

Extracting Commands From Gestures: Gesture

Spotting and Recognition for Real-time Music

Performance

Jiuqiang Tang

Submitted in partial fulfillment of the requirements for the degree

of Master of Science in Music and Technology

Carnegie Mellon University

May 2013

Thesis Committee:

Roger B. Dannenberg, Chair

Richard M. Stern

Richard Randall

 i

Abstract

During a music performance a violinist, trumpeter, conductor and many other musicians

must actively use both hands. This makes it impossible to also interact with a computer

by pressing buttons or moving faders. Musicians must often rely on offstage sound

engineers and other staff acting on a predetermined schedule. The goal of this thesis is to

create an interactive music system able to spot and recognize “command” gestures from

musicians in real time. These gestures will trigger new sound events and control the

output sounds. The system will allow the musician greater control over the sound heard

by the audience and the flexibility to make changes during the performance itself. In this

thesis, I will try to combine a gesture threshold model with a Dynamic Time Warping

(DTW) algorithm for gesture spotting and classification. The following problems will be

discussed:

• First of all, when we receive a multi-dimensional feature vector from a

sensor, the first step we should do is to preprocess the data. Since we have

multiple methods to smooth the data, I discuss the advantages and

disadvantages of two smoothing methods.

• The Dynamic Time Warping algorithm is a powerful method for pattern

matching. I also discuss how we can apply the DTW algorithm for both

isolated gesture recognition and continuous gesture recognition.

• Additionally, we need to select the features and parameters we utilize in

DTW-based recognition algorithms. Since the combinations of features and

parameters have so many probabilities, I introduce a threshold and feature

selection method based on F-measure evaluation to find a good combination

according to training data the user has performed.

• Furthermore, how to build a good gesture vocabulary is also important. A

good gesture vocabulary benefits both the users and the system performance.

I will introduce several gesture vocabulary design guidelines from the HCI

perspective.

 ii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.

Roger B. Dannenberg, for all the guidance and assistance to me during the past two

years. Without his help, it would be impossible for me to finish this thesis and the music

gesture recognition system. I would also like to thank Prof. Richard M. Stern and Prof.

Bhiksha Raj for teaching me Digital Signal Processing, Machine Learning for Signal

Processing and Automatic Speech Recognition. Those courses help me solve several

important problems in this thesis and will still benefit my future study and career.

Furthermore, I must thank my friend, Zeyu Jin, who has helped me a lot since the first

day I came to Carnegie Mellon University. When I came to CMU two years ago, I

almost knew nothing about programming, algorithms, computer systems and signal

processing. At that time, I could never imagine that I would finish such gesture

recognition system for music performance as my master thesis.

Finally, I would like to extend my appreciation to my parents, Dejiong Tang and

Zhuli Zhen for raising me and support me in the past twenty-five years. I would like to

dedicate this work to you. Thank you.

 iii

Contents

Abstract .. i

Acknowledgments ... ii

Contents .. iii

I. Introduction ... 1

II. Related Work ... 3

III. System Overview ... 5

1. System Workflow ... 5
2. Gesture Recognition ... 6
3. Features ... 6
4. Training Process ... 7
5. Recognition Process .. 7

IV. Gesture Comparison with Dynamic Time Warping ... 9

1. Feature Detection .. 9
2. Dynamic Time Warping ... 14
3. Dynamic Time Warping for Gesture Comparison .. 15
4. Isolated Gesture Recognition .. 17
5. Continuous Gesture Recognition .. 18

V. Threshold Model .. 21

1. Feature Combination Space and Feature Selection .. 21
2. F-measure Evaluation and Threshold Selection ... 23
3. Solving Conflicts by K-Nearest-Neighbor ... 26

VI. Gesture Vocabulary .. 28

1. Gestures .. 28
2. Design Guidelines ... 28

VII. Experiments and Results ... 31

1. Gesture Vocabulary .. 31
2. Isolated Gesture Recognition Testing ... 33

 iv

3. Continuous Gesture Recognition Testing ... 34

VIII. Applications ... 38

1. Real-Time Music Performance Gesture Recognizer .. 38
2. Gesture-based Interactive Music Performance ... 38
3. Multimedia Installation ... 38

IX. Conclusion and Future Work .. 39

1. Improving Recognition Accuracy ... 39
2. Enhancing the Efficiency .. 40
3. A Comprehensive Gesture Study .. 40

References ... 41

 1

I. Introduction

In the field of computer music, real-time musical interaction has been a novel and

attractive focus of research. It is related to all aspects of interactive processes including

the capture and multimodal analysis of gestures and sounds created by artists,

management of interaction, and techniques for real-time synthesis and sound processing.

Moreover, with the development of gesture sensing technology, the measurement of

gestures is becoming more and more accurate and can be utilized by music interactive

systems.

In general, gestures of musicians can be interpreted as either discrete commands or

as continuous control of a set of parameters. For example, a command gesture could

represent a command to start a sound, enter a new state, or make a selection among

several discrete choices. Alternatively, continuous control gestures may communicate

sound parameters such as gain, pitch, velocity, and panning. Continuous parameter

sensing is relatively easy since most physiological parameters captured by sensors are

represented as a continuous stream. Converting this stream to a continuous parameter is

often a simple matter of applying a mapping function to each sensor value to compute a

control value. On the other hand, it can be very difficult to spot and recognize discrete

commands within a continuous signal stream. A common solution is to use multiple

sensors such as keys in a keyboard or to use multiple spatial positions as triggers to

initiate commands. In this approach, the space of all sensor values is partitioned into

different regions or “states” which are mapped to commands. Alternatively, statistical

classifiers can recognize states. However, locating physical keys or learning to

reproduce absolute positions in live performance can be difficult. Some “natural”

gestures, such as nodding the head or pointing, offer an alternative way to communicate

commands, but detection of these types of gestures is more difficult than recognizing

static poses or positions because a sequence of sensor values must be considered.

Reliable physiological parameters can be acquired from sensors. How to process

data and achieve a high recognition rate is much more difficult. In this thesis, I examine

one approach to the recognition of discrete command gestures within a stream of

continuous sensor data. The approach is based on the well-known sequence matching

 2

algorithm dynamic time warping. While dynamic time warping provides a powerful

mechanism for comparing two temporal sequences, it does not tell us what features will

work best, how to pre-process the data to avoid outliers, how to spot a finite gesture in

an infinite stream of input, and how to set thresholds to optimize recognition and

classification performance. The goal of my study is to design and evaluate a gesture

recognition strategy especially for music performance, based on the dynamic time

warping algorithm and using an F-measure evaluation process to obtain the best feature

and threshold combination. The proposed strategy will select features by searching over

all feature combinations, obtain the optimal threshold for each gesture pattern of each

feature combination in terms of the F-measure, and automatically generate a gesture

recognizer.

The organization of the rest of the thesis is as follows: In Section II, related work

will be briefly summarized. Section III will provide an overview of this real-time music

gesture recognition system. Sections IV and V will describe technical details, including

dynamic time warping and a threshold model of the music gesture recognition system.

Section VI will address the definition of a music gesture vocabulary from an HCI

perspective. Experiments and result analysis will be included in Section VII. Several

possible applications of this music recognition system will be introduced in Section VIII.

Finally, Section IX will conclude this thesis and discuss possible future work based on

the results.

 3

II. Related Work

Recently, a lot of research focuses on applying machine learning approaches to gesture-

to-sound mapping for interactive music performance [1, 2, 3, 4]. Rebecca Fiebrink

completed the Wekinator as her PhD thesis in 2011 [2]. Fiebrink’s work explores how

users can incorporate machine learning into real-time interactive systems, but the API/

Toolbox she provides uses a feature vector as input and creates a class as output. There

is no provision for reducing a temporal sequence of sensor data to a feature vector or of

reliably determining when a command has been recognized. In Francoise’s work, he

built two segmental models, which are based on Hierarchical Hidden Markov Models

(HHMMs), to segment complex music gestures [1] in real time. Francoise applied two

strategies, a forward algorithm and Fixed-Lag smoothing, to recognize violin-bowing

techniques during a real performance. His research mainly focused on how different

strategies affect segmentation accuracy and recognition latency but did not clearly point

toward a good combination over parameters that can increase detection accuracy.

