
Introduction to Computer Music
Week 1

Instructor: Prof. Roger B. Dannenberg

Topics Discussed: Sound, Nyquist, SAL, Lisp and Control Constructs

1 Introduction
Computers in all forms – desktops, laptops, mobile phones – are used to store and play music. Perhaps less obvious
is the fact that music is now recorded and edited almost exclusively with computers, and computers are also used
to generate sounds either by manipulating short audio clips called samples or by direct computation. In the late
1950s, engineers began to turn the theory of sampling into practice, turning sound into bits and bytes and then back
into sound. These analog-to-digital converters, capable of turning one second’s worth of sound into thousands of
numbers made it possible to transform the acoustic waves that we hear as sound into long sequences of numbers,
which were then stored in computer memories. The numbers could then be turned back into the original sound. The
ability to simply record a sound had been known for quite some time. The major advance of digital representations
of sound was that now sound could be manipulated very easily, just as a chunk of data. Advantages of employing
computer music and digital audio are:

1. There are no limits to the range of sounds that a computer can help explore. In principle, any sound can be
represented digitally, and therefore any sound can be created.

2. Computers bring precision. The process to compute or change a sound can be repeated exactly, and small
incremental changes can be specified in detail. Computers facilitate microscopic changes in sounds enabling
us to producing desirable sounds.

3. Computation implies automation. Computers can take over repetitive tasks. Decisions about music making
can be made at different levels, from the highest level of composition, form and structure, to the minutest
detail of an individual sound. Unlike with conventional music, we can use automation to hear the results of
these decisions quickly and we can refine computer programs accordingly.

4. Computers can blur the lines between the traditional roles of the composer and the performer and even the
audience. We can build interactive systems where, thanks to automation, composition is taking place in real
time.

The creative potential for musical composition and sound generation empowered a revolution in the world of music.
That revolution in the world of electroacoustic music, engendered wonderful synthesis of music, mathematics and
computing.

This course has two main components, the technology of computer music and making music with computers.
The technology of computer music includes theory, which covers topics such as digital audio and digital single
processing, software design and languages, data structures and representation. All of these form a conceptual
framework that you need to understand the field. The second aspect of the technology of computer music is putting
these concepts into practice to make them more concrete and practical. We will also make music in this course.
Making music also has a theoretical side, mainly listening to music and discussing what we find in the music.
Of course, there is also the practical side of making music, consisting mostly of writing programs in Nyquist, a
powerful composition and sound synthesis language.

1

A composer is expected to have understanding of acoustics and psychoacoustics. The physics of sound (acous-
tics) is often confused with the way in which we perceive it (psychoacoustics). In the next section, we discuss
sound’s physical characteristics and common measurements. Following that, we change topics and give a brief
introduction to the Nyquist language.

2 Fundamentals of Computer Sound
All musicians work with sound in some way but many have little understanding of its properties. Computer musi-
cians can benefit in myriad ways from the understanding of the mechanisms of sound, its objective measurements
and the more subjective area of its perception. This understanding is crucial to the proper use of common stu-
dio equipment and music software and novel compositional strategies can be derived from exploiting much of the
information contained in this section.

2.1 What is Sound?
Sound is a complex phenomenon involving physics and perception. Perhaps the simplest way to explain it is to say
that sound involves at least three things:

1. something moves

2. something transmits the results of that movement

3. something (or someone) hears the results of that movement (though this is philosophically debatable)

All things that make sound move, and in some very metaphysical sense, all things that move (if they don’t move
too slowly or too quickly) make sound. As things move, they "push" and "pull" at the surrounding air (or water
or whatever medium they occupy), causing pressure variations (compressions and rarefactions). Those pressure
variations, or sound waves, are what we hear as sound.

Figure 1: Illustration of a wave and the corresponding pressure variations in the air.

Sound is produced by a rapid variation in the average density or pressure of air molecules above and below
the current atmospheric pressure. We perceive sound as these pressure fluctuations cause our eardrums to vibrate.
When discussing sound, these usually minute changes in atmospheric pressure are referred to as sound pressure and
the fluctuations in pressure as sound waves. Sound waves are produced by a vibrating body, be it an oboe reed,
loudspeaker cone or jet engine. The vibrating sound source causes a disturbance to the surrounding air molecules,
causing them to bounce off each other with a force proportional to the disturbance.

