 2013b; Song and Lu, 2014, 2017] and synchronization bottlenecks [Alam et al., 2017;
Curtsinger and Berger, 2016; Yu and Pradel, 2016, 2018]. For instance, statistical debugging has
been used to identify performance anti-patterns by analyzing program predicates in regular
and slow executions and using statistical models [Song and Lu, 2014]. Likewise, Toddler [Nis-
tor et al., 2013b] detects performance bugs by identifying repetitive memory read sequences
across loop iterations. Furthermore, Coz [Curtsinger and Berger, 2016] introduced causal pro-
filing to help developers identify which components in their concurrent system they should
optimize to improve performance. While this line of work is orthogonal to the work in this
thesis, our work can potentially complement these techniques in considering how options are
used in the implementation to cause performance bottlenecks in software systems.

2.5.3 Debugging in Configurable Systems

In the context of configurable systems, several techniques and tools have used to help develop-
ers debug in the presence of a large number of options [Attariyan and Flinn, 2010; Dong et al.,
2016; Hoffmann et al., 2011; Lillack et al., 2018; Meinicke et al., 2018; Rabkin and Katz, 2011;
Toman and Grossman, 2016a,b; Wang et al., 2013; Wong et al., 2018; Xu et al., 2016; Zhang and
Ernst, 2013, 2014, 2015]. Most techniques aim to identify the option or interaction that cause
the unexpected behavior, as well as to guide developers to debug relevant parts of a system.
In general, the techniques track how options are propagated through the system to identify
how they cause an unexpected behavior. For instance, ConfAid [Attariyan and Flinn, 2010]
is a misconfiguration troubleshooting tool based on causal analysis. The tool instruments the
system to record information flow during the execution and attributes undesired behavior to
configuration options. Likewise, Varviz [Meinicke et al., 2018] generates variational traces to
help developers understand how data- and control-flow influence executions, and thus, how
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different configurations cause a fault. Furthermore, Staccato [Toman and Grossman, 2016b]
used dynamic taint analysis to identify the use of stale or inconsistent configuration data.
In the context of this thesis, we seek to develop tools that indicate where and how options
interact in the implementation (see Chapter 4).

Related to debugging, researchers have also used techniques for testing large configuration
spaces [Kim et al., 2013; Souto and d’Amorim, 2018; Souto et al., 2017]. SPLat [Kim et al., 2013]
instruments a system to dynamically track the configurations that produce distinct execution
paths. It reexecutes the system until all configurations with distinct paths are explored. In the
context of this thesis, we build performance-influence models by measuring the performance
of distinct execution paths in independent regions instead of the entire system (see Chapter 3).

2.5.4 Performance Debugging in Configurable Systems

In recent years, researchers have explored more closely the area of performance debugging
of configurable systems, in terms of empirically studying the characteristics and prevalence
of configuration-related performance bugs [Han and Yu, 2016; Han et al., 2018] and providing
tool support that developers can use to debug unexpected performance behaviors in config-
urable systems [He et al., 2020; Li et al., 2020; Siegmund et al., 2015].

Recent empirical studies have shown that, similar to functional bugs [Park et al., 2012; Yin
et al., 2011] and performance bugs in software systems [Jin et al., 2012; Nistor et al., 2013a],
configuration-related performance bugs are prevalent in software systems today [Han and
Yu, 2016; Han et al., 2018]. Options affect the performance of configurable systems at control-
flow statements, depending on which branch is executed and how many times the branches
are executed [Han and Yu, 2016; Han et al., 2018; Siegmund et al., 2013], similar to the pattern
observed in (non-configurable) software systems [Jin et al., 2012; Nistor et al., 2015, 2013a].
Most configuration-related performance bugs are caused by a single option (~ 72%), but a
non-trivial amount of performance bugs are caused by an interaction of two or more options
(~ 28%). Additionally, configuration-related performance bugs are usually more complex to
debug than general performance bugs.

Insight of how options affect the performance of configurable systems: The per-
formance of configurable systems tends to change at control-flow statements, depending
on which branch is executed and how many times the branches are executed.

Based on the above insights, researchers have developed techniques that developers can
use to analyze and debug the performance of configurable systems [He et al., 2020; Li et al.,
2020]. As discussed in Sec. 2.4, LearnConf [Li et al., 2020] used intraprocedural control-flow
analysis to identify usage patterns of individual options in the source code for predicting per-
formance properties, not actual effects, based on the patterns. Without using program analysis
techniques, yet relevant to debug the performance of configurable systems, He et al. [2020]
suggested using developers’ expected performance behavior of individual and pairs of op-
tions as a testing oracle for identifying the incorrect implementation of configurations. These
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approaches work well when developers already know the options that caused unexpected per-
formance behaviors. However, developers usually first need to understand how options affect
the performance of the entire configuration space of a system to, subsequently, identify the
option or interaction that are causing an unexpected performance behavior.

( Limitation of existing work on debugging the performance of configurable sys-
tems: Current techniques to help developers debug the performance of configurable sys-
tems assume that developers already know the options or interactions that cause the un-
expected performance behavior. Instead, developers typically first need to understand
the performance behavior of the entire configuration space to identify the options that
are potentially causing an unexpected performance behavior.

As discussed in Sec. 2.3.1, sparse linear performance-influence models can be helpful for
developer to debug the performance of configurable systems, as the models are easy to inspect
and interpret how options and their interactions affect the performance of a system [Kalte-
necker et al., 2020; Kolesnikov et al., 2018; Molnar, 2019]. For example, the sparse linear model
8 + 15A + 10C + 3AB + 30AC for the system in Fig. 2.1 can be used, for example, to determine
whether the increase of 30 seconds in the execution time when both A and C are selected com-
plies with the system’s requirements. Ideally though, the models would also indicate where
the influence of options occurs in the implementation and how options influence, in the imple-
mentation, the performance of those locations in the system. However, current performance-
influence models, before the work on this thesis, only provide information of how options
influence the performance of the system globally, requiring developers to probably navigate
the entire code base to debug the performance of the systems.

( Limitation of existing performance-influence models for performance debug-
ging: Current performance-influence models only describe how options influence the
performance of the entire system. The models do not indicate where the influence oc-
curs and how options are used in the implementation to influence the performance of the
system, which is useful for developers to debug the performance of configurable systems.
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tation, the performance of configurable systems.
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In this section, we sought to determine how to use program analysis techniques to help de-
velopers inspect, understand, and debug the performance of configurable systems. To achieve
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this goal, we explored how the techniques are used to help developers debug software systems
in general and, more relevant to the context of this thesis, how the techniques have been used
to debug the performance and other characteristics of configurable and (non-configurable)
software systems. As we will discuss in Chapter 4, we seek to develop tool support that helps
developers locate and understand how options affect, in the implementation, the performance
of configurable systems.

2.6 Summary

In this chapter, we discussed the state of the art of analyzing, modeling, and debugging the
performance of configurable systems. The insights and limitations that identified in this dis-
cussion motivate the work and the techniques used in this thesis.

Several performance modeling approaches existing to understand how options and their
interactions affect the performance of configurable systems. Most approaches, however, treat
systems as black-boxes, combining different sampling and machine learning techniques, re-
sulting in tradeoffs between measurement effort, accuracy, and interpretability of the analysis
results. The sole white-box performance modeling approach imposes strict constraints on
the the types of systems that it can analyze. In this thesis, we aim to use white-box analysis
techniques (e.g., taint analysis and performance profilers to measure method-level execution
time) to build interpretable performance-influence models to help users understand and help
developers debug how options and their interactions affect the performance of configurable
systems.

Existing performance debugging techniques for configurable systems provide limited sup-
port to developers who diagnose unexpected performance behaviors. Some techniques only
model the end-to-end performance of the systems, while others assume that developers al-
ready know which option or interaction cause unexpected performance behaviors. In this
thesis, we aim to build tool support that helps developers inspect, understand, and debug how
options and their interactions affect, both globally and in the implementation, the performance
of configurable systems.






Chapter 3

White-box Performance Modeling of
Configurable Systems

In Chapter 2, we discussed the limitations of existing approaches for modeling the perfor-
mance of configurable systems (e.g., black-box approaches rely on sampling and machine
learning strategies that tradeoff the interpretability and accuracy of the models and the cost to
learn the models) and the insights from existing white-box analyses of how options influence
the performance of configurable system (e.g., only a few options tend to interact in specific
parts of the system). Inspired by those limitations and insights, we propose, in this chapter, to
use a white-box analysis to efficiently and accurately model the performance of configurable
systems.

Our white-box approach to model the performance of configurable systems analyzes and
instruments the source code to accurately capture configuration-specific performance behav-
ior, without using machine learning to extrapolate incomplete samples. We reduce measure-
ment cost by simultaneously analyzing and measuring multiple regions of the system, building
a local linear performance-influence model per region with a few configurations (an insight
that we call compression). Subsequently, we compose the local models into a global model for
the entire system. We use a taint analysis to identify where and how load-time configuration
options influence control-flow statements in the system, through control-flow and data-flow
dependencies.

Our empirical evaluation on several widely-used open-source systems demonstrates that
our white-box approach efficiently builds accurate performance-influence models with the
additional benefit of generating interpretable and local models, which not only predict perfor-
mance of configurations, but also quantify the influence on performance of individual options
and interactions and can even map the influence to code regions.

In summary, we make the following contributions:

« The insights of compositionality and compression to accurately infer the influence of
options on the performance of numerous independent regions of a system, with a few
configurations, composing them to a global performance model.

+ The use of a taint analysis to identify how configurations influence the performance of
independent code regions.

25
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« A discussion of design decisions to operationalize our white-box approach and the im-
plementation of two prototypes.

 An empirical evaluation of the two prototypes on several widely-used open-source sys-
tems demonstrating that our white-box approach efficiently builds interpretable and
accurate performance-influence models.