In the field of gesture recognition, major approaches for analyzing spatial and

temporal gesture patterns include Dynamic Time Warping [5, 6, 7, 8], Neural Networks

[9, 10, 11], Hidden Markov Models [12, 13] and Conditional Random Fields [14]. Many

existing gesture spotting and recognition systems apply a threshold model for

discriminating valid gesture patterns from non-gesture patterns [12, 15]. Hyeon-Kyu Lee

and Jin H. Kim developed an HMM-based adaptive threshold model approach [12] in

1999. They took advantage of the internal segmentation property of the gesture HMMs

to build an artificial HMM that acts as the threshold model. The threshold model

calculates the likelihood of a threshold of an input pattern and provides a confirmation

mechanism for the provisionally matched gesture patterns. However, this method runs

off-line over a non-complex background and is not a suitable threshold model for real-

time musical gesture recognition and identification. It still demonstrates to us that the

calculated likelihood can be used as an adaptive threshold for selecting the proper

gesture model. AdaBoost is another approach to obtain thresholds for classifying gesture

and non-gesture patterns. Narayanan Krishnan et al. proposed an adaptive threshold

model based on the individual AdaBoost classifiers by training classifiers on test

 4

samples [15]. In their model, several weakest classifiers, which can satisfy a majority of

samples of all the training classes, are used to test whether the input is too general. If the

likelihood of this invalid gesture threshold model is higher than any value of the valid

gesture models, the system considers the gesture to be too general and invalid. They

built a discriminative gesture spotting network consisting of the individual gesture

HMMs and a threshold model for recognizing activity gestures from a continuous data

stream. In my work, since the training process is based on a small limited-sample

gesture vocabulary, Adaboost may not have enough features to train and get good

performance. Additionally, in order to deal with multiple deformations in training

gesture data, Miguel A Bautista et al. proposed a probability-based DTW for gestures on

RGB-D data [8], in which the pattern model is discerned from several samples of the

same gesture pattern. They used different sequences to build a Gaussian-based

probabilistic model of the gesture pattern. Although my recognition system is not based

on a probabilistic model, it still suggests that for a gesture recognition system, the

detection threshold it generates for each gesture should both be able to tolerate

deformation in training/testing gesture data (high recall score) and classify different

gesture patterns clearly (high precision score).

 5

III. System Overview

An overview of the music recognition system will be introduced in this section. The

system contains two main phases: training and testing. The training phase finds the best

parameter and threshold combination based on the templates and training samples. The

testing phase utilizes this combination to spot and recognize the gesture patterns in a

parameter stream.

1. System Workflow
This thesis provides an implementation of a music gesture recognition system that uses

training data to learn gestures. In the training process, by applying dynamic time

warping and F-measure evaluation, the system finds the best combination of thresholds

and feature parameters for gesture recognition. Results, generated by the training

process, are utilized in a real time recognition process to find the start and end positions

of a valid gesture. Figure 1 illustrates the general architecture of the methodology.

Figure 1: General architecture of training and recognition process.

Dynamic Time Warping Algorithm

Gesture Training Samples

Gesture Parameterization and

Feature Preprocessing

Gesture Templates

Threshold Arrays for each Feature

Combination

Best Threshold Array and Feature

Combination Setting

F-measure Evaluation

Continuous Gesture

Dynamic Time Warping Algorithm

Gesture Parameterization

and Feature Preprocessing

Recognition

Result

Decision Unit

 6

2. Gesture Recognition
Gestures are recognized from multi-dimensional sensor data. For example, an

accelerometer sensor might provide x, y, and z-axis acceleration data at a 100 Hz sample

rate. The goal is to spot gestures within this stream of data and output a gesture identifier

whenever a gesture is reliably detected. There should be no output if no gesture is

spotted. Gestures are specified to the system using templates.

Before the training process, musicians define their own gesture vocabulary, such as

nodding their heads, waving their hands and moving hands from left to right, and

construct the mapping function between gesture patterns and target “commands.” After

defining a valid gesture vocabulary, the user records both gesture templates and test

samples by using a motion capture sensor, such as Microsoft Kinect or an on-body

acceleration sensor. Gesture templates and test samples are represented as

multidimensional feature vectors and are stored in the system.

Typically, there will be multiple templates (examples) for each category of gesture.

The system uses dynamic time warping (DTW) to compare input data to each template

and compute a distance. The input stream is searched in overlapping windows because

DTW compares finite sequences of data. When one template is deemed to be sufficiently

close to the input data, the corresponding gesture is considered to be recognized. In

practice, multiple gestures might be recognized simultaneously, so some further

processing is needed to select only one gesture. The decision of whether a template is

“sufficiently close” is based on thresholds, and the determination of thresholds is one of

the main goals of the training process.

3. Features
Raw data from sensors is one possible set of features that could be used in the DTW

recognition process. However, better recognition can often be obtained by deriving

more abstract features from the raw data. For example, if the raw data includes absolute

coordinates (such as x, y, z position information from a Kinect sensor), then a gesture

that differs only in starting position from the template may be computed by DTW to be

quite distant. Assuming that starting position is irrelevant, it is common to take

 7

derivatives or to subtract the starting location to produce a sequence of “features” that

are position independent.

Sometimes, adding additional features such as derivatives, integrals, smoothed

values, normalized values, etc., can improve gesture recognition. Alternatively, adding

irrelevant features can hurt performance. The current system does not generate features

automatically, but given a set of candidate features, the training process can help to

select the best features to use.

4. Training Process
The goal of the training process is to determine what features and what thresholds to use

in order to get the best recognition performance. The details are covered in following

sections. For each possible feature combination, the training system calculates and

records the minimum distance between each pair of gesture templates and test data by

running a dynamic time warping algorithm. Next, an F-measure is calculated to measure

how well a threshold works for a particular gesture pattern and feature combination. The

threshold with the highest F-measure score value is chosen as the threshold and stored

into a threshold array.

To select features, the system evaluates different feature combinations and selects

the combination that gives the best results on the training data. For each feature

combination, the system sums up the F-measure for each best threshold in its threshold

array. The feature combination with the highest cumulative F-measure score is used as a

feature preprocessing setting in recognition process.

5. Recognition Process
In the recognition process, the threshold array and feature combinations generated by the

training process are applied. When a new feature vector is produced by the capture

system, the features are preprocessed and normalized according to the feature

preprocessing setting. In real-time testing, if the minimum distance between a gesture

pattern and a test sequence is less than or equal to the threshold value, the gesture is said

to be recognized. The timestamp where the minimum distance occurred will be treated

as the end point of this gesture. Accordingly, by applying backtracking method, the start

point of gesture can be estimated. Using this information, an output message is

 8

generated to report the type of gesture, the start time, and the end time. This message

may then trigger some music events according to the detected gesture pattern.

The components in those two phases, such as the dynamic time warping algorithm

and threshold selection mechanism will be introduced in detail in the following sections，

both in terms of the theoretical foundation and the system implementation.

 9

IV. Gesture Comparison with Dynamic Time Warping

The comparison between two gesture sequences is the foundation of a gestural command

recognition system. In my implementation, the dynamic time warping algorithm is

applied to compare the similarity of two time series. In this section, we will discuss

several critical problems for applying the dynamic time warping algorithm to the gesture

recognition problem. A description of DTW-based isolated and continuous gesture

recognition processes will be presented in the second half of this section.