The speed at which sound propagates (or travels from its source) is directly influenced by both the medium
through which it travels and the factors affecting the medium, such as altitude, humidity and temperature for gases

2

like air. There is no sound in the vacuum of space because there are too few molecules to propagate a wave. The
approximate speed of sound at 20◦ Celsius (68◦ Fahrenheit) is 1128 feet per second (f/s).

It is important to note that the speed of sound in air is determined by the conditions of the air itself (e.g. humidity,
temperature, altitude). It is not dependent upon the sound’s amplitude, frequency or wavelength.

Pressure variations travel through air as waves. Sound waves are often characterized by four basic qualities,
though many more are related: frequency, amplitude, wave shape and phase1. Some sound waves are periodic, in
that the change from equilibrium (average atmospheric pressure) to maximum compression to maximum rarefaction
back to equilibrium is repetitive. The ’round trip’ back to the starting point just described is called a cycle or period.

Figure 2: Illustration of how waveform changes with the change in frequency.

The number of cycles per unit of time is called the frequency. For convenience, frequency is most often mea-
sured in cycles per second (cps) or the interchangeable Hertz (Hz) (60 cps = 60 Hz), named after the 19th C.
physicist. 1000 Hz is often referred to as 1 kHz (kilohertz) or simply ’1k’ in studio parlance.

The range of human hearing in the young is approximately 20 Hz to 20 kHz—the higher number tends to
decrease with age (as do many other things). It may be quite normal for a 60-year-old to hear a maximum of 16,000
Hz. Frequencies above and below the range of human hearing are also commonly used in computer music studios.

Amplitude is the objective measurement of the degree of change (positive or negative) in atmospheric pressure
(the compression and rarefaction of air molecules) caused by sound waves. Sounds with greater amplitude will
produce greater changes in atmospheric pressure from high pressure to low pressure to the ambient pressure present
before sound was produced (equilibrium). Humans can hear atmospheric pressure fluctuations of as little as a few
billionths of an atmosphere (the ambient pressure), and this amplitude is called the threshold of hearing. On the
other end of the human perception spectrum, a super-loud sound near the threshold of pain may be about a million
times the pressure amplitude of the threshold of hearing, yet only a 0.03% change at your ear drum in the actual
atmospheric pressure. We hear amplitude variations over about 5 orders of magnitude from threshold to pain.

2.2 Analog Sound
Sound itself is a continuous wave; it is an analog signal. When we record audio, we start with continuous vibra-
tions that are analogous to the original sound waves. Capturing this continuous wave in its entirety requires an
analog recording system; what the microphone receives is transformed continuously into a groove of a vinyl disk
or magnetism of a tape recorder. Analog can be said to be the true representation of the sound at the moment it was
recorded. The analog waveform is nice and smooth, while the digital version is kind of chunky. This "chunkiness"
is called quantization. Does this really matter? Keep reading...

2.3 Digital Audio Representation
Sounds from the real world can be recorded and digitized using an analog-to-digital converter (ADC). As in the
Figure 4, the circuit takes a sample of the instantaneous amplitude (not frequency) of the analog waveform. Alter-
natively, digital synthesis software can also create samples by modeling and sampling mathematical functions or

1It could be argued that phase is not a characteristic of a single wave, but only as a comparison between two or more waves.

3

Figure 3: Before audio recording became digital, sounds were "carved" into vinyl records or written to tape as
magnetic waveforms. Left image shows wiggles in vinyl record grooves and the right image shows a typical tape
used to store audio data.

other forms of calculation. A sample in either case is defined as a measurement of the instantaneous amplitude of
a real or artificial signal. Frequencies will be recreated later by playing back the sequential sample amplitudes at a
specified rate. It is important to remember that frequency, phase, waveshape, etc. are not recorded in each discrete
sample measurement, but will be reconstructed during the playback of the stored sequential amplitudes.