The rest of this chapter is organized as follows: We first present our key insights of com-
positionality and compression for efficiently and accurately modeling the performance of con-
figurable systems (Sec. 3.1). Afterwards, we describe the three technical components of our
approach to operationalize our key insights (Sec. 3.2). Next, we discuss design decisions to
implement our approach (Sec. 3.2) and describe two prototypes (Sec. 3.4 and Sec. 3.5). Finally,
we evaluate the two prototypes against state of the art approaches to model the performance
of configurable systems (Sec. 3.6) and discuss the impact of the design decisions made in each
prototype (Sec. 3.7).

The work in this chapter is an excerpt of our ASE Journal’20 article "ConfigCrusher: To-
wards White-box Performance Analysis for Configurable Systems" [Velez et al., 2020a] and
of a conference submission under review at the time of writing — "White-box Analysis over
Machine Learning: Modeling Performance of Configurable Systems" [Velez et al., 2020b].

3.1 Key Insights for Efficient and Accurate Performance
Modeling of Configurable Systems

Inspired by the limitations of existing performance modeling approaches for configurable sys-
tems and the insights from existing white-box analyses of how options influence the perfor-
mance of configurable systems (Chapter 2), we present our key insights to efficiently and
accurately analyze and model the performance of configurable systems.

We seek to develop a white-box analysis to efficiently and accurately analyze the perfor-
mance of configurable systems, without the use of machine learning to avoid inaccuracies of
extrapolating from incomplete measurements. The analysis contributes to the thesis goal of
reducing the energy consumption and operational costs of running configurable systems since
the analysis helps model the global performance of configurable systems for users to make in-
formed configuration decisions. In Chapter 4, we will discuss how the models contribute to
the thesis goal by helping developers debug the performance of their systems.

To analyze the performance of configurable systems, we measure the execution time of
multiple configurations, similar to existing approaches, but we guide the exploration with a
white-box analysis of the internals of the system. For a given set of inputs, a configurable
system with a set of Boolean options O can exhibit up to 2!/ distinct execution paths, one
per configuration.! If we measure the execution time of each distinct path, we can map per-

'For simplicity, we describe our in terms of Boolean options, but other finite option types can be encoded or
discretized as Boolean options. The distinction between inputs and options is subjective and domain specific. We
consider options as a special type of inputs with a small finite domain (e.g., Boolean options), that a user might
explore to change functionality or quality attributes. We consider fixed values for other inputs. Note that a user
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Figure 3.1: Building performance-influence models is compositional: Instead of building a single model
for the entire system (dotted black arrow), we can simultaneously build a local model per region and
compose those models (dashed blue arrows).

e

formance differences to options and their interactions, without any approximation through
machine learning.

Our approach to efficiently and accurately analyze the performance of configurable sys-
tems relies on two insights inspired by prior work (see Sec. 2.4.3) and that we identified by an-
alyzing how options contribute to the performance of configurable systems: (1) Performance-
influence models can be built compositionally, composing models built independently for smaller
regions of the code than the entire system (cf. Fig. 3.1). (2) Multiple performance-influence
models for smaller regions can be built simultaneously by measuring the execution of a sys-
tem often with only a few configurations, which we refer to as compression.

Compositionality. Building performance-influence models is compositional: We can mea-
sure the time that smaller regions in a system (e.g., considering each method as a region) spend
executing in the CPU and build a performance-influence model per region, which describes
the performance behavior of each region in terms of options.? Subsequently, we can compose
the local models to describe the performance of the entire system; computed as the sum of the
individual influences in each model (e.g., composing 5 + 4A and 1 — 1A 4 2B to 6 + 3A + 2B).

Compositionality helps reduce the cost to model the performance of configurable systems,
as many smaller regions of a system are often influenced only by a subset of all options, a
common case confirmed by prior empirical research described in Sec. 2.4.3. Hence, the number
of distinct paths in a region is usually much smaller than the number of distinct paths in the
entire system. If we have an analysis to find the subset of options that directly and indirectly
influence smaller regions (see Sec. 3.2.1), we can build a local performance-influence model
by observing all distinct paths in a region often with only a few configurations.

might fix some configuration options as inputs and consider alternative values for inputs as options (e.g., use an
option for different workloads). We analyze the performance influence of options with finite domains, assuming
all other inputs are fixed at specific values, thus resulting in a finite, but typically very large configuration space.

2Note that we measure performance as the time that regions spend executing in the CPU, similar to the
measurement performed by performance profilers, which measure the time that methods spend executing, or
the time util, which tracks the time that threads spend executing. This time is commonly referred to as "user-
time"; the time the CPU spends in "user-mode". By contrast, wall-clock time is the actual time taken from the
start of execution to the end.
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1if(a) // variable depends on option A
2 ... // execution: 1s
3 if(b) // variable depends on option B
4 ... // execution: 2s
51if(c) // variable depends on option C
6 ... // execution: 3s

Figure 3.2: Three independent regions influenced by different options.

Our insight for modeling the performance of configurable systems: Performance-
influence models can be built by composing models built independently for smaller re-
gions of the code.

Compression. Compression makes our approach scale without relying on machine learn-
ing approximations: When executing a single configuration, we can simultaneously measure
the execution time of multiple regions. If the regions are influenced by different options, a
common case confirmed by prior empirical research described in Chapter 2.4.3, we can mea-
sure the performance of all regions with a few configurations, instead of exploring all com-
binations of all options. For example, the three independent regions in Fig. 3.2 influenced
by options A, B, and C, respectively, each have two distinct paths. Instead of exploring all 8
combinations of the three options, we can explore all distinct paths in each region with only
2 configurations, as long as each option is enabled in one configuration and disabled in the
other configuration.

Our insight for modeling the performance of configurable systems: Compression
allows us to simultaneously explore paths in multiple independent regions with a few
configurations.

Combining compositionality and compression. We combine compositionality and com-
pression to efficiently build accurate performance-influence models, without traditional sam-
pling or machine-learning techniques. To help users and developers understand the influnece
of options on the performance of systems, the resulting models can be presented in an inter-
pretable format (e.g., sparse linear models) and even be mapped to individual code regions.
Key to our approach is the property that not all options interact in the same region, instead
influencing different parts of the system independently; a pattern observed empirically in con-
figurable systems (Sec. 2.4.3).

To operationalize compositionality and compression for efficiently building accurate and
interpretable performance-influence models, we need three technical components, shown in
Fig. 3.3: First, we identify which regions are influenced by which options to select config-
urations to explore all paths per region and map measured execution time to options and
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Figure 3.3: Overview of components to efficiently building accurate and interpretable performance-
influence models.

their interactions (Sec. 3.2.1). Second, we execute the system to measure the performance of
all paths of all regions (Sec. 3.2.2). Third, we build local performance-influence models per
region and compose them into one global model for the system (Sec. 3.2.3).

3.2 Components for Modeling the Performance of Con-
figurable Systems

In this section, we describe the three technical components of our approach to operationalize
our insights of compositionality and compression for efficiently building accurate and inter-
pretable performance-influence models.

3.2.1 Analyze Options’ Influence on Regions

As a first step of our approach, we identify which options (directly or indirectly) influence
control-flow statements in which regions, which we use to select configurations to explore all
paths per region and map measured performance differences to options and their interactions
(Sec. 3.2.2).> To this end, we track information flow from options (sources) to control-flow
statements (sinks) in each region. If an option flows, directly or indirectly (including implicit
flows), into a control-flow statement in a region, it implies that selecting or deselecting the
option may lead to different execution paths within the region. Thus, we should observe at
least one execution with a configuration in which the options is selected and another execution
in which the option is not selected.

3As previously discussed in Chapter 2, we focus on configuration changes in control-flow statements, as a
system’s execution time changes in those statements, depending on which branch is executed and how many
times it is executed, confirmed by empirical research [Han and Yu, 2016; Jin et al., 2012; Nistor et al., 2015, 2013a;
Siegmund et al., 2013]. Execution differences caused by nondeterminism are orthogonal and must be handled in
conventional ways (e.g., averaging multiple observations or controlling the environment).
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1 def main(List workload)

2 a = getOpt("A"); b = getOpt("B");

3 c = getOpt("C"); d = getOpt("D");

4 . // execution time: 1s

5 int i = 0;

6 if(a) // variable depends on option A

7 . // execution time: 1s

8 foo(b); // variable depends on option B

9 i=20; Region depends on option A

10 else

11 ... // execution time: 2s

12 i=05;

13 while(i > 0)

14 bar(c); // variable depends on option C

15 i—;

16 def foo(boolean x) Region depends on options A and B
17 if(x) ... // execution time: 4s

18 else ... // execution: 1s

19 def bar(boolean x) Region depends on options A and C
20 if(x) ... // execution time: 3s

21 else ... // execution time: 1s

Figure 3.4: Example configurable system with 4 configuration options and 3 highlighted regions as
methods, in which the options influence the performance of the system.

More specifically, we conservatively partition the configuration space per region into sub-
spaces, such that every configuration in each subspace takes the same path through the control-
flow statements within a region, and that all distinct paths are explored when taking one con-
figuration from each subspace. A partition of the configuration space is a grouping of configu-
rations into nonempty subsets, which we call subspaces, such that each configuration is part of
exactly one subspace. For notational convenience, we describe subspaces using propositional
formulas over options. For example, [A A —B] describes the subspace of all configurations in
which option A is selected and option B is deselected.

To track information flow between options and control-flow statements in regions, we
use a taint analysis. During the analysis, we track how API calls load configuration options
(sources) and propagate them along data-flow and control-flow dependencies, including im-
plicit flows, to the decisions of control-flow statements (sinks). By tracking how options flow
through the system, we can identify, for each control-flow statement, the set of options that
reach the statement, potentially leading to different execution paths in a region. Subsequently,
we conservatively partition the configuration space of a region into subspaces based on the
set of options that reach the statement.