1. Feature Detection
Since gesture recognition is based on parameters, the measurement of gestures affects

recognition accuracy directly. The feature detection stage is concerned with the

detection of features, which are used for the estimation of gesture parameters. With the

development of sensing technology over the last few years, both on-body and computer

vision based gesture recognition systems have been employed for measuring body

posture and motion. Both types of sensing have their own advantages and disadvantages.

In my implementation, I provide an interface for receiving data from any input system

via Open Sound Control [16] (OSC). The system can use any input device that reports

one or more continuous (sampled) parameters.

1.1. Sensor System

1.1.1 Microsoft Kinect

Microsoft Kinect [17] is a motion sensing input device launched by Microsoft for the

Xbox 360 game console in 2010. Kinect features an RGB camera and an IR depth sensor

which provides full-body 3D motion capture and facial recognition capabilities. Figure 2

specifies sensing technology details of the Microsoft Kinect.

 10

Figure 2: The Microsoft Kinect motion sensing input device.

Many developers are researching possible applications of Kinect that go beyond the

system's intended purpose of playing games. For example, one program called

OSCeleton [18] takes Kinect skeleton data from the OpenNI [19] framework and splits

out the coordinates of skeleton’s joints via OSC messages. By running OSCeleton, the

gesture recognition system receives OSC messages from a defined port of the local host.

Thus, skeleton data can be easily incorporated into system. Since the Kinect detects

musicians’ motion without putting any extra contact device on their hands or arms, it

can capture perfomers’ motion without causing any discomfort. However, Kinect still

has four main problems. First, when analyzing gesture sequences captured by Kinect,

the frame loss rate is very high among several particular gestures. In real time

performance, high frame loss rates will cause unpredictable results. Secondly, since

Kinect outputs video at a frame rate of 33 Hz, fast motions will probably cause frame

loss or inaccurate measurement. Thirdly, because the tracking range of the Kinect is

limited, the moving range of the performer is correspondingly limited. Finally, since the

RGB camera requires good lighting conditions, a low light condition may result in a

capturing failure. Figure 3 shows how different lighting conditions affect the

measurement accuracy. Although the same Kinect device captured the same gestures

performed by the same tester, the trajectory in the good lighting condition is much

smoother than that in the bad lighting condition.

 11

Figure 3: Trajectories of the same gesture measured in good and bad lighting conditions.

1.2. Feature Preprocessing

Since the data sequences captured by sensors are often loosely controlled, in order to

eliminate out-of-range / missing data (e.g. the position of hand is Not a Number (NaN)),

reduce unnecessary / redundant features (e.g. the position of knees is not useful for hand

gesture recognition) and smooth each feature dimension, feature preprocessing is an

essential step before applying gesture recognition.

1.2.1 Sample Inspection

In my implementation, when the system receives a multidimensional feature vector, it

will first check the length of the incoming feature vector. If the sequence length is

significantly shorter than the minimum sample length baseline, the system will treat the

sequence as an invalid sample and throw it away. The minimum sample length baseline

is dynamically set according to the sample recording duration and the default sampling

rate of particular sensor. For example, for Kinect, since the default sampling rate is 33

frames per second, if the preset recording duration is 3 seconds, the baseline will be set

to 90, which is 33 ×	 3 ×	 90%. Thus, any sample with the length less than 90 will be

dropped directly. After checking sequence length, system will inspect each feature

dimension separately, since out-of-range / missing data should be eliminated, for each

feature dimension, if the ratio of out-of-range / missing data is higher than 10%, the

feature dimension cannot be used in any training / recognition process. However, since

other feature dimensions are still usable, the sample will be stored into system memory

 12

but be labeled as a “partially usable” sample. In practice, this situation always occurs.

For example, when tester stands too close to the Kinect sensor, it captures upper body

skeleton motion but misses the lower body. But for hand gesture recognition, since only

hand, elbow, shoulder and head position data will be utilized in training and recognition

process, this “partial useable” sample is still good enough to use.

1.2.2 Missing Data Prediction

Although those feature vectors with high out-of-range / missing data ratio are banned

from use for training and recognition, those feature vectors with low out-of-range /

missing data ratio can still be utilized. The manner I applied to deal with out-of-

range/missing data is to fill in the mean value among the nearest four valid data values.

For instance, assume a one-dimensional data sequence the system received is

𝑆 = 0.1, 0.15,𝑁𝑎𝑁,𝑁𝑎𝑁, 0.4 𝑁𝑎𝑁, 0.26,𝑁𝑎𝑁, 0.1,−0.1,… . The third element will

be the mean of 0.1, 0.15, 0.4, 0.26 , which is 0.2275. The fourth element will be the

mean of 0.15, 0.2275, 0.4, 0.26 , which is 0.26. Accordingly, the sixth element is 0.255

and the eighth value is 0.13. This method biases the data and might create incorrect data.

However, since not more than 10% of the data is missing, this is an effective and

reasonable manner to use in practice.

1.2.3 Data Smoothing

For both the training and recognition process, data smoothing is applied before applying

the matching algorithm. Since the data values in each feature dimension have

redundancy (we assume that gestures are slow-moving compared to the sensor sample

rate, or in signal processing terms, gestures are mainly low in frequency and thus

oversampled), we can smooth the data points by the general information of each feature

dimension to eliminate possibly inaccuracy measurement and reduce the impact of

severe outliers.

For real-time feature processing, the data we can utilize are only the past data points.

The system implements the common smoothing method known as the exponential filter,

which forms a smoothed output sequence as a linear combination of the current sample

𝑠! and the previous output value 𝑠!!!! . The derived smooth sequence is given by

 13

 𝑠!
, = 𝛼 𝑠! + 1− 𝛼 𝑠!!!! (1)

1.2.4 Normalization

To ignore the absolute position and size of gestures for the purposes of command

recognition, it is common to normalize the data. In order to eliminate the impact of the

starting position in a given dimension, we subtract the initial value in this dimension

from each other corresponding data point. Thus, the first element of each feature

dimension will be 0.0 and the rest of the sequence will be displacements relative to the

initial value.

Features can also be normalized to obtain a mean of zero and a standard deviation of

one. First, we compute the mean and standard deviation of unnormalized data:

 𝑚𝑒𝑎𝑛: 𝜇 =
1
𝑁 𝑥!

!

!!!
 (2)

 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛: 𝜎 =

1
𝑁 (𝑥! − 𝜇)!

!

!!!
 (3)

For each data value 𝑠! in S, the system produces a new 𝑠!
, with zero mean and unit

variance according to

 𝑠!
, =

𝑠! − 𝑠! − 𝜇
𝜎 (4)

Although zero mean and unit variance are nice mathematical properties, a potential

problem of this normalization is that it scales the gesture trajectory and the unpredictable

scaling of tiny spontaneous motions by users might cause false triggering. In my

implementation, mean and variance normalization are optional. They generally help with

isolated gesture recognition but lead to false triggering in continuous gesture

recognition. For the test results reported later, I used position independent features by

subtracting the starting position, but the mean and variance normalization are disabled.

 14

2. Dynamic Time Warping

2.1. Original Dynamic Time Warping

Since the lengths of the template feature vector and real input feature vector are varied,

Dynamic Time Warping (DTW) is one of the best algorithms for defining and

computing the distance between the pair of sequences. The original DTW algorithm was

defined to measure the similarity between two time series 𝑇 = {𝑇!, 𝑇! ,𝑇!… 𝑇!}

and 𝐼 = {𝐼!, 𝐼! , 𝐼!… 𝐼!}. By computing distance 𝑑𝑖𝑠𝑡(𝑖, 𝑗) between each vector 𝑇! and 𝐼!,

a cost matrix which has a size of 𝑚 × 𝑛, will be filled to store each minimum distance

from the beginning of two sequences to the current position of two sequences (𝑇!, 𝐼!) .