Figure 4: An analog waveform and its digital cousin: the analog waveform has smooth and continuous changes,
and the digital version of the same waveform consists only of a set of points shown as small black squares. The
grey lines suggest that the rest of the signal is not represented-—all that the computer knows about are the discrete
points marked by the black squares. There is nothing in between those points. (It is important to note, however, that
it might be possible to recover the original continuous signal from just the samples.)

Samples are taken at a regular time interval. The rate of sample measurement is called the sampling rate (or
sampling frequency). The sampling rate is responsible for the frequency response of the digitized sound.

To convert the digital audio into the analog format, we use Digital to Analog Converters. A Digital to Analog
Converter, or DAC, is an electronic device that converts a digital code to an analog signal such as a voltage, current,
or electric charge. Signals can easily be stored and transmitted in digital form; a DAC is used for the signal to be
recognized by human senses or non-digital systems.

2.4 The Table-Lookup Oscillator
Although we still have a lot to learn about digital audio, it is useful to look at a very concrete example of how we can
use computers to synthesize audio in addition to simply recording and playing it back. One of the simplest synthesis
algorithms is the table-lookup oscillator. The goal is to create a periodic, repeating signal. Ideally, we should have
control over the amplitude, because scaling the amplitude down makes the sound quieter, and frequency, because
repeating the signal faster makes the pitch higher.

To get started, consider the following algorithm, which simply outputs samples sequentially and repeatedly from
a table that stores on period of the repeating signal:

4

// create a table with one period of the signal:
table = [0, 0.3, 0.6, 0.9, 0.6, 0.3, 0, -0.3, -0.4, -0.9, -0.6, -0.3]
// output 10000 periods:
repeat 10000 times:

for each element of table:
write(element)

This will produce 120,000 samples, or about 3 seconds of audio if the sample rate is 44,100 samples per second.
The frequency (rate of repetition in the signal) will be 12/44,100 = 3675, which is near the top note of the piano.
We want very fine control over frequency, so this simple algorithm with integer-length repeating periods is not
adequate. Instead, we need to use some kind of interpolation to allow for fractional periods. This approach is
shown here:

// create a table with one period of the signal:
table = [0, 0.3, 0.6, 0.9, 0.6, 0.3, 0, -0.3, -0.4, -0.9, -0.6, -0.3]
// make a variable to keep track of phase:
phase = 0.0
// increment phase by this to get 440 Hz:
phase_incr = 440 * len(table) / 44100.0
// output 10000 periods:
repeat 44100 * 10 times: // 10 seconds of audio

i1 = floor(phase) // integer part of phase, first sample index
frac = phase - i1 // fractional part of phase
i2 = (i1 + 1) mod len(table) // index of next sample in table
// linearly interpolate between two samples in the table:
y = (1 - frac) * table[i1] + frac * table[i2]
write(y * amplitude)
// increment phase and wrap around when we reach the end of the table
phase = (phase + phase_incr) mod len(table)

This code example is considerably longer than the first one. It uses the variable phase to keep track of how much
of the waveform period we have output so far. After each sample is output, phase is incremented by phase_incr,
which is initialized so that phase will reach the table length and wrap around to zero (using the mod operator) 440
times per second. Since phase is now fractional, we cannot simply write table[phase] to look up the value of the
waveform at location phase. Instead, we read two adjacent values from the table and form a weighted sum based
on the fractional part (frac) of phase. Even though the samples may not exactly repeat due to interpolation, we
can control the overall frequency (or repetition rate) at which we sweep through the table very precisely.

In addition, this version of the code multiplies the computed sample (y) by amplitude. This scale factor gives
us control over the overall amplitude, which is related to the loudness of the resulting sound.

In practice, we would normally use a much larger table, e.g. 2048 elements, and we would use a smoother
waveform. (We will talk about why digital audio waveforms have to be smooth later.) It is common to use this
technique to generate sinusoids. Of course, you could just call sin(phase) for every sample, but in most cases,
pre-computing values of the sin function and saving them in a table, then reading the samples from memory, is
much faster than computing the sin function once per sample.