Example: The options in our running example in Fig. 3.4 (Lines 2-3) are the fields A — D.
Lines 4-5 are not influenced by any options. Lines 6-12 and Lines 13-15 are influenced by
the set of options {A}, which leads to the partition {[A], [-A] }. Lines 17-18 by {A, B}, which
leads to the partition [-A A —B], [-A A B], [A A —=B], [A A B]. Lines 20— 21 by {A, C}, which
leads to the partition [-A A —=C], [-A A C]|, [A A =C], [A A C].
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Table 3.1: Performance map per region and configuration for our running example in Fig. 3.4.

Configurations Regions
B C D Base Rl = {A} R2 = {A, B} R3 = {A,C}
F F F F 1s 2s 0s 5s
F T T F 1s 2s 0s 15s
T F F F 1s 1s 1s 20s
T T T F 1s 1s 4s 60s
F: False; T: True. We show the set of options that influence each region.

3.2.2 Measure Performance of Regions

We measure the time the system spends in each region when executing a configuration, re-
sulting in performance measurements for each pair of configuration and region. We measure
self-time per region to track the time spent in the region itself, which excludes the time of calls
to execute code from other regions.

Ideally, we want to find a minimal set of configurations, such that we explore at least one
configuration per subspace for each region’s partition. Since finding the optimal solution is
NP-complete* and existing heuristics from combinatorial interaction testing [Al-Hajjaji et al.,
2016; Hervieu et al., 2011, 2016; Kuhn et al., 2013] are expensive, we developed our own simple
greedy algorithm: Incrementally intersecting subspaces that overlap in at least one configura-
tion, until no further such intersections are possible. Then, we simply pick one configuration
from each subspace.

Example: In our running example in Fig. 3.4, four configurations cover all subspaces, for in-
stance, {{}, {A}, {B, C}, {AB,C} }, where each set represent the options that are selected in the
configuration. Table 3.1 presents a performance map per region and executed configuration
of our running example.

3.2.3 Building the Performance-Influence Model

In the final step, we build performance-influence models for each region based on the (1) the
partitions identified per region and (2) the performance map per region and configuration. We
then compose the local models into a performance-influence model for the entire system.
Since we collect at least one measurement per distinct path through a region, building
models is straightforward, without the need of using machine learning to extrapolate from
incomplete samples. For a region with a partition and a set of configurations with corre-
sponding performance measurements, we associate each measurement with the subpsace of
the partition to which the configuration belongs. If multiple measured configurations belong
to the same subspace, we expect the same performance behavior for that region (modulo mea-
surement noise) and average the measured results. As a result, we can map each subspace of

“The problem can be reduced to the set cover problem, in which the union of a collection of subsets (all
subspaces) equals a set of elements called "the universe" (the union of all subspaces). The goal is to identify the
smallest sub-collection whose union equals the universe.
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a region’s partition to a performance measurement. For instance, for the region in foo in our
running example in Fig. 3.4, all configurations in which A is deselected take 0 seconds, all
configurations in which A is selected and B is deselected take 1 second, and all configurations
in which A and B are selected take 4 seconds.

For interpretability, to highlight the influence of options and avoid negated terms, we write
linear models in terms of options and interactions, for example m¢,, = 1A + 3AB.

The global performance-influence model is obtained simply by aggregating all local mod-
els; we add the individual influences of each model. Note the local models can be useful for
understanding and debugging individual regions, as they describe the performance behavior
of each region (see Chapter 4).

Example: With the performance map per region and configuration in Table 3.1 for our run-
ning example in Fig. 3.4, we build the local models myse = 1, mgy = 2 — 1A, mg, = 1A+ 3AB, and
mr3 = 5 + 15A + 10C + 30AC, which can be composed into the global performance-influence
model m = 8 4 15A + 10C + 3AB + 30AC.

3.3 Design Decisions for Modeling the Performance of Con-
figurable Systems

In this section, we discuss the tradeoffs of our white-box approach to analyze and measure the
influence of options on regions, and how different decisions impact our approach for modeling
the performance of configurable systems.

3.3.1 Analyze Option’s Influence on Regions

In the first step of our approach, we analyze the (direct and indirect) influence of options on the
decisions of control-flow statements (Sec. 3.2.1). The analysis can be performance statically
or dynamically with different tradeoffs.

The main benefit of a static taint analysis is that it covers all execution paths in a single
analysis of the system [Arzt et al., 2014]. However, the analysis might cover parts of the system
that are never executed, which can increase the time of the analysis and threaten its scalability
in large-scale systems. Additionally, the analysis only indicates the options or interactions
that might affect the decisions in control-flow statements (i.e., there might be false positives),
which might unnecessarily increase the number of configurations that we measure.

The main benefit of a dynamic taint analysis is that it executes the system tracking how op-
tions actually influence the decisions in control-flow statements (i.e., no false positives) [Bell
and Kaiser, 2014]. However, dynamic analyses are, by definition, unsound; we cannot know
how options influence the decisions in control-flow statements in the parts of the system that
are not executed. Accordingly, we would need to execute the analysis multiple times with dif-
ferent configurations, which might threaten its scalability in systems with large configuration
spaces.

These considerations can affect the accuracy of the models that we generate, as well as the
scale of the systems that our approach can analyze.
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3.3.2 Granularity of Regions, Compression, and Measuring Perfor-
mance

We can consider regions at different granularities, which impact how much compression we
obtain and the effort to measure the performance of the regions (Sec. 3.2.2).

On one extreme, we could consider the entire system as a single region (as black-box
approaches do), but would not benefit from compression. At the other extreme, we could
consider each control-flow statement as the start of its own region, ending with its immediate
post-dominator, which results in maximum compression, but in excessive measurement cost;
this fine-grained granularity is analogous to using an instrumentation profiler, but instead of
focusing on a few locations of interest, as usually recommended [Lange, 2011], we would add
instrumentation throughout the entire system at control-flow statements.

We can also consider methods as regions. In this case, we may lose some compression
potential compared to more fine-grained regions, if multiple control-flow statements within
a method are influenced by distinct options. On the other hand, we can use off-the-shelf
sampling profilers that accurately capture performance with low overhead, and simply map
the performance of methods to the closest regions on the calling stack.

These considerations can affect the cost to generate our models, in terms of the number
of configurations to measure and the effort to measure regions.

3.3.3 Implementing Two Prototypes

We implemented two prototypes for modeling the performance of configurable systems to
empirically evaluate the tradeoffs of the taint analyses and granularity of regions discussed
above. We implemented ConfigCrusher [Velez et al., 2020a], which uses a static taint analy-
sis considering control-flow statements as regions, and Comprex [Velez et al., 2020b], which
uses a dynamic taint analysis considering methods as regions. In the following sections, we
describe the implementation of each prototype.

3.4 ConfigCrusher

In this section, we describe the implementation of our approach to model the performance of
configurable systems using a static taint analysis and considering control-flow statements as
regions.

3.4.1 Analyze Options’ Influence on Regions

We used the state of the art object-, field-, context-, and flow-sensitive static taint analysis
engine FlowDroid for Java systems [Arzt et al., 2014]. We tracked control-flow and and data-
flow dependencies (including implicit flows) as described in Sec. 3.2.1 considering control-flow
statements as regions.
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3.4.2 Measure Performance of Regions

To measure the performance of control-flow statements as regions, we need to instrument the
regions. We developed an algorithm to identify and instrument the start and end of regions
(more details in [Velez et al., 2020a]). One important task of the algorithm is to find the end
of a region where all the paths originating from a control-flow statement meet again (i.e., the
immediate post-dominator).

We instrument the start and end of regions with statements to log their execution time.
We also instrument the entry point of the system (e.g., the main method in a Java system) to
measure the performance of code not influenced by any options. The result of executing an
instrumented system is the total time spent in each region.

Optimization. When we executed our instrumented systems, we observed excessive exe-
cution overhead even in small systems. We found that the overhead arose from redundant,
nested regions (i.e., regions with the same set of influencing options), and regions executed
repeatedly in loops. Consequently, we identified optimizations to reduce measurement over-
head through instrumenting regions differently without altering the measurements that we
collect.

Specifically, we developed two algorithms to propagate the options that influence state-
ments up and down a control-flow graph (i.e., intraprocedually), as well as across graphs (i.e.,
interprocedually), to combine regions and pull out nested regions. The algorithms never cre-
ate new interactions nor do they alter the performance measurements that we collect, but
significantly reduce the overhead of measuring the instrumented system (more details of the
algorithms can be found in [Velez et al., 2020a])).

3.5 Comprex

In this section, we describe the implementation of our approach to model the performance of
configurable systems using a dynamic taint analysis and considering methods as regions.

3.5.1 Analyze Options’ Influence on Regions

We used Phosphor, the state of the art tool for dynamic taint analysis in Java [Bell and Kaiser,
2014]. We tracked control-flow and and data-flow dependencies (including implicit flows) as
described in Sec. 3.2.1 considering methods as regions. However, to partition the configuration
space per region, we iteratively execute the dynamic taint analysis with different configura-
tions until we have explored all distinct paths in each region.