The value of any cell 𝐶 𝑖, 𝑗 in the cost matrix can be calculated by following the simple

rule:

 𝐶 𝑖, 𝑗 = 𝑑𝑖𝑠𝑡 𝑖, 𝑗 +min
𝐶 𝑖 − 1, 𝑗 + 𝑖𝑛𝑠𝑒𝑟𝑡 𝑐𝑜𝑠𝑡

𝐶 𝑖 − 1, 𝑗 − 1 + 𝑠𝑢𝑏𝑠𝑖𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡
𝑐 𝑖, 𝑗 − 1 + 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

 (5)

After computing a full cost matrix, the DTW algorithm can do backtracking from the

last cell of the cost matrix, 𝐶[𝑚] 𝑛 , to find a least distance path from the end to the

beginning. Due to the streaming nature of real-time gesture input, the gesture input data

stream can have any arbitrary length and might contain several “command” gesture

patterns. In order to find the end point of a candidate gesture, we will check each value

in the last row of the cost matrix and compare it with the threshold we learned from

training samples. Details will be presented in Section V.

2.2. Distance Function

Since parameters captured by sensors contain different degree features, such as the

absolute x-, y- and z-axis position and the velocity among those axes, each node 𝑇! or 𝐼!

in a time series is a multi dimensional feature vector. If we apply DTW algorithm on

each dimension, the synchronized points in each dimension will not be in the same

position or correlated. Thus, each feature vector should be considered as an “atom,” and

 15

entire atoms must align when we apply DTW. In my implementation, my default

distance function is simply based on Euclidean distance, which is

 𝑑𝑖𝑠𝑡 𝑖, 𝑗 = 𝑇!" − 𝐼!"
!

! ∈ !"#!"#$!"#$%&"'%

!
! (6)

In principle, different distance functions could be defined and learned, or different

weights could be applied in the case of Euclidean distance. This would greatly impact

the cost of training and perhaps introduce so many parameters that overfit to limited

training data could be a problem. Therefore, we assume features are scaled to a

reasonable range and rely on good feature selection alone to optimize the distance

function.

3. Dynamic Time Warping for Gesture Comparison
In order to use dynamic time warping for measuring the similarity between gesture

sequences, at least two valid processed data sequences should be prepared and passed to

the DTW method. Those data sequences should use corresponding features. In my

implementation, each gesture recorded by Kinect or on-body sensor is saved as an entry

in a MAT file and the system stores each gesture as a two-dimensional array of numbers.

Moreover, DTW should also be informed of the costs of insertion and deletion for

initializing the edge costs.

Dynamic Time Warping is an algorithm with Θ 𝑚𝑛 complexity, where m and n are

the lengths of two gesture sequences and the constant value depends on how many

neighbors can have the access to a new node. For the gesture matching problem, I allow

three possible edges (one horizontal, one vertical and one diagonal) to enter a new node.

Thus, the constant value is 3. Moreover, the memory cost for one DTW comparison is

𝑚𝑛. If we are not attempting to backtrack to the start pointer of a gesture, we can just

maintain one column for tracking the previous values and update it in-place. Since

gesture recognition should track the starting point of a gesture, a cost matrix C with the

size of 𝑚 × 𝑛 should be kept to store minimum score for each pair 𝑖, 𝑗 where

𝑖 𝜖 1,𝑚 , 𝑗 𝜖 [1,𝑛]. By applying the node distance function and following dynamic time

 16

warping algorithm, each cell of the cost matrix will be filled with the minimum score

from 𝐶 1 1 to 𝐶 𝑚 𝑛 . A DTW class will create an object, PathInfo, for storing the

cost matrix after finishing computation. PathInfo calls methods to find the minimum

distance between the two gestures and backtrack the best path from the end to the

beginning. PathInfo keeps the minimum distance, the best “warped” path and the

average distance of the best path. Finally, DTW destroys the cost matrix to save memory.

Figure 4: Three possible edges to enter a new node in a cost matrix.

Figure 5: .The UML for java package dtw.

 17

4. Isolated Gesture Recognition

Isolated segment gestures are finite-length sequences of sensor data that contain one

gesture from the beginning to the end. For example, a conductor holding his left hand

for two seconds and then rapidly moving the hand from bottom left to upper right could

be treated as a gesture to trigger the next cue in a preset event list in a live performance.

A segment gesture lets the musicians or dancers define the gesture “vocabulary” and

thus work on a symbolic level to send a clear signal to an interactive music system.

In order to recognize isolated gestures, a training process should be applied first to

find reasonable gesture thresholds. One user will be asked to perform several gestures in

the gesture vocabulary in order to create a gesture template set and a training sample set.

Gesture template set 𝑇 contains m gestures and each gesture has n (𝑛 ≥ 5) templates.

Training set 𝑇𝑟 holds both gestures in the vocabulary and non-gestures. Each gesture in

the training set is labeled by its corresponding gesture index (1 to m) and non-gestures

are labeled as 0. After preparing the template and the training set, for each template-

training pair of 𝑖, 𝑗 where 𝑖 𝜖 𝑇, 𝑗 𝜖 𝑇, we run Dynamic Time Warping and get a

minimum distance array with the length of 𝑚 × 𝑛 × # 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠. By applying

a threshold selection manner that will be introduced in Section V, the system will select

the best feature and threshold combination and store it in the memory.

In the testing process, the system will prepare 𝑚 × 𝑛 DTW instances for matching

each gesture template against the incoming real-time gesture sequence. After

initialization, the system will send an alert sound to indicate the start point of capturing.

A user should start performing a gesture right after hearing the alert. Each input feature

vector captured by the sensor at time t will be preprocessed and then passed to each

DTW instance to compute the costs.

Since the user defines a recording duration before performing each gesture, the

system automatically stops capturing after the fixed duration has elapsed. The recorded

gesture is then compared using DTW to every template. If the distance (DTW cost value)

between the real-time input and any gesture template is lower than the threshold of the

corresponding gesture, the gesture will be selected as a “candidate.” Since several

gestures might be the valid “candidates,” gesture classification will rely on a K-Nearest-

Neighbor approach, which will be covered in Section V.

 18

5. Continuous Gesture Recognition
For isolated gesture recognition, it would be nice to have a triggering mechanism to

activate the recognition process. In this case, the recognizer would know where to start

looking for a gesture. However, for real performances, a triggering strategy seems to be

naïve. After all, the benefits of a free-hand gesture are minimized if the performer is

constrained to simultaneously operate a foot pedal or some other start signal. If one

requires the use of foot pedals or some other triggering device, perhaps the trigger itself

could better serve to give commands in the first place. If the user can operate a mouse

for signaling, then the mouse could be used more easily to simply click on a button to

issue a command.

Therefore, interesting gestural control requires a method to spot a meaningful

gesture within a continuous signal stream. Initially, I tried the same method used for

isolated gesture recognition, which creates 𝑚 × 𝑛 DTW instances before accepting data

from sensors and then compares the minimum cost between each template and the real-

time input when input data comes. However, the system gets poor recognition

performance. The biggest problem is that the features used are positions relative to the

starting position, which is the position when tracking begins. In practice, the position

where tracking begins and the position where a gesture begins may not be very close, so

the best alignment score will be much higher than the gesture threshold obtained in the

training process. In other words, in order to minimize the error due to start position

mismatch, a user should start performing a gesture close to the initial tracking position.

This is not very satisfying, and it defeats the purpose of computing position-

independent features in the first place. An alternative would be to use basic features that

are independent of absolute position. For example, I tried subtracting an exponentially

smoothed version of the position from the current position to obtain a feature that

depends upon recent history but not absolute position. This did not work well for the

sensor systems, features, and gestures under study, but this might be a good direction for

future research. Similarly, derivatives and other position-independent features did not

perform as well as the displacement-from-starting-position features.

The solution I finally chose is to have the system create new DTW instances fairly

often, and for each DTW instance use a new start position for the real input. Thus, a

 19

dynamic time warping with sliding window method was adopted for continuous gesture

recognition.