Instead of synthesizing sinusoids, we can also synthesize complex waveforms such as triangle, sawtooth, and
square waves of analog synthesizers, or waveforms obtained from acoustic instruments or human voices.

We will learn about many other synthesis algorithms and techniques, but the table-lookup oscillator is a com-
putationally efficient method to produce sinusoids and more complex periodic signals. Besides being efficient, this
method offers direct control of amplitude and frequency, which are very important control parameters for making
music. The main drawback of table-lookup oscillators is that the waveform or wave shape is fixed, whereas most
musical tones vary over time and with amplitude and frequency. Later, we will see alternative approaches to sound
synthesis and also learn about filters, which can be used to alter wave shapes.

5

3 Nyquist, SAL, Lisp
Nyquist2 is a language for sound synthesis and music composition. Unlike score languages that tend to deal only
with events, or signal processing languages that tend to deal only with signals and synthesis, Nyquist handles both
in a single integrated system. Nyquist is also flexible and easy to use because it is based on an interactive Lisp
interpreter.

Figure 5: NyquistIDE System Architecture

The NyquistIDE program combines many helpful functions and interfaces to help you get the most out of
Nyquist. NyquistIDE is implemented in Java, and you will need the Java runtime system or development system
installed on your computer to use NyquistIDE. The best way to learn about NyquistIDE is to just use it. NyquistIDE
helps you by providing a Lisp and SAL editor, hints for command completion and function parameters, some
graphical interfaces for editing envelopes and graphical equalizers, and a panel of buttons for common operations.

3.1 Using SAL
Nyquist is based on the Lisp language. Many users found Lisp’s syntax unfamiliar, and eventually Nyquist was
extended with support for SAL, which is similar in semantics to Lisp, but similar in syntax to languages such as
Python and Javascript. The NyquistIDE supports two modes, Lisp and SAL. SAL mode means that Nyquist reads
and evaluates SAL commands rather than Lisp. The SAL mode prompt is "SAL> " while the Lisp mode prompt is
"> ". When Nyquist starts, it normally enters SAL mode automatically, but certain errors may exit SAL mode. You
can reenter SAL mode by typing the Lisp expression (sal) or finding the button labeled SAL in the IDE.

In SAL mode, you type commands in the SAL programming language. Nyquist reads the commands, compiles
them into Lisp, and evaluates the commands. Some examples of SAL commands are the following:

• print expression – evaluate and expression and print the result.

• exec expression – evaluate expression but do not print the result.

• play expression – evaluate and expression and play the result, which must be a sound.

• set var = expression – set a variable.

4 Examples
This would be a good time to install and run the NyquistIDE. You can find Nyquist downloads on https://
sourceforge.net/projects/nyquist, and "readme" files contain installation guidelines.

The program named NyquistIDE is an "integrated development environment" for Nyquist. When you run
NyquistIDE, it starts the Nyquist program and displays all Nyquist output in a window. NyquistIDE helps you

2Nyquist reference manual: https://www.cs.cmu.edu/~rbd/doc/nyquist

6

https://sourceforge.net/projects/nyquist
https://sourceforge.net/projects/nyquist
https://www.cs.cmu.edu/~rbd/doc/nyquist

by providing a Lisp and SAL editor, hints for command completion and function parameters, some graphical in-
terfaces for editing envelopes and graphical equalizers, and a panel of buttons for common operations. A more
complete description of NyquistIDE is in Chapter "The NyquistIDE Program" in the Nyquist Reference Manual.

For now, all you really need to know is that you can enter Nyquist commands by typing into the upper left
window. When you type return, the expression you typed is sent to Nyquist, and the results appear in the window
below. You can edit files by clicking on the New File or Open File buttons. After editing some text, you can load
the text into Nyquist by clicking the Load button. NyquistIDE always saves the file first; then it tells Nyquist to
load the file. You will be prompted for a file name the first time you load a new file.