Incrementally partitioning the configuration space. We developed an algorithm to par-
tition the configuration space per region, based on incremental updates from our dynamic taint
analysis (more details in [Velez et al., 2020b]). Intuitively, we execute the system in a configura-
tion and observe when data-flow and control-flow taints from options reach each control-flow
decision in each region, and subsequently update each region’s partition: Whenever we reach
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{A.D} {(ABC) o ©
1 def main(List workload)
2 a = getOpt("A"); b = getOpt("B");
3 c = getOpt("C"); d = getOpt("D");
4 -
5 int 1 = 0;
6 if(a)
7 -
8 foo(b); [ATL [-A]] [[ATL [-A] [[ATL [[-A] [[ATL [-A]]
9 i = 20;
10 else
11 .
12 i=75;
13 while(i > 0)
14 bar(c);
15 i—;
16 det Too(bootean x) [AABI] [AA-B,  [(A\BI} [A-BI,  [[ABI, AN-8I,  [[AABI] [[Ar-BI)
& eles [[-AT] (-AT [-AT [-AT
19 def b bool
o i?(rf()m_’fa" x) [IAACIL IAA-Cll,  [IAACIL IAA-Cll,  [IAACIL [AA-CTl,  [IAACT], [[AA=C],
0 else [[-AT [[-A] [~AACI, [FAA=C]] [~AACI, [[~AA-C]]

Figure 3.5: Example of iteratively executing the taint analysis on our running example in Fig. 3.4. Four
configurations explore all subspaces for the three regions in the system, where each set represents the
options selected in the configuration. For each configuration, we show the subspaces generated for
each region. Subspaces in red still need to be explored, whereas subspaces in green have been explored
in previous configurations. Note how we explore the nested if statement in method foo with 3 instead
of 4 subspaces by separately tracking data-flow and control-flow taints. Also note how we update the
[—A] subspace in method bar after the third configuration to explore the region with both values of C
when A is deselected.

a control-flow statement during execution, we identify, based on taints that reach the condi-
tion of the statement, the sets of configurations that would possibly make different decisions,
thus updating the partition that represents different paths for this region. Since a dynamic
taint analysis can only track information flow in the current execution, but not for alternative
executions (i.e., for paths not taken), we repeat the process with new configurations, selected
from the partitions identified in prior executions, updating partitions until we have explored
one configuration from each subspace of each partition; that is, until we have observed each
distinct path in each region at least once. Note that some subspaces in the region might make
the same control-flow decision as other subspaces, but we do not know which subspace will
make which decision until we actually execute those configurations.

Distinguishing data-flow taints from control-flow taints allows us to perform an additional
optimization to more efficiently explore nested decisions (e.g., if (a){ if(b) ... }). Control-
flow taints specify which options (directly or indirectly) influenced outer control-flow deci-
sions, which indicate that different assignments to options in the control-flow taints may lead
to paths where the current decision is not reached in the first place. Hence, we do not neces-
sarily need to explore all interactions of options affecting outer and inner decisions. Instead
of exploring combinations for all options of data-flow and control-flow taints, as we did when
using a static taint analysis, we first split the configuration space into those configurations for
which we know that they will reach the current decision, because they share the assignments
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of options in control-flow taints, and the remaining configurations which may not reach the
current decision. Then, we only create subspaces for interactions of options in data-flow taints
for configurations that reach the current decision, and consider the entire set of configurations
that may not reach the decision as a single subspace. The iterative nature of our analysis en-
sures that at least one of the configurations which may not reach the current decision will be
explored, and, if the configuration also reaches the same decision, the region’s partition will
be further divided.

The iterative analysis executes the system in different configurations until one configura-
tion from each subspace of each partition in each region has been explored. That is, we start
by executing any configuration (e.g., the default configuration), which reveals the subspaces
per regions that could make different decisions. The algorithm then selects the next config-
uration to explore unseen subspaces in the regions, which may further update the regions’
partitions. To select the next configuration, we use a greedy algorithm to pick a configuration
that explores the most unseen subspaces across all regions.

Example: Fig. 3.5 presents an example of executing the iterative analysis on our running
example in Fig. 3.4.

Dynamic Taint Analysis Overhead. We observed that tracking control-flow dependen-
cies imposes significant overhead in the system’s execution. For instance, one execution of
our subject system Berkeley DB takes about 1 hour with the dynamic taint analysis, whereas
around 300 configurations can be executed in the same time! In general, we observe 26 x to
300x overhead from taint tracking, which varies widely between systems. In fact, the itera-
tive analysis did no finish executing after 24 hours in all subject systems, except for Apache
Lucene, which executed in 11 hours. To reduce cost, we execute the iterative analysis with a
drastically reduced workload size.

This optimization is feasible when the workload is repetitive and repetitions of operations
are affected similarly by options, which we conjecture to be common in practice. Many per-
formance benchmarks execute many operations, which are similarly affected by configura-
tion options. For instance, Berkeley DB’s MeasureDiskOrderedScan benchmark populates a
database, which can be scaled by a parameter that controls the number of entries to insert,
but does not affect which operations are performed. In our evaluation, we show that we can
generate accurate performance-influence models using a significantly smaller workload in the
iterative analysis.

3.5.2 Measure Performance of Regions

To measure the performance of methods as regions, we use JProfiler, an off-the-shelf sampling
profiler that accurately captures performance of methods with low overhead [JPR, 2019].

To avoid enumerating an exponential number of configurations, we use a greedy algorithm that picks a
random subspace and incrementally intersects it with other non-disjoint subspaces, which seems sufficiently
effective in practice. The problem can also be encoded as a MAXSAT problem, representing subspaces as propo-
sitional formulas, to find the configuration that satisfies the formula with the most subspaces.
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Table 3.2: State of the art approaches compared to ConfigCrusher in [Velez et al., 2020a] and Comprex
in [Velez et al., 2020b].

Approach Compared to ConfigCrusher Compared to Comprex
Feature-wise & SL X v
Feature-wise & LL X v
Feature-wise & SLR v v
Feature-wise & EN X v
Feature-wise & SDT X 4
Feature-wise & DT X 4
Feature-wise & RF X v
Feature-wise & NN X v
Pair-wise & SL X v
Pair-wise & LL X v
Pair-wise & SLR v 4
Pair-wise & EN X 4
Pair-wise & SDT X v
Pair-wise & DT X v
Pair-wise & RF X 4
Pair-wise & NN X v
50 random configurations & SL X v
50 random configurations & LL X 4
50 random configurations & SLR X v
50 random configurations & EN X v
50 random configurations & SDT X v
50 random configurations & DT X v
50 random configurations & RF X 4
50 random configurations & NN X v
200 random configurations & SL X v
200 random configurations & LL X 4
200 random configurations & SLR X v
200 random configurations & EN X 4
200 random configurations & SDT X v
200 random configurations & DT X v
200 random configurations & RF X v
200 random configurations & NN X v
Family-based! v Not Applicable

SL: Simple linear regression; LL: Lasso linear regression; SLR: Stepwise linear regression; EN:
Elastic net linear regression; SDT: Shallow decision tree (max depth=3); DT: Decision tree; RF:
Random forest; NN: Multi-layer preceptron;

! Originally evaluated in [Velez et al., 2020a], as it was the current white-box state of the art
approach. We do not propose to evaluate the approach with Comprex, due to the former’s
known limitations (Chapter 2).

3.6 Evaluation

We evaluated ConfigCrusher [Velez et al., 2020a] and Comprex [Velez et al., 2020b], sepa-
rately, using different subject systems and against different state of the art approaches to build
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Table 3.3: Subject systems evaluated with ConfigCrusher in [Velez et al., 2020a] and Comprex in [Velez
et al., 2020b].

System Domain #SLOC #Opt. #Conf. Prototype used for evaluation
Pngtastic Counter Image processor 1250 5 32 ConfigCrusher
Pngtastic Optimizer Image optimizer 2553 5 32 ConfigCrusher
Elevator SPL benchmarkr 575 6 20  ConfigCrusher
Grep Utility 2152 7 128  ConfigCrusher
Kanzi Compressor 20K 7 128 ConfigCrusher
Email SPL benchmark 696 9 40  ConfigCrusher
Prevayler Database 1328 9 512  ConfigCrusher
Sort Utility 2163 12 4096 ConfigCrusher
H2 Database 142K 16 65K  Comprex
Berkeley DB Database 164K 16 65K  Comprex
Apache Lucene Index/Search 396K 17 131K Comprex
Density Converter V1! Image processor 1359 22 49M  ConfigCrusher
Density Converter V2! Image processor 49K 22 49M Comprex

Opt: Options; Conf: Configurations; !: The system is an interface to several libraries for processing images.
We included and analyzed all Java dependencies in this version of the system.

performance-influence models, for a specific workload, input size, and underlying hardware.
Table 3.2 shows an overview of the state of the art approaches we evaluated.

Proposed work: For completenes, we propose to evaluate ConfigCrusher and Comprex
against the same state of the art approaches.

Subject Systems

We selected 13 configurable widely-used open-source Java systems that satisfy the following
criteria (common in our domain): (a) systems from a variety of domains to increase external
validity, (b) systems with binary and non-binary options, and (c) systems with fairly stable
execution time (we observed execution times within usual measurement noise for repeated
execution of the same configuration). Table 3.3 provides an overview of all subject systems.

ConfigCrusher limitation. We observed that the scalability of ConfigCrusher is limited
by the used static taint analysis. Specifically, the analysis is challenged by the size of the
call graph, which restricts the size of the systems that our implementation can analyze [Arzt
et al., 2014; Avdiienko et al., 2015; Bodden, 2018; Do et al., 2017; Lerch et al., 2015; Pauck et al.,
2018; Qiu et al., 2018; Wang et al., 2016]; the largest subject system for which the static taint
analysis terminated was Kanzi, which has over 20K SLOC. Accordingly, we only evaluated
ConfigCrusher using the 9 subject systems with under 20K SLOC.

Comprex. We originally evaluated Comprex on medium- to large-scale systems in [Velez
et al., 2020b] to demonstrate that a white-box analysis can model the performance of large
systems in terms of SLOC.
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System Brute-force Feature-wise  Pair-wise Family-Based! = ConfigCrusher?
Pngtastic Counter 32 [2.9m] 5[27.2s] 6 [1.5m] N/A 4 [21.9s, 7.85]
Pngtastic Optimizer 32 [42.2m] 5 [1.6m] [10 Om] N/A 10 [10.7m, 30 6s]
Elevator 20 [10.8m] 3 [50.0s] 9 [3.3m] 1 [49.55] 64 [—]
Grep 128 [10.6m] 7 [22.1s] 29 [1.9m] N/A 64 [5.1m, 10.2s]
Kanzi 128 [1.2h] 7 [1.5m] 29 [8.8m] N/A 64 [35.4m, 12.65]
Email 40 [16.9m] 4 [23.55] 1 [1.7m] 1[1.1m] 8 [1.5m, 12.8s]
Prevayler 512 [3.7h] 9 [2.7m] [16 Om] N/A 32 [14.5m, 12.65]
Sort 1298 [18.4h] 2[13.1m] 79 [1.4h] N/A 256 [3.7h, 21.6s]
Density Converter V1 1414 [14.7h] 22 [21.3m] 254 [4.1h] N/A 256 [2.1h, 42.15]

! Not applicable to systems without static map derived from compile-time variability.
2 Time includes the overhead of the static taint analysis.