5.1. Dynamic Time Warping with Sliding Window

For each gesture template, before running real time testing, the system allocates a queue

Q with a capacity of n in memory. When input data is received by the system, it pushes a

new DTW instance into Q every t samples. Moreover, if Q reaches the capacity, it pops

the first DTW instance out of Q. DTW instance keeps the current input start point and

does DTW comparison according to this start point. Since after each new data vector is

passed to a DTW instance, DTW does preprocessing according to the “calibrated” start

position. The cumulative error between the “calibrated” start position and “true” start

position is acceptable.

Figure 6: For a continuous gesture, system runs a new DTW instance in each window.

The system compares the latest real time observations captured by sensors with

each gesture template in search of a significant match. The system applies the following

decision method for each sample point until a command is recognized.

Step 1: Read a new input feature vector.

Step 2: If it is time to begin a new window, create a new DTW instance, which keeps the

current input vector as its starting point. Destroy the first DTW instance in the queue.

Step 3: For each DTW instance, subtract its own starting point from the input vector

and do data preprocessing.

 20

Step 4: Compute the best alignment cost between template and preprocessed data vector.

Step 5: If the lowest cost is lower than that of the threshold model, set the gesture as a

“candidate.” If no threshold is exceeded, then no command is recognized. Jump back to

step 1.

Step 6: If only one candidate exists, output it as the recognition result.

Step 7: If the system provides more than one candidates, run the K-Nearest-Neighbor

algorithm to find the best result.

In this section, we discussed how to preprocess data and compare two processed gesture

sequences by using the dynamic time warping algorithm. For isolated gesture

recognition, since the starting and end points of a gesture are given, the system can run

the DTW algorithm between input and each template directly. The template with the

lowest best alignment score is more likely to be the result to output. However, for

continuous gesture recognition, since gesture patterns are not restricted to any particular

spatial locations, any data point in the input sequence can be a potential starting point of

a gesture. A sliding window method is applied to allow for constantly changing starting

points.

 21

V. Threshold Model

After the process in Section VI, the system gets the best alignment scores between the

training data or real time input and the templates. However, the system should still

figure out whether the best alignment between an input and a template is good enough to

output or which gesture pattern matches the input best. In order to solve these problems,

a threshold model is used to find the candidate threshold for each gesture pattern. Since

the best threshold is based on a measure of best performance (the F-measure), we can

also search for the best feature combination that optimizes the system recognition

performance.

1. Feature Combination Space and Feature Selection
To train a meaningful gesture recognition model, a critical step is to select few but

useful features. However, for different people and for different gestures, the gesture

patterns can be totally different. Thus, setting a fixed feature combination rule might not

work optimally for to every person and every set of gestures. My solution is to use the

users’ personal gesture patterns and train the threshold model by trying each reasonable

feature combination to find the best combination. In my implementation, the variables in

a feature combination are the following:

1.1. Input Feature

Sensors capture the motion of the users and translate it into a high-dimensional feature

vector. When the system receives the data sequence, it should conduct feature selection

at first. For example, the feature vector produced by a Kinect contains 45 or 60

(depending on different software) dimensions. These represent the x-, y- and z-axis

position of 15 or 20 skeleton joints. If the gesture is performed by the user’s left hand,

the system can either take the 3-D feature vector of the left hand into consideration or

use the 3-D positions of left hand, left elbow, and even left shoulder as the input features.

Thus, even for a simple hand gesture recognizer, the system can many alternatives for

input feature selection.

In principle, if there are N features, one could search all combinations of features to

find the combination that gives the best performance. However, with up to 60

 22

dimensions, the search space could be 260, which is prohibitive. Rather than search every

combination, the system searches only a set of hand-selected feature combinations. For

the gestures studied here, there are three combinations: hand x and y, hand x and y plus

elbow x and y, and hand x and y plus elbow x and y plus shoulder x and y.

In terms of matching two sequences, it might also be useful to add the velocity of

each dimension as extra features. So including the velocity information of each

dimension will be another option.

1.2. Preprocessing Function and Parameters

Secondly, the system should also define which preprocessing function should be used to

smooth data. Moreover, each preprocessing function has parameters to be determined. In

my implementation, for real-time continuous gesture recognition, the system provides

two smoothing methods to do preprocessing. For the exponential smoothing method, the

system also should assign an alpha value, which is in the range between 0 and 1.

Typically, the system will try four or five different values for alpha . Thus, there are 1

approach×4 possible parameter values, or 4 in total to be taken into consideration.

1.3. Costs of Dynamic Time Warping

For the Dynamic Time Warping Algorithm, the costs of insertion and deletion bias the

best “warping” path. Additionally, different insertion and deletion cost combinations

certainly change the best alignment cost for each sample pair. Thus, setting both

insertion and deletion costs as variables should help obtain the best threshold for the best

match. To limit the search, insertion and deletion costs are chosen from only 4 possible

values: 0.0, 0.1, 0.3 and 0.5. Therefore, the number of possible combinations for

different insertion and deletion costs is 16.

If we go though all possible input feature combinations, different preprocessing

functions with parameters and possible DTW cost combinations, there are in total 3 × 2

×	 4 ×16 = 384 different combinations of parameters to evaluate over all the training

data.

 23

2. F-measure Evaluation and Threshold Selection

2.1. F-measure Evaluation

In statistics, the F-measure is a measure of a test’s accuracy [20]. The F-measure

considers both precision p and recall r of the test to compute its F-measure score f.

Moreover, the score f can be interpreted as a weighted average of the precision p and

recall r. The best score the F-measure can achieve is 1 and the worst score is 0.

Specifically,

 𝑝 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
(7)

 𝑟 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 +𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑖𝑡𝑖𝑣𝑒)
(8)

 𝑓 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(9)

To evaluate the performance of the gesture threshold, the F-measure is a reasonable

and effective measurement method. For each gesture, the threshold with the highest F-

measure score will be considered as the most reliable threshold to be applied in real

time.

2.2. Threshold Selection

In the training process, by computing the best alignment cost between each gesture

sample pair 𝑖, j , where sample i comes from template set of size q and sample j is in

the training set of size r, the system can obtain a two-dimensional minimum distance

matrix Distance, which has the size of 𝑞 × 𝑟. 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑗 [𝑖] keeps the best alignment

cost of sample pair 𝑖, 𝑗 . Assuming there are m gesture patterns or categories and each

gesture pattern has n templates in the template set (so 𝑞 = 𝑚 × 𝑛), for each training

example j, each gesture pattern has n minimum distance values, one for each template.

We can find one best (the lowest score) and one worst (the highest score) thresholds

among those n scores. In other words, for each row of matrix Distance, we can find m

 24

best and m worst thresholds for m gesture patterns. For each gesture pattern, the system

maintains two arrays with the length of 𝑟 for storing the best and worst thresholds of

each training sample.

In order to set a reasonable threshold for the binary classification of one gesture

pattern, we can compute the F-measure on the overlap of the best thresholds of those

incorrect gesture patterns and the worst thresholds of the correct gesture pattern. For

each gesture pattern k, the system will merge the best threshold array of k and the worst

threshold arrays of the other templates except k by the following:

Then, for each array T, the system sorts the array and tries every element as the

threshold for classifying gesture m and computes the F-measure. The system can get true

positive, false positive and false negative values for each element. The rule is the

following:

for each gesture k:

initialize a new array T;

for each training sample j:

 if the label of j is equal to gesture k

 T [j] = the jth element

of the worst threshold array of gesture k;

 else

T [j] = the jth element

of the best threshold array of gesture

whose index is the label of j;

end

do F-measure on T to find the best threshold with the highest F-score;

end

 25

After running the F-measure evaluation on every gesture pattern, the system can

obtain a gesture classification threshold array. The following figure shows the best

gesture classification threshold of each gesture pattern (gesture 1 to 5) and its true

positive (tp), false positive (fp), false negative (fn), precision and recall value.