(a) Cost of building performance-influence models, in terms of number of configurations measured and
the time to measure the configurations. For ConfigCrusher, we indicate the time to run the static taint
analysis.

System Feature-wise Pair-wise Family-Based! ConfigCrusher
Pngtastic Counter 0.8 2.0 N/A 1.1
Pngtastic Optimizer 19.7 0.9 N/A 1.1
Elevator 51.1 1.5 2.7 %)
Grep 32.1 114.7 N/A 3.6
Kanzi 1.9 1.3 N/A 2.7
Email 100 44.2 2.3 23.0
Prevayler 111.2 29.2 N/A 9.2
Sort 90.0 653.0 N/A 1.6
Density Converter V1 635.2 2189 N/A 4.3

Bolded values in |cells indicate indistinguishable lowest errors. & approach sampled
all configurations, thus no performance to predict.

! Not applicable to systems without static map derived from compile-time variability.

(b) Mean Absolute Percentage Error (MAPE) comparison (lower is better).

Table 3.4: Cost and accuracy comparison.

Proposed work: We propose to evaluate all subject systems with Comprex in the final dis-
sertation document.

3.6.1 ConfigCrusher

We compared ConfigCrusher to the Family-Based approach [Siegmund et al., 2013], and two
combinations of sampling approaches with stepwise linear regression [Siegmund et al., 2015,
2012a,b]: feature-wise sampling (i.e., enable one option at a time) and pair-wise sampling (i.e.,
cover all combinations of all pairs of options) [Medeiros et al., 2016]. Specifically, we mea-
sured the accuracy of the models and the cost to build the models, in terms of the number of
configurations measured, the time to measured those configurations, and for ConfigCrusher,
the time to run the static taint analysis.
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Table 3.4 summarizes the cost and error results. ConfigCrusher’s prediction error is indis-
tinguishable or lower than other approaches. Furthermore, ConfigCrusher’s high accuracy is
usually achieved with lower cost compared to the other accurate approaches. The efficiency
originates from ConfigCrusher’s white-box analysis to identify a small number of relevant
configurations to capture the performance-relevant interactions.

Though feature-wise and pair-wise tended to measure fewer configurations than Con-
figCrusher, when their errors are taken into account, we can conclude that more configu-
rations had to be measured to make more accurate predictions. By comparison, for those
systems, ConfigCrusher sampled more configurations, but attained significantly lower errors.

3.6.2 Comprex

We compared Comprex to numerous combinations of sampling and learning approaches (see
Table 3.2). For learners, we evaluate variations of linear regressions [Siegmund et al., 2015,
2012a,b], decision trees and random forest [Grebhahn et al., 2019; Guo et al., 2013, 2017; Sarkar
et al., 2015], and a neural network. For sampling, we evaluate uniform random sampling with
50 and 200 configurations, feature-wise sampling (i.e., enable one option at a time), and pair-
wise sampling (i.e., cover all combinations of all pairs of options) [Medeiros et al., 2016]. We
selected 50 and 200 random configurations to use more configurations than other sampling
strategies and use sampling sets comparable to ones used in related research. In this proposal,
we highlight the results for stepwise linear regression and random forest. Similar conclusions
can be drawn when comparing Comprex to the other black-box approaches. Specifically, we
measured the accuracy of the models and the cost to build the models, in terms of the number
of configurations measured, the time to measured those configurations, and for Comprex, the
time to run the iterative taint analysis. Since we compare Comprex to non-linear models, we
also discuss the interpretability of the models generated by each approach.

Interpretability. We intend the models generated with our approach to be used in perfor-
mance understanding and debugging tasks. Hence, is beneficial for these tasks if the models
are easy to interpret by users and developers.

Despite much research on the intrepretability of models, there is no generally agreed
measure or even definition for interpretability [Doshi-Velez and Kim, 2017; Molnar, 2019].
Nevertheless, interpretability typically captures the ability of humans to make predictions,
understand predictions, or understand the decisions of the model. Researchers typically dis-
tinguish between (1) inherently interpretable models, which humans can inspect and directly
reason about the model structure and parameters, and (2) post-hoc explanations, where tools
provide explanations [Lundberg and Lee, 2017; Molnar, 2019; Ribeiro et al., 2016; Strumbelj
and Kononenko, 2014] while model internals are not directly shown [Molnar, 2019]. Our
discussion focuses on the former, since post-hoc explanations may be unreliable or mislead-
ing [Rudin, 2019].

Sparse linear models, with dozens of individual and interacting terms are generally accepted
as inherently interpretable [Molnar, 2019]. Humans can inspect them, reason about factors,
and make and understand predictions. For instance, machine learning researchers recommend
these models in high-stakes decisions, when auditing the model is paramount [Rudin, 2019].
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Sample Apache Lucene H2 Berkeley DB Density Converter V2
BF 217 [~48.4d]  2'° [~16.0d] 216 [~8.6d] 222 [~3.6y]
R50 0[26.7m] 50 [16.4m] 50 [9.1m] 50 [10.1m]
R200 200 [1.8h] 200 [1.1h] zoo [36 4m)] 200 [40 4m]
FW 17 [8.6m] 16 [2.4m] 16 [4.8m] 22 [8.2m]
PW 154 [1.3h] 137 [21.1m] 137 [39.4m] 254 [1.8h]
Comprex 26 [14.9m] 64 [22.6m] 144 [30.2m] 88 [16.6m]

The time to measure configurations for BF is extrapolated from 2000 randomly selected

configurations.
(a) Number and cost of sampling configurations.
Approach  Apache Lucene H2 Berkeley DB Density Converter V2
R50 & LR 8.9s 6.65s 5.7s 14.9s
R200 & LR 6.8m  4.6m 4.9m 1.6m
FW & LR 9.4s 4.3s 7.7s 19.8s
PW & LR 1.7m  44.8s 3.6m 5.5m
* & RF <0.2s <0.2s <0.3s <0.2s
Comprex 289m  9.3m 11.2m 8.5m
(b) Learning/Analysis time.
Approach ~ Apache Lucene H2 Berkeley DB Density Converter V2
R50 & LR 4.5 124.1 19.7 1037.2
R200 & LR 2.9 93.9 14.9 434.5
FW & LR 7.9 1293 768.7 1596.0
PW & LR 4.7 1133 34.2 1596.0
R50 & RF 0.8 6.5 14.1 268.7
R200 & RF 0.3 0.7 1.1 5.5
FW & RF 8.7 119.0 106.1 1185.9
PW & RF 4.0 124.6 53.5 403.6
Comprex 3.2 2.9 5.0 9.4

LR: Stepwise linear regression; RF: Random forest; R50: 50 random configu-
rations; R200: 200 random configurations; FW: Feature-wise; PW: Pair-wise;
Bolded values in cells indicate similarly low errors.

(c) Mean Absolute Percentage Error (MAPE) comparison (lower is better).

Table 3.5: Cost and accuracy comparison.

Likewise, interviews have shown that developers understand linear performance models with
a few dozen terms [Kolesnikov et al., 2018]. Hence, we argue that the kind of models we build
are interpretable.

Decision trees are also often considered as inherently interpretable [Rudin, 2019] when
understanding the decisions behind a single prediction, as following a specific path and all
involved decisions in a model is easy. However, identifying influences of factors globally is
more challenging, as a factor may occur in many places in a tree and one has to reason about
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many or all paths (e.g., how much interacting options slow down the systems). When decision
trees get deep, the models becomes more tedious to understand.

In contrast to decision trees, random forests are not considered inherently interpretable,
because they are an ensemble of numerous (e.g. 100) decision trees. Understanding random
forests would require to understand the average effect of options around all trees, which are
usually fairly deep.

Results. Table 3.5 summarizes the cost and error results. Overall, Comprex builds models
that are similarly accurate to those learned by the most accurate and expensive black-box
approach (random forests with 200 samples), but our models are interpretable and usually
built more efficiently, despite the cost of the iterative analysis. Comprex outperforms other
approaches that build linear models by a wide margin.

While random forest with 200 samples produced slightly more accurate models than Com-
prex, Comprex was usually more efficient, in some cases building models in half the time, while
also generating local models and interpretable models. The efficiency originates from Com-
prex’s white-box analysis to identify a small number of relevant configurations to capture the
performance-relevant interactions. By contrast, as our results show, black-box approaches
perform significantly worse on such small samples (e.g., compare R50 and R200 results).

[ Thesis contribution: Our white-box prototypes can efficiently and accurately model the |
performance configurable systems. The accurate models are often built more efficiently |
than approaches with comparable accuracy. |

I Overall, the interpretable models can help users make informed configuration deci- |

| sions to run systems more efficiently, thus reducing the energy consumption and opera- |

| tional costs of running configurable systems. )

3.7 Discussion

Based on our empirical evaluation, we now discuss the impact of the design decisions made
in ConfigCrusher and Comprex on the types of systems that can be analyzed and the cost to
build models.

3.7.1 Static vs. Dynamic Taint Analysis

The different types of running a taint analysis resulted in different tradeoffs when modeling
the performance of configurable systems. On one hand, we executed the static taint analysis
once in a few seconds, which reduces the cost to build our models. However, the static taint
analysis was limited to relatively small systems. On the other hand, we executed multiple
configurations to run the iterative taint analysis, but we were able to analyze medium- to large-
scale systems by executing the analysis with a reduced workload size. While both analyses
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allowed us to generate accurate models, our results indicate that a dynamic taint analysis can
be used to model the performance of large systems, in terms of SLOC.

Originally, we did not evaluate Comprex on the relatively small configurable systems for
which ConfigCrusher efficiently generate accurated performance-influence models. We pro-
pose to evaluate ConfigCrusher and Comprex more closely by evaluating the relatively small
configurable systems with Comprex to compare the cost to build the models, including the
analyses times, and their accuracy. We expect the comparison to yield similar results to evalu-
ating the two versions of Density Converter with ConfigCrusher in Table 3.4 and Comprex in
Table 3.5; the approaches generated similarly accurate models (4.3 vs. 9.4 in terms of MAPE),
but Comprex measured far fewer configurations (256 vs 88), and overall took less time to build
the model (2.1 hours vs. 25.1 minutes), thanks to (1) actually tracking, with a dynamic analy-
sis, how options influence the decisions of control-flow statements and (2) separately tracking
control-flow and data-flow taints to identify that some options are only relevant in certain
executions of outer control-flow decisions.

3.7.2 Granularity of Regions, Compression, and Measuring Perfor-
mance

Considering different granularities of regions yielded different tradeoffs between compression
potential and measuring the performance of regions. One one hand, considering control-
flow statements as regions in ConfigCrusher resulted in maximum compression, but caused
excessive measurement overhead, as we instrument numerous locations in the system, but
overcame by optimizing how we instrumented regions. On the other hand, we considered
methods as regions in Comprex, which allowed us to use an off-the-shelf sampling profiler to
accurately measure the performance of methods with low overhead, but potentially lost some
compression opportunities.

We explored the impact of choosing regions at different granularities on the number of
configurations to measure. Specifically, we executed Comprex’s iterative analysis considering
each method as a region. We additionally tracked partitions for control-flow statements and
derived partitions for the entire system by combining the partitions of all methods. We per-
formed the analysis using the 4 subject systems that we originally evaluated in [Velez et al.,
2020b], but conjecture that we will obtain similar results in the other systems, as all systems
evaluated with both prototypes have similar characteristics of how options are used and in-
teract in configurable systems.

Results. Table 3.6 reports the size of the minimum set of configurations needed to cover each
subspace of each region’s partition for each granularity. When considering the entire system
as a region, significantly more configurations need to be explored, as we do not benefit from
compression. Interestingly though, while there are, as expected, fewer regions at the method
level than at the control-flow statement level, the number of configurations needed is the
same. These results show that compression at finer-grained levels than the method level does
not yield additional benefits in our subject systems.

We found that the control-flow statement regions combined within a method are usually
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Table 3.6: Number of regions and configurations to measure with compression at different region gran-
ularities.

Control-flow Method Program
System #Reg. #Conf. #Reg. #Conf. #Reg. #Conf.
Lucene 1654 26 551 26 1 16384
H2 2483 64 932 64 1 256
Berkeley DB 2152 144 718 144 1 2048
Density Converter 190 88 62 88 1 4608

#Reg: Number of regions; #Conf: Number of configurations. Bolded values

in cells indicate the fewest number of configurations to cover all partitions’
subspaces.

partitioned in the same way. Only in 3 out of 2263 method level regions, the method’s parti-
tion had more subspaces than the corresponding control-flow statement regions (e.g., two if
statements depending on different options). However, in all three cases, the additional sub-
spaces were already explored in other parts of the system. Hence, no additional configurations
needed to be explored.

We conclude that fined-grained compression is highly effective, but that control-flow gran-
ularity does not appear to offer significant compression benefits over method granularity. Ac-
cordingly, we conclude that considering methods as regions is highly efficient to reduce (1) the
number of configurations to measure and (2) the overhead to measure the performance of re-
gions.

3.8 Summary

This chapter presented compositionality and compression, the key insights for efficiently and
accurately modeling the performance of configurable systems. Based on different alternatives
to implemented our approach, in terms of which type of taint analysis to use and which gran-
ularity to consider for regions, we presented two prototypes, ConfigCrusher and Comprex.
Our evaluation of ConfigCrusher and Comprex demonstrated that a white-box analysis can
be used to efficiently build accurate and interpretable performance-influence models. How-
ever, using a dynamic taint analysis and measuring the performance of methods as regions,
which is how Comprex was implemented, can scale the analysis to medium- and large-scale
configurable systems.



Chapter 4

White-box Performance Debugging in
Configurable Systems

In Chapter 2, we discussed existing research indicating that global performance-influence
models provide useful, yet limited, information for debugging the performance of configurable
systems in the implementation. In Chapter 3, we used a white-box analysis to efficiently build
accurate and interpretable global performance-influence models, which can help developers
understand how options affect the end-to-end performance of configurable systems. In this
chapter, we propose to design and evaluate debugging tools to help developers in the process
to debug the performance, in the implementation, of configurable systems.

Our white-box approach to model the performance of configurable systems (Chapter 3)
builds local performance-influence models for regions in the systems. We conducted an em-
pirical exploratory evaluation, which demonstrates that these models are a useful tool for de-
bugging, as they indicate where options affect the performance in configurable systems and
help navigate more targeted components when debugging performance. While these models
help locate where options affect the performance of a system, the models do not indicate how
options, in the implementation, affect the performance of the regions.

To further help developers understand how options affect the performance of configurable
systems in the implementation, we propose to develop new tool support to provide developers
with relevant information for inspecting, understanding, and debugging the performance of
configurable systems. We propose to guide the design of the tool support based on user studies
that explore the process that developers follow and the information needs that they have when
debugging the performance of configurable systems. Subsequently, we propose to conduct a
user study to validate the usefulness of all the tools that we present in this thesis to help
developers in the process of debugging the performance of configurable systems.

In summary, we make the following contributions:

« A discussion of the usefulness of local performance-influence models to identify how
options affect the performance of systems in the implementation.

+ Proposed work: The results of a user study to understand the process that developers
follow and the information needs that they have when debugging the performance of
configurable systems.

45
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+ Proposed work: Tool support, guided by the insights from our user study, that provides
relevant information to help developers in the process of debugging the performance of
configurable systems.

« Proposed work: The results of a user study validating the usefulness of the tools that
we provide in this thesis.

The rest of this chapter is organized as follows: We first explore the usefulness of local
performance-influence models to understand how options affect the performance of a system
in the implementation (Sec. 4.1). Based on the information and lack thereof provided by local
models, we set out to explore, through a user study, the process that developers follow and the
information that they need to debug the performance of configurable systems (Sec. 4.2). Based
on preliminary results, we outline potential tool designs to provide that information (Sec. 4.3).
Finally, we propose to conduct a user study to validate the usefulness of the information that
we provide to debug the performance of configurable systems. (Sec. 4.4).

The work in this chapter is derived in part from our ASE Journal’20 article "ConfigCrusher:
Towards White-box Performance Analysis for Configurable Systems" [Velez et al., 2020a].

4.1 Exploratory Analysis of Local Models

The global performance-influence models that we generate with our white-box technique
(Chapter 3) can help developers understand the influence of options on the end-to-end per-
formance of a system. Ideally though, the models would also indicate where the influence of
options occurs in the implementation and how options influence, in the implementation, the
performance of those locations in the system. Currently, however, developers would probably
need to navigate the entire code base to answer those questions.

In Chapter 3, we presented local performance-influence models, which can further help
developers debug the performance of configurable systems, as the models indicate where the
influence of options occurs in the implementation.

To investigate the usefulness of local performance-influence models to understand how
options affect the performance behavior of a system in the implementation, we conducted
an exploratory study of the local models of the smaller systems we evaluated in Chapter 3.
Specifically, we examined local performance-influence models and analyzed their correspond-
ing regions in the code. We classified regions according to how options affect the regions’
performance, determined how many options influence the performance of the regions, and
identified the code structures that cause the performance changes in the regions.

Table 4.1 summarizes the analysis of the local performance-influence models and their
corresponding regions. The local models helped us identify that the influence of options on
performance can be localized to a few regions in a system, where only subsets of all options
interact. Additionally, we easily located these regions in the source code to further analyze
their performance behavior.

The performance behavior of the regions was caused by options influencing a loop or a
control-flow statement within a loop, which either manipulated data structures, performed I/O
operations, or caused threads to sleep. The structures that caused the performance behavior in
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Table 4.1: Analysis of options in local performance-influence models.

NEG PNIONon-NE G Performance influenced by options

System Regions Regions Regions MinID MaxID Structure
Pngtastic Counter 13 2 0 N/A N/A  Loop, I/O
Pngtastic Optimizer 3 1 3 3 3 Loop, I/O
Grep 0 0 1 6 6 Loop

Kanzi 19 2 2 6 6 Loop, /O
Email 7 0 4 2 8 Loop, Sleep
Prevayler 22 1 5 2 5 Loop, I/O
Sort 0 0 1 8 8 Loop
Density Converter V1 8 1 1 8 8 Loop, I/O

PNIO: Performance not influenced by options; NEG: Negligible execution time (region which con-
tribute < 5% of the execution time of the system); ID: Interaction degree.

aregion were sometimes located in the same method where the region was instrumented (e.g.,
a loop performing I/O operations). In other cases, though, we found, by navigating through
the code, that the structures were located in other methods called by the region (e.g., a loop
that calls methods that perform I/O operations).

In the vast majority of regions, the control-flow statements were indirectly influenced by
configuration options; options were not directly used those statements. Rather, the objects,
collections, or variables used in those statements were manipulated by options, often outside
of the region. That is, the local models helped us localize where options affect the performance
behavior of a system (symptom), but the reasons for how options manipulate objects, collec-
tions, or variables that are propagated through the system to regions are, in the vast majority
of cases, located in other parts of the system (the causes of the symptom). Fig. 4.2 shows an
example of the difference between where and how options affect performance. Nevertheless,
locating the corresponding regions of local models helped us to navigate the code to find and
understand how options affect the performance behavior of the system, instead of potentially
analyzing the entire system if we did not have that white-box information.