Figure 7: F-measure evaluation result. Details including classification threshold, true positive (tp), false

positive (fp), false negative (fn), precision, recall value and F- measure score for each gesture.

for each element t in the sorted array T

 threshold = t. score value;

gesture index = t . gesture index;

for each element s in the sorted array T

 if s. score value is not greater than threshold

 if s. gesture index is equal to gesture index

 true positive + 1;

 else

 false positive + 1;

else if s. gesture index is equal to gesture index

 false negative + 1;

 end

end

precision = true positive / (true positive + false negative);

recall = true positive / (true positive + false negative);

 f = (2 × precision × recall) / (precision + recall);

end

 26

3. Solving Conflicts by K-Nearest-Neighbor
In real-time testing, although the system has classification thresholds for each gesture

pattern, it is still possible that the best (lowest) alignment scores fall below the

predetermined thresholds for at least two different gestures. In those cases, the system

should choose one over several “candidate” gestures as the final result. The selection

mechanism I implement uses the K-Nearest-Neighbor algorithm. The K-Nearest-

Neighbor algorithm is a type of instance-based learning algorithm, which classifies

objects based on the K closest training examples in the feature space. Since for each

input vector, the system runs q DTW comparisons to align the input vector against q

templates, it can get a set of best alignment scores S between each template and the input

vector, which 𝑆 = 𝑠!, 𝑠! , 𝑠! , 𝑠!,… , 𝑠! . Considering the impact of the different

threshold values, the algorithm normalizes the distance between each template and the

real input vector by its threshold.

 𝑑! =
𝑠!

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑!
 (10)

After ranking 𝑑! from low to high, the system can make the decision by K-Nearest-

Neighbor “majority voting.” However, one of the drawbacks of “majority voting” is that

an instance might be misclassified if it is too close to the classification boundary

between two classes. In order to solve this problem, in my implementation, each

neighbor votes with weighted values. The weighted value of the jth nearest neighbor is

calculated by

 𝑣! =
𝐾 + 1− 𝑗

𝑗!
!!!

 (11)

 For example, for 5-Nearest-Nneighbor, the weighted values from the first neighbor

to the fifth neighbor are 0.33, 0.26, 0.2, 0.133, 0.0667 . The class with the highest sum

of weights will be selected as the final result. However, if two classes get the same

highest value, the system will suspend the decision until next input feature vector comes.

 27

In this section, an F-measure evaluation based threshold model is introduced to find the

best combination of gesture pattern threshold and feature parameters according to the

gesture templates and training data. Moreover, in order to get the recognition result over

multiple candidates, a K-Nearest-Neighbor algorithm is applied to classify the input

sequence in the real-time decision process.

 28

VI. Gesture Vocabulary

Defining a feasible gesture vocabulary is always a difficult aspect of creating a gesture

recognition system. A well-designed gesture vocabulary will not only make the system

become user-friendlier but also improve the recognition accuracy. In this section, I will

discuss how to build a gesture vocabulary from an HCI perspective.

1. Gestures
When we are talking about the word “gesture,” it always means a form of non-verbal

communication in which visible bodily actions communicate particular messages.

According to how people perform the gesture, it can be labeled as a static gesture, a

dynamic gesture or a spatio-temporal gesture [21]. Specifically, static gestures are

postures, which do not take movements into account. Dynamic gestures can be defined

as the sequences of static gestures. Spatio-temporal gestures are the subgroup of

dynamic gestures that move through the workspace over time. In this thesis, I am

focusing on those spatio-temporal command gestures that can signal some specific

event.

2. Design Guidelines

2.1. Avoiding Simple Gestures

Simple gestures, such as moving hand horizontally or vertically, can easily performed by

the testers. In isolated gesture recognition testing, those simple gestures get high

recognition rates. However, for continuous gesture recognition, if we include those

simple gestures in our gesture vocabulary, we increase the hazard of false triggering.

Gesture recognition must be very tolerant of spontaneous motion by the users that might

match a gesture. Otherwise, users would suffer rigid constraints to their behavior. Thus,

the best way to minimize both rigid constraints and false triggering is to avoid defining

those simple gestures in the vocabulary. When users try to add a new gesture into

vocabulary, the system should suggest designing a more complicated gesture rather than

a simple one. If the user can record “background” activity, that is, typical movement not

containing gestures, then this background activity can be searched for any candidate

 29

gesture. If one or more fairly good matches are found, the user can be warned that the

candidate is not clearly distinguishable from typical non-command movements.

2.2. Minimizing the Similarity between Gestures

Moreover, the similarity between two gestures is another big issue to cause false

recognition. Since the Dynamic Time Warping algorithm tries to find the best alignment

between a real-time input sequence and gesture templates, if two gestures share a great

similarity, both of them will be selected as gesture candidates. Although the recognition

system provides a mechanism to solve such conflicts, there is no guarantee that the

decision will be always right. Moreover, any deformation of the real input sequence or

inaccurate measurement can result in a false recognition. Therefore, if we can minimize

the similarity among different gestures, it will make the recognition more accurate.

2.3. Considering the Overlap between Gestures

Complex gestures are often composed of simpler gestures. When the user defines a

gesture, it may overlap with existing gestures. Consider the following example: Gesture

1 and Gesture 2 (see Figure 8) are gesture patterns stored in the vocabulary. When the

recognition system receives an input sequence, which is drawn in the third column of

Figure 8, it is hard to classify the input since the middle of the input gesture matches the

end of Gesture 1 and the beginning of Gesture 2. Although the user intended to perform

Gesture 2, rather than Gesture 1, the system recognizes the sequence as Gesture 1 since

it matches Gesture 1 first. Overlaps between gesture patterns bring uncertainty to the

recognition system, and it is hard to disambiguate overlapping gestures just within the

recognition system itself.

Gesture 1 Gesture 2 Input Gesture Sequence

Figure 8: Input gesture sequence is mixed by gesture 1 and gesture 2.

 30

2.4. Limiting the Vocabulary

Limiting the vocabulary is important, and will both benefit the users and the recognition

system. Since the users need to utilize those gestures in real time, they should be

comfortable with all the gestures in the vocabulary. After the training process, users

should practice gestures before performing with them. Only when the gestures are

performed without hesitation, the users will keep their performance in focus rather than

be distracted by gesture production and recognition. Additionally, limited gestures will

not only help the users reduce their learning curves but also cut the computation and

make recognition easier. The current system has demonstrated good performance with

five to eight gestures.

2.5. Minimizing Gesture Deformation

Since all thresholds are based on alignments between gesture templates and training

samples, a deformed gesture sample may raise the threshold value and lead to the

recognition of a larger set of gestures. Thus, the users should be very careful when they

perform any gesture. Especially, for Kinect, since it records the x-, y- and z-axis position

of skeleton joints, bad trajectories in templates and training will be dangerous.

On the other hand, training data should be representative of actual gestures. If

gestures must have substantial variation in a performance, the training data should

reflect this. Otherwise, some gestures may not be recognized. If a large degree of gesture

deformation is allowed, then the challenge will be making gestures distinctive enough

that they are not confused.

 31

VII. Experiments and Results

In this section, a gesture vocabulary, which contains eight gestures, is defined and

applied for testing gesture recognition accuracy. The experimental results are presented,

including both isolated and continuous gesture recognition.

1. Gesture Vocabulary
To evaluate both isolated and continuous gesture recognition, a human tester is asked to

perform eight simple hand gestures (see Figure 9) using his left hand. Each “command”

gesture is repeated five times. Thus, the template set stores ten similar gesture feature

vector sequences for each gesture pattern. The tester is also asked to perform ten training

gestures for each gesture pattern. Another ten non-gesture training samples are also

recorded and labeled with 0 (non-gesture). Each sample in the template set and training

set has the same duration, which is 2 seconds. Figure 9 shows the hand 2-D trajectories

of those gestures. The start point of each gesture is labeled as a dot and the end of the

gesture is labeled as an arrow.