The analysis of the source code also helped us debug surprising performance behaviors
between the documentation and actual implementation of options. For instance, we discov-
ered that two options of Pngtastic Counter did not affect performance as we expected based on
the documentation. The valid range of one option was 0.0 — 1.0, and we conjectured that the
system would behave differently when different values are selected. However, a control-flow
statement where this option was used always executed the same branch if the value was > 0.
Locating where and how the option is used, allowed us to debug these inconsistencies, which
are common in configurable systems [Cashman et al., 2018; Han and Yu, 2016; He et al., 2020;
Rabkin and Katz, 2011; Xu et al., 2013].

Discussion

While local performance-influence models helped us to further understand how options affect
the performance of configurable systems, by locating where options influence performance,
we had to manually navigate the code to identify how options affect the objects, collections,
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or variables used in those regions.

To further help developers understand how options affect the performance of configurable
systems in the implementation, we propose to develop new tool support to provide developers
with relevant information for inspecting, understanding, and debugging the performance of
configurable systems. The information that we provide, from global and local performance-
influence models, and additional tool support, contributes to the thesis goal of reducing the
energy consumption and operational costs of running configurable systems since the infor-
mation will help developers debug configuration-related performance behaviors.

4.2 Proposed Work: Explore Information Needs

To ground the additional information that we will provide developers to debug the perfor-
mance of configurable systems, we propose to conduct two users studies to explore the process
that developers follow and the information needs that they have when (1) they begin debugging
the performance of a configurable system and (2) they debug, later in the debugging process,
after identifying potential options that affect the performance of certain regions, how options
influence the performance of specific hotspot regions in the system. The insights from the first
study will help us identify how global and local performance-influence models can help devel-
opers in the process of debugging the performance of configurable systems. The insights from
the second study will guide our design of new tool support to provide relevant information to
debug the performance of configurable systems. Overall, the studies will help us understand
the process that participants follow and the information they need to understanding which,
where, and how options affect the performance of a system.

Since both studies focus on understanding how developers debug the performance of con-
figurable systems at different stages of the process (at the beginning and once developers have
more information about the performance behavior of the system), we propose to conduct the
studies together as two parts of a performance debugging study. The study asks participants
to help a user understand why a system is taking some specific time to execute with a config-
uration.

Participant recruitment. We propose to conduct the study with developers and researchers
with various levels of experience in performance analysis and debugging, and working with
configurable systems. We have already conducted 14 studies with researches/developers work-
ing in academia and expect to recruit at least 5 developers working in industry.

Analysis. We propose to analyze the studies using quantitative and qualitative research
methods [Saldafia, 2015; Schreier, 2012] used in related research [LaToza et al., 2007; LaToza
and Myers, 2010; Lawrance et al., 2013; Scaffidi et al., 2011]. We propose to transcribe and code
the studies to identify the process that developers follow and the information needs that they
have.
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Profile system changing
one option at a time

Measure system
» end-to-end changing
one option at a time

Start ,| Read options'
debugging documentation

Code inspection

Figure 4.1: Preliminary results of the process that developers follow and information that they collect
to debug the performance of a configurable system.

Proposed work: We propose to conduct and analyze two users studies to explore the process
that developers follow and the information needs that they have when (1) they begin debug-
ging the performance of a configurable system (Study 1.1) and (2) they debug, later in the
debugging process, how options influence the performance of specific hotspot regions in the
system (Study 1.2).

4.2.1 Study 1.1: Process of Debugging Performance in Configurable
Systems

In the first study, we propose to explore the process developers follow and the information
needs that they have when they begin debugging the performance of a configurable sys-
tem. The insights that we collect from this study will help us identify how global and local
performance-influence models can help developers in the process of debugging the perfor-
mance of configurable system. Specifically, we seek to answer the following research ques-
tions:

RQ1.1.1: What activities do developers perform to understand the performance behavior
of configurable systems?

RQ1.1.2: What information do developers need to understand the performance behavior
of configurable systems?

RQ1.1.3: How do developers obtain this information?

RQ1.1.4: What are the challenging actions to understand the performance behavior of of
configurable systems?

Preliminary Results

Based on a simple analysis, we show the process that participants followed and information
that they collected when they began debugging the performance of a configurable system in
Fig. 4.1. All participants started debugging the system by reading the options’ documenta-
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tion, with the goal of identifying potential options that affect the performance of the system.
Once they identified potential options of interest, a small number of participants inspected
how those options were used in the implementation, with the goal of understanding how the
options might affect the performance of the system. The majority of participants either pro-
filed the system or measured the end-to-end performance of the system changing one option
at a time, with the goal of identifying which options affect the execution time of the sys-
tem. The participants that profiled the system, however, also wanted to identify the methods
where the system spends the most time executing (i.e., hotspots). Once participants identified
which options affected the performance of the system, they inspected the code to understand
how those options were used in the system. The participants that profiled the system usually
started analyzing how the options were used in the hotspots of the system and some traced
how the options were propagated through the system to the hotspots.

Based on this simple analysis, we have some evidence that when most developers start
debugging the performance of a configurable system, they want to first determine how options
and their interactions affect the global performance of the system to, subsequently, analyze
how the options with the biggest performance impact are used in the system. Hence, for the
moment, we hypothesize that global and local performance-influence models are useful for
these tasks, as the global models indicate which options have the biggest performance impact
on the system and the local models indicate where those options affect the performance of the
system.

Proposed work: We propose to finish conducting this study with developers working in
industry and analyze all studies using quantitative and qualitative research methods to un-
derstand the process that developers follow and the information needs that they have when
they begin debugging the performance of a configurable system.

4.2.2 Study 1.2: Debugging How Options Influence the Performance
of Hotspot Regions

In the second study, we propose to explore the process that developers follow and the informa-
tion needs that they have when they debug, later in the debugging process, after identifying
potential options that affect the performance of certain regions, how options influence the
performance of specific hotspot regions in the system. The insights that we collect from this
study will guide our design of new tool support to provide relevant information to debug the
performance of configurable systems. Specifically, we seek to answer the following research
questions:

RQ1.2.1: What activities do developers perform to understand how options affect the
performance of hotspots?

RQ1.2.2: What information do developers need to understand how options affect the per-
formance of hotspots?

RQ1.2.3: How do developers obtain this information?

RQ1.2.4: What are the challenging actions to understand how options affect the perfor-
mance of hotspots?
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Preliminary Results

Based on a simple analysis, we observed that most participants were surprised that options
which affected the performance of hotspots were not directly used in the hotspots regions.
That is, most participants assumed that the hotspots regions had the following code structure
if(option == true) { expensiveCall() }.Rather, as we discussed in Sec. 4.1, the hotspots
were indirectly influenced by the option, which manipulated objects, collections, or variables
used in the hotspot. That is, in the vast majority of cases, a hotspot indicates the location
of the symptom (i.e., the performance behavior), but the causes of the symptom are usually
located somewhere else in the code. After analyzing the hotspot, participants traced how the
option affected objects, collections, or variables, in other parts of the code, to influence the
performance of hotspots.

Participants, either manually or with their IDE’s debugger, analyzed how options were
propagated through the system, manipulating objects, collections, or variables. Several par-
ticipants also compared performance profiles for different configurations, which provides the
stack traces of the hotspots. The stack traces helped participants identify whether different
calls to the hotspots were made depending on which configuration was executed.

All participants struggled to completely trace how options were propagated through the
system and eventually reached the hotspots to influence the hotspots’ performance. Several
participants mentioned that, while comparing performance profiles was useful, identifying
how profiles differed was difficult, as they had to manually compare long stack traces with
long method names and signatures and different execution times. Participants indicated that
they would like to see the differences in the execution time and stack traces highlighted to
easily spot them. Additionally, several participants mentioned that the manual tracing was
tedious and error-prone, and that they would like a tool guide them through this process.

Based on this simple analysis, we hypothesize, for the moment, that developers who de-
bug how options influence the performance of specific hotspot regions in the system want to
(a) trace how options reach hotspots and (b) compare performance profiles.

Proposed work: We propose to finish conducting this study with developers working in
industry and analyze all studies using quantitative and qualitative research methods to un-
derstand the process that developers follow and the information needs that they have when
they debug how options influence the performance of specific hotspot regions in the system.

4.3 Proposed Work: Tool Support to Provide Information
for Debugging Performance in Configurable Systems

Based on the process that developers follow and the information needs that they have, we
propose to develop tool support to address those needs to further help developers in the pro-
cess of debugging the performance of configurable systems. Examples of the tool support that
we may develop are, based on the preliminary results, (1) comparing performance profiles
between configurations and (2) tracing how options are propagated through the system to
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Methods Traversed Code Structures Manipulated

1 def main(List workloadm main main: Option B is assigned to
2 a = getOpt("A"); = getOpt("B"); foo variable b
3 c = getOpt("C"); = getOpt('D"); main: Variable b is used in an
4 - if statement
5 j q main: Value of x depends on
6 X true; the variable b
7 else main: Variable x is passed as
8 X lse; an argument to
9 foo (x4; method foo
10 . foo: Variable x is passed as
11 def foo(boolean Xx) // Region influenced the argument x
12 if(x),.u_/g< // by option B foo: Variable x is used in an
13 else ... if statement

Figure 4.2: Example of the information that we could potentially provide developers to help them trace
how options are propagated through the system. We might indicate the methods that options traverse,
as well as the code structures manipulated in each method. We use option B and hostpot foo as an
example.

influence the performance of hotspots.

4.3.1 Example of Proposed Tool Support: Comparing Performance
Profiles

Based on the preliminary results, we may compare the hotspot view of performance profiles
between configurations. We could highlight the differences in stack traces in terms of the
execution time and the methods that are called.

4.3.2 Example of Proposed Tool Support: Tracing Options Through
the System

Based on the preliminary results, we potentially will trace how options are directly and in-
directly propagated from the entry point of the system to hotspots. We could indicate the
methods that options traverse to reach hotpots, as well as the objects, collections, or variables
that are manipulated within each method and are passed around to influence the performance
of the hotpost. Fig. 4.2 shows an example of the information that we could potentially provide
developers to help them trace the options though the system.

4.3.3 Proposed Tool Support

Proposed work: We propose to develop new tool support, based on the information that we
collect from our user studies, that will provide developers with relevant information to debug
the performance of configurable systems in the implementation.




4.4. PROPOSED WORK: STUDY 2: VALIDATE TOOL SUPPORT 53

4.4 Proposed Work: Study 2: Validate Tool Support

We propose to conduct a user study to validate the usefulness of the tools presented in this
thesis to help developers debug the performance of configurable systems. Specifically, we
propose to validate the usefulness of the existing tool support that we provide: (1) global
and (2) local performance-influence models, and (3) the additional tools that we develop. The
study will help us validate how useful the information provided by the tools is for developers
to understand which, where, and how options affect the performance of a system. Specifically,
we seek to answer the following research questions:

RQ2.1: To what extent do global performance-influence models help developers under-
stand the influence of configuration options on the performance of a system?

RQ2.2: To what extent do local performance-influence models help developers locate and
understand the influence of configuration options on the performance of methods?

RQ2.3: To what extent does additional tool support help developers understand how op-
tions influence the performance of hotspots?

Study design. We propose to conduct the same performance debugging study that we con-
duct in our exploratory studies in Sec. 4.2. However, we will provide participants with global
and local performance-influence models, and any additional tool support, and will encourage
them to use the tools to debug the performance of the system.

We propose to not have a control group in this study. Despite some time to collect the infor-
mation with our tools, the tools automatically provide developers with information to debug
the performance of configurable systems. By contrast, developers without tools interactively
collect that information (e.g., running and profiling the system with multiple configurations),
which our exploratory studies have shown to take a significant amount of time. Additionally,
all participants struggled to understand how options affect the performance of hotspots, even
after we told them which hotspots to focus on and the options that affect the performance
of the hotspots. Hence our exploratory studies have shown that without tools and informa-
tion, debugging takes a long time, whereas we now seek to demonstrate, in this study, that
participants who have tools and information available to them, up front, can solve the task.

Participant recruitment. Similarly to our exploratory studies, we propose to conduct the
study with developers and researchers with various levels of experience in performance anal-
ysis and debugging, and working with configurable systems. We expect to recruit at least 10
researchers/developers working in academia.

Analysis. Similarly to our exploratory studies, we propose to analyze the studies using
quantitative and qualitative research methods [Saldafia, 2015; Schreier, 2012] used in related
research [LaToza et al., 2007; LaToza and Myers, 2010; Lawrance et al., 2013; Scaffidi et al.,
2011]. We propose to transcribe and code the studies to identify how developers use the tools
that we provide in this thesis in the process of debugging the performance of configurable
systems.
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Proposed work: We propose to conduct and analyze a user study to validate the usefulness
of the tools that we present in this thesis to help developers debug the performance of con-
figurable systems, namely (1) global and (2) local performance-influence models, and (3) the
additional tools that we develop.

I N S S N S S S S S S S S S S S S S S S S S S S S S S S — -~
[ Thesis contribution: We propose to demonstrate that global and local performance- |

| influence models, and additional tool support that we propose to develop, are useful for |
| developers in the process of debugging the performance of configurable systems, which |
l helps reduce the energy consumption and operational costs of running systems. )

4.4.1 Proposed Optional Work: Study 3: Validate Tool Support in the
Field

To further validate the usefulness of the tools that we present in the thesis to help developers
debug real bug reports and real systems, we propose, depending on availability and opportu-
nity, to evaluate our tools in the field with practitioners working in industry or open-source
communities. There are several study designs that we could conduct.

Ideally, practitioners will independently use our tools to debug the performance of their
own configurable systems. In this design, we will instrument the tools to collect information
of how developers use the tools to determine how useful the tools are. We could compliment
the study with surveys or interviews to further understand how developers used the tools
when debugging the performance of their systems. This study design would take a significant
time to perform and we would lose control of how practitioners use our tools, but the design
would help us demonstrate that our tools can be independently used to debug the performance
of real configurable systems. However, conducting such a study would require a significant
amount of engineering effort for developers to independently use the tools, making it not the
best viable option.

Alternatively, we could work with a few practitioners to help them debug a bug report
in their own configurable systems. In this design, we would help practitioners to set up and
use our tools while we observe them debugging their own systems. Afterwards, we would
interview the practitioners to get their perspectives on the usefulness of the tools. This study
design, however, would be biased, as we will be interacting with practitioners as they use our
tools, but the design would help us demonstrate that our tools are useful in real systems and
real bug reports.

Another option is to conduct case studies, where we use the tools to debug open-source
configurable systems. In this design, we would select bug reports from mailing lists or issue
trackers and debug the systems ourselves. Subsequently, we will respond to the bug reports
indicating any findings, misconfigurations, or bug fixes. While this study design does not
involve practitioners using our tools, the design would provide some evidence that developers
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who are unfamiliar with a system can use our tools to debug the performance of configurable
systems.

Depending on availability and opportunity, we propose to conduct one of the study design
options outlined.

Proposed optional work: Depending on availability and opportunity, we propose to conduct
a user study to validate the the usefulness of the tools that we present in this thesis with
practitioners working in industry or open-source communities.

4.5 Summary

In this chapter, we explored the usefulness, and limitations, of local performance-influence
models to understand how options affect the performance of a system in the implementation.
Based on the limitations, we proposed to develop additional tool support to help developers
debug the performance of configurable systems in the implementation. We proposed to guide
the design of the tool support based on two user studies to explore the process that developers
follow and the information needs that they have when debugging the performance of config-
urable systems at different stages of the debugging process. Finally, we proposed to validate
the usefulness of all the tools that we present in this thesis to help developers in the process
of debugging the performance of configurable systems.






Chapter 5

Research Plan

In this chapter, we summarize the remaining steps and estimate the time to complete the
thesis.

At the time of writing, the work presented in Chapter 3 about ConfigCrusher is completed
and published [Velez et al., 2020a]. Additionally, the work presented in Chapter 3 about Com-
prex is completed [Velez et al., 2020b], but still under review. We estimate the time to polish
the writing for the conference submission to be 2 weeks. To polish the evaluation of Con-
figCrusher and Comprex, we propose to (1) evaluate both prototypes against the same state
of the art approaches and (2) evaluate Comprex with all subject systems. We estimate time to
set up and run the experiments to be 2 weeks.

The exploratory analysis of local performance-influence models presented at the begin-
ning of Chapter 4 is completed and published [Velez et al., 2020a].

The major missing component of the proposed thesis is providing and validating additional
tool support to debug the performance of configurable systems, discussed in Chapter 4. The
remaining steps are:

+ Conduct a user study to explore the process that developers follow and the informa-
tion needs that they have when debugging the performance of configurable systems at
different stages of the debugging process (Study 1.1 and Study 1.2). We have already
conducted 14 studies with researches/developers working in academia and expect to
recruit at least 5 developers working in industry. We estimate the time to recruit and
conduct the studies with the remaining participants to be 1 month.

 Quantitatively and qualitatively analyze the studies to identify the process and infor-
mation needs of developers when debugging the performance of configurable systems.
We estimate the time to complete this analysis to be 1 month.

+ Design and develop new tool support, based on the findings of our user studies, to help
developers understand how options affect, in the implementation, the performance of
configurable systems. We estimate the time to implement our tool to be 6 months.

+ Conduct a user study to validate the tools presented in this thesis to help developers
debug the performance of configurable systems (Study 2), namely (1) global and (2) local
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performance-influence models, and (3) the additional tools that we develop. We estimate
the time to recruit and conduct the study to be 2 months. Depending on availability
and opportunity, we might conduct one of the discussed validation studies in the field
(optional Study 3). We will start attempting to conduct this optional study in parallel
with Study 2.

« Finally, we reserve another 1 month to write and submit the work to a major confer-
ence.

Finally, we reserve 2 months for writing and defending the proposed thesis. In summary,
we expect to finish the proposed thesis in 13 months.

5.1 Risks

Some potential risks of the remaining work of this thesis are:

+ We cannot recruit experienced developers in industry for Study 1.1 and Study
1.2. There is a possibility that we might not be able to recruit developers in industry
who have experience debugging performance on configurable systems. To mitigate this
risk, we plan to contact people in our professional network to direct us to potential
participants. After conducting the studies with those participants, we will ask them
to point us to additional people to gather more participants. As a last resort, we could
interview additional developers/researchers in academia to potentially obtain additional
perspectives.

« We cannot validate the tools presented in this thesis in the field (Proposed op-
tional Study 3). There is a possibility that we do not have the opportunity to deploy
our tools in the field to validate their usefulness to debug real systems and real bug re-
ports. We discussed a few options in Chapter 4 to mitigate this risk, such as helping
developers to use our tools to debug their systems or performing case studies where we
debug open-source systems.

5.2 Final dissertation outline

We structured this proposal document to highlight the work that we have already completed
and the work that we propose to conduct to finish the proposed thesis. We propose the outline
of the final dissertation document to be:

« Introduction

+ Information needs for understanding and debugging the performance of configurable
systems
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- Exploratory study of the process that developers follow and information needs
that they have when debugging the performance of configurable systems (Study
1.1 and Study 1.2).

« State of the art on performance analysis of configurable systems

« White-box performance modeling of configurable systems

- Key insights for efficient and accurate performance modeling of configurable sys-
tems

— Components for modeling the performance of configurable systems

— Design decisions for modeling the performance of configurable systems
— ConfigCrusher

— Comprex

— Evaluation of prototypes

— Discussion of design decisions

- Validation study of the usefulness of global and local performance-influence mod-
els for debugging the performance in configurable systems (part of Study 2)

« White-box performance debugging in configurable systems

— Additional tool support

- Validation study of the usefulness of the above tool support for debugging the
performance in configurable systems (part of Study 2)

o Conclusion and future work
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