Figure 9: Gesture vocabulary for testing. The start point of each gesture is labeled as a dot and the end of

the gesture is labeled as an arrow.

 32

Figure 10: The 4-dimensional hand gesture trajectory of each gesture pattern.

All gestures are stored as an entry in a MATLAB mat file. After collecting data, we

can visualize gestures in MATLAB. Figure 10 shows the 4-dimensional hand gesture

trajectory of each gesture (gesture 1 - 8). Specifically, the blue curve represents the x-

axis trajectory of the tester’s left elbow. The dark green curve stands for the y-axis

trajectory of tester’s left elbow. The red curve characterizes the x-axis trajectory of

tester’s left hand and the light green curve depicts the y-axis trajectory of his left hand.

 33

2. Isolated Gesture Recognition Testing
To evaluate isolated gesture recognition, the tester is asked to perform 100 test samples,

which contains 10 samples for each gesture and 20 non-gesture samples. Each test

sample is 2.5 seconds long. The tester performs the testing gesture in random order. The

recognition accuracy depends on the recognition precision, which shows how many

results the system provides match the true label of the samples. Since my

implementation can assign different feature combinations, the recognition accuracy

varies according to different feature settings. Table 1 shows the details of isolated

recognition accuracy giving different feature and parameter combinations.

Feature

Vector

Smoothing

Method

Relative

Position
Alpha

Insertion

Cost

Deletion

Cost

Recognition

Accuracy

x-/y- hand Exponential False 0.5 0.0 0.0 89%

x-/y- hand Exponential False 0.8 0.0 0.1 94%

x-/y- hand Exponential False 0.8 0.0 0.0 87%

x-/y- hand Exponential False 0.8 0.1 0.3 87%

x-/y- hand Exponential True 0.8 0.1 0.3 85%

x-/y- elbow

and hand
Exponential False 0.6 0.1 0.3 87%

x-/y- elbow

and hand
Exponential True 0.5 0.1 0.4 81%

x-/y- elbow

and hand
Exponential False 0.5 0.1 0.4 84%

Table 1: Isolated Gesture Recognition Accuracy.

Since most of previous research evaluated the accuracy of recognition based on fixed

parameter settings, we cannot compare their results to find how different parameter

settings influence the accuracy. However, we can compare the overall recognition rate

with their results. In [7], A.Corradini tested his DTW-based off-line recognition

approach on a small gesture vocabulary, which is composed of five preliminary gestures:

stop, waving right, waving left, go right and go left. For each gesture, he reported the

recognition accuracy rates of each gesture are 91.3%, 88.5%, 89.2%, 91.6% and 91.3%.

Thus, the overall recognition rate of his DTW-based approach is 90.4%. According to

 34

the different parameter settings, the recognition rates my implementation can achieve are

mainly floating between 84% and 88% and the highest accuracy rate is 94%. Those two

results are comparable, and a good parameter tuning can achieve a high accuracy for a

specific testing set.

3. Continuous Gesture Recognition Testing
To evaluate continuous gesture recognition, the tester is asked to perform 25 testing

samples, which have varying durations between 10 seconds to 20 seconds. Each sample

contains 1 to 3 gestures in the vocabulary and those gestures are labeled after recording.

Figure 11 shows the two-dimensional trajectory of one of the test samples, which

contains gesture 8 and gesture 1 in the vocabulary. The evaluation measurements are the

accuracy of the recognition. We consider that a gesture is correctly detected if the start /

end point the recognition system finds the correct gesture within 6 samples (0.2 seconds)

of the “true” label.

Figure 11: Two-dimensional trajectory of one test sample, which contains gesture 8 and gesture 1.

The accuracy varies according to different feature combinations and threshold

settings. If the system has a high F-measure score on the training data, then gestures in a

continuous stream can be detected by the system with high confidence. For instance, for

the test sample shown in Figure 11, since the system selects the thresholds with high F-

measure score (7.83 / 8.0), two gestures in the sequence are detected clearly. The best

alignment cost between gesture templates and the real input fall below the threshold of

gesture 8 around the 193rd sample, which is considered as the end point of a gesture.

Gesture 8 Gesture 1

 35

Similarly, the best alignment between gesture 1 and real input falls below the threshold

of gesture 1 around the 384th sample, which is considered as the end point of gesture 1.

Figures 12 and 13 are snapshots of this real-time testing. Figure 14 shows the best

alignment between each templates and each input vector.

Figure 12: The system detects gesture pattern 8 around the 193rd sample.

Figure 13: The system detects gesture pattern 1 around the 384th sample.

 36

Figure 14: Red solid curves are the best alignment score between each template and each input

vector. The dotted blue lines illustrate the thresholds of each gesture template.

When testing 60 gestures in 25 continuous sequences, we find there is a big

difference in the recognition accuracy with different feature combination. Generally, the

feature combination with the higher F-measure score achieves higher recognition

 37

accuracy. The highest recognition accuracy is 89%, where the F-measure score is

7.83/8.0.

Table 2: Continuous Gesture Recognition Accuracy.

In previous research, Miguel A Bautista et al. achieved 67.81% recognition accuracy

by using a probability-based DTW [8]. Moreover, Narayanan C. Krishnan et al. got a

recognition result where precision is 0.78 and recall is 0.93 by using Adaboost-based

adaptive threshold model [15]. Although different gestures and sensors are involved,

making comparisons difficult, our DTW-based gesture spotting approach, with about 90%

recognition accuracy, has the same order-of-magnitude error rate.

Feature

Vector

Smoothing

Method

Relative

Position
Alpha

Insertion

Cost

Deletion

Cost

F-Score

Value

Recognition

Accuracy

x-/y- hand Exponential False 0.5 0.0 0.0 6.37 72%

x-/y- hand Exponential False 0.5 0.1 0.3 6.26 70%

x-/y- hand Exponential False 0.8 0.0 0.0 6.44 75%

x-/y- hand Exponential False 0.8 0.1 0.3 7.63 83%

x-/y- hand Exponential True 0.8 0.0 0.1 7.83 89%

x-/y- elbow

and hand
Exponential False 0.6 0.1 0.3 6.10 67%

x-/y- elbow

and hand
Exponential True 0.5 0.1 0.4 7.21 79%

x-/y- elbow

and hand
Exponential False 0.5 0.1 0.4 6.67 74%

 38

VIII. Applications

In this section, we will discuss several possible applications by using the proposed music

gesture recognition system. Generally speaking, this gesture recognition system can

either assist the musicians in real time performance or act as a new musical interface for

interactive music performance.

1. Real-Time Music Performance Gesture Recognizer
The original purpose of building a gesture recognizer is to use it in real-time

performance. By training a personal small gesture vocabulary before the performance,

musicians can use the gesture recognizer to send their “commands” to the computer.

Thus, musicians can control sound parameters or output sounds without the help of off-

stage sound engineers.

2. Gesture-based Interactive Music Performance
Moreover, as multimedia performance becomes popular, this system can also be used for

gesture-based interactive music performance. A performer can act as a “conductor” of a

virtual band in the real performance. According to the predetermined mapping strategy,

each virtual instrument reacts to the performer’s gestures by performing specific sound

events.

3. Multimedia Installation

Since the gesture recognizer communicates to other programs via OpenSoundControl, it

can also cooperate with a multimedia installation to act as a bridge between users and

the core system. According to users’ gestures or facial expressions, the recognition sends

a determined command to the core system and the system reacts to the input via audio

and video.

 39

IX. Conclusion and Future Work
In this thesis, a Dynamic Time Warping based gesture spotting and recognition system is

built to spot and recognize musicians’ “command” gestures in real performance. In order

to find the best feature combinations, the system evaluates different combinations by

applying F-measure evaluation on the training data. The system sends recognized

commands via OSC messages. It currently supports Microsoft Kinect and an on-body

wireless sensor as the input. Currently, the system recognizes isolated gestures with

almost 94% accuracy and achieves 89% accuracy on continuous gesture recognition. A

working implementation has been written in Java. However, there is still work to be

done in the future to improve the performance of the system.

1. Improving Recognition Accuracy
The system still does not get a perfect performance on continuous gesture spotting and

recognition. In my testing, some particular non-gesture patterns can easily match one of

the gesture patterns and make a false triggering. Moreover, if two gestures share a great

similarity in one of their feature dimensions, they also can be confused. I believe we can

try to improve the recognition accuracy by paying attention the following things:

1.1. The Distance Function

In my implementation, the Euclidean distance function is used to compute the distance

between two feature vectors. Some people have used Mahalanobis distance, which is

preferred over Euclidean distance for computing the similarity between the feature

vectors [22] [23]. I think we can improve the recognition accuracy with an improved

distance function.

1.2. The Matching Algorithm

In my thesis, the original DTW is selected as the algorithm to measure the similarity

between two time series. I wonder if we can modify the original DTW or apply newer

technology to get a good classification result. R. Oka purposed a modified DTW

algorithm, Continuous Dynamic Programming (CDP) in his paper for spotting words in

continuous speech [24]. This idea might help us think about how to modify the basic

DTW algorithm and get a better performance. Moreover, trying to combine other latest

 40

technology, such as Hidden Markov Models (HMMs) or Conditional Random Fields

(CRFs), with the threshold model might be a good approach.

2. Enhancing the Efficiency

Since the system computes the best alignment costs between every template in the

vocabulary and the real input, it uses a lot of computation. Assuming the system has m

gestures, which have n templates with the length of l, we create a DTW comparison for

every t samples, and the computation for one DTW matrix column is c. the total

computation is 𝑚 × 𝑛 × !
!
 × 𝑐. In my implementation, there are 8 gestures (m = 8), each

gesture has 5 templates (n = 5), the length of each template is 2 seconds or 60 samples (l

= 60), the time interval between two DTW sliding windows is 4 samples (t = 4) and for

one DTW column, the system takes 0.0000026 seconds (2.6 µs) and the total cost for

comparing one input vector with all gesture templates is 0.00156 seconds (1.56 ms) on

average. Since Kinect pushes data into system every 30.3 ms, the computation is still

affordable. In fact, the total computation takes less than 5% of a core. However, if we

have more gestures, the system will finally reach its limit. A possible solution might be

breaking a gesture into several short sub-gesture units. Since the comparison is over a

smaller space of sub-gesture units and the input vector, many invalid gestures can be

eliminated early if the prefix sub-gesture units match the templates poorly. Alternatively,

there is no point to continuing a DTW computation, where distance increases

monotonically with the length of the match, after the distance computed so far exceeds

the match threshold.

3. A Comprehensive Gesture Study
In my thesis, I briefly discuss how to build a gesture vocabulary. However, in order to

use the program in a real performance, more comprehensive HCI research on Gestural

User Interfaces should be conducted. In fact, an HCI evaluation process should be used

to evaluate each gesture pattern from an HCI perspective and the gesture design should

be guided by the results of the evaluation process. After several gesture design iterations,

a gesture library will be built for recommending to users gesture patterns from which

they can build future gesture vocabularies.

 41

References

[1] J. Francoise, “Real time Segmentation and Recognition of Gestures using

Hierarchical Markov Models,” Master’s Thesis, Universite Pierre et Marie Curie, Ircam,

2011.

[2] R.Fiebrink, “Real-time Human Interaction with Supervised Learning Algorithms for

Music Composition and Performance,” Ph.D. dissertation, Faculty of Princeton

University, 2011.

[3] F. Bevilacqua and N. Schnell, “Wireless sensor interface and gesture-follower for

music pedagogy,” Proceedings of the 7th international conference on New interfaces for

musical expression, pp. 124–129, 2007.

[4] N. Gillian and R. Knapp, “A Machine Learning Tool-box For Musician Computer

Interaction,” in Proceedings of the 2011 Conference on New Interfaces for Musical

Expression, 2011.

[5] K. Takahashi, S. Seki, and R. Oka, “ Spotting Recognition of Human Gestures from

Motion Images,” Technical Report IE92 134, The Inst. of Electronics, Information, and

Comm. Engineers, Japan, pp. 9-16, 1992 (in Japanese).

[6] A. Akl and S. Valaee, “Accelerometer-based gesture recognition via dynamic-time

warping, affinity propagation, and compressive sensing,” In ICASSP, pp. 2270–2273,

2010.

[7] A. Corradini, “Dynamic time warping for off-line recognition of a small gesture

vocabulary,” in RATFG-RTS ’01: Proceedings of the IEEE ICCV Workshop on

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems

(RATFG-RTS’01). Washington, DC, USA: IEEE Computer Society, 2001.

 42

[8] Bautista, Miguel A, and Hernández, Antoni and Ponce, Victor and Perez Sala,

Xavier and Baró, Xavier and Pujol, Oriol andAngulo, Cecilio and Escalera,

“Probability-based Dynamic Time Warping for Gesture Recognition on RGB-D

data,” Proceedings of the 21st International Conference on Pattern Recognition.

International Conference on Pattern Recogntion Workshops, WDIA, 2012.

[9] R. Kjeldsen and J. Kender, “ Visual Hand Gesture Recognition for Window System

Control,” Proc. Int'l Workshop Automatic Face- and Gesture-Recognition, pp. 184-188,

Zurich, Switzerland, 1995.

[10] S. Fels and G. Hinton, “Glove-talk: A neural network interface between a data-

glove and a speech synthesizer,” Neural Networks, IEEE Transactions on, vol. 4, no. 1,

pp. 2–8, 1993.

[11] X. Deyou, “A Neural Approach for Hand Gesture Recognition in Virtual Reality

Driving Training System of SPG,” International Conference on Pattern Recognition,

Vol. 3, pp. 519-522, 2006.

[12] H. Lee and J. Kim, “An HMM-Based Threshold Model Approach for Gesture

Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

21, No. 10, pp. 961-973, 1999.

[13] K. P. Murphy and M. A. Paskin, “Linear Time Inference in Hierarchical HMMs,”

Advances in Neural Information Processing Systems, Vol.2, 2001.

[14] M. Elmezain and A. Al-Hamadi and B. Michaelis, “ Robust methods for hand

gesture spotting and recognition using Hidden Markov Models and Conditional Random

Fields,” Signal Processing and Information Technology (ISSPIT), 2010 IEEE

International Symposium, 2010.

 43

[15] Krishnan, Narayanan C., Lade, Prasanth and Panchanathan, Sethuraman, “Activity

gesture spotting using a threshold model based on adaptive boosting,” Multimedia and

Expo (ICME), 2010 IEEE International Conference, Vol.1, pp. 155-160, 2010.

[16] http://en.wikipedia.org/wiki/Open_Sound_Control

[17] http://en.wikipedia.org/wiki/Kinect

[18] https://github.com/Sensebloom/OSCeleton

[19] http://www.openni.org/

[20] http://en.wikipedia.org/wiki/F1_score

[21] P. Kortum, HCI Beyond the GUI, Chapter 3, Morgan Kaufmann, pp. 75-102, 2008.

[22] Jonathan Alon, Vassilis Athitsos, Quan Yuan, and Stan Sclaroff, “A unified

framework for gesture recognition and spatiotemporal gesture segmentation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, pp. 1685–1699,

2008.

[23] Jiayang Liu, Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan,

“uwave: Accelerometer-based personalized gesture recognition and its applications,”

IEEE International Conference on Pervasive Computing and Communications, pp. 1–9,

2009.

[24] R. Oka, “Spotting method for classification of real world data,” The Computer

Journal, Vol. 41, no. 8, pp. 559–565, July 1998.