Try some of these examples. These are SAL commands, so be sure to enter SAL mode. Then, just type these
one-by-one into the upper left window.

play pluck(c4)

play pluck(c4) ~ 3

play piano-note(5, fs1, 100)

play osc(c4)

play osc(c4) * osc(d4)

play pluck(c4) ~ 3

play noise() * env(0.05, 0.1, 0.5, 1, 0.5, 0.4)

5 Constants, Variables and Functions
As in XLISP, simple constant value expressions include:

• integers (FIXNUM’s), such as 1215,

• floats (FLONUM’s) such as 12.15,

• strings (STRING’s) such as "Magna Carta",

• symbols (SYMBOL’s) can be denoted by quote(name), e.g. quote(foo) denotes the symbol FOO. Think
of symbols as unique strings. Every time you write quote(foo), you get exactly the same identical value.
Symbols in this form are not common, but "raw" symbols, e.g. foo, are used to name variables and functions.

Additional constant expressions in SAL are:

• lists such as {c 60 e 64}. Note that there are no commas to separate list elements, and symbols in lists are
not evaluated as variables but stand for themselves. Lists may contain numbers, booleans (which represent
XLisp’s T or nil, SAL identifiers (representing XLisp symbols), strings, SAL operators (representing XLisp
symbols), and nested lists.

• Booleans: SAL interprets \#t as true and \#f as false. (But there is also the variable t to indicate "true," and
nil to indicate "false." Usually we use these instead of \#t and \#f.)

A curious property of Lisp and Sal is that false and the empty list are the same value. Since SAL is based on
Lisp, #f and (the empty list) are equal.

Variables are denoted by by symbols such as count or duration.
Variable names may include digits and the characters -+*$~!@\#%^&\\:<>./?_; however, it is strongly rec-

ommended to avoid "special" characters when naming variables and functions. One exception is that the dash (-)
is used to create compound names.

Recommended form: magna-carta, phrase-len; to be avoided: magnaCarta, magna_carta, magnacarta,
phraseLen, phrase_len, phraselen.

7

SAL and Lisp convert all variable letters to upper case, so foo and FOO and Foo all denote the same variable.
The preferred way to write variables and functions is in all lower case. (There are ways to create symbols and
variables with lower case letters, but this should be avoided.)

A symbol with a leading colon (:) evaluates to itself. E.g. :foo has the value :FOO. Otherwise, a symbol
denotes either a local variable, a formal parameter, or a global variable. As in Lisp, variables do not have data types
or type declarations. The type of a variable is determined at runtime by its value.

Functions in SAL include both operators, e.g. 1 + 2 and standard function notation, e.g. sqrt(2). The most
important thing to know about operators is that you must separate operators from operands with white space. For
example, a + b is an expression that denotes "a plus b", but a+b (no spaces) denotes the value of a variable with
the unusual name of "a+b".

Functions are invoked using what should be familiar notation, e.g. sin(pi) or max(x, 100). Some func-
tions (including max take a variable number of arguments. Some functions take keyword arguments, for example
string-downcase("ABCD", start: 2) returns ABcd because the keyword parameter start: 2 says to convert
to lower case starting at position 2.

6 Using SAL
It is important to learn to use the NyquistIDE program, which provides an interface for editing and running Nyquist
programs. The video for week 1 includes a demonstration, and the NyquistIDE is discussed in the Nyquist Reference
Manual. You should take time to learn:

• How to switch to SAL mode. In particular, you can "pop" out to the top level of Nyquist by clicking the
"Top" button; then, you can enter SAL mode by clicking the "SAL" button.

• How to run a SAL command, e.g. type print "hello world" in the input window at the upper left.

• How to create a new file. In particular, you should normally save a new empty file to a file named something.sal
in order to tell the editor this is a SAL file and thereby invoke the SAL syntax coloring, indentation support,
etc.

• How to execute a file by using the Load menu item or keyboard shortcut.

7 Defining Functions
Before a function be called from an expression (as described above), it must be defined. A function definition gives
the function name, a list of parameters, and a statement. When a function is called, the actual parameter expressions
are evaluated from left to right and the formal parameters of the function definition are set to these values. Then,
statement is evaluated. The syntax to define functions in SAL is:

[define] function name ([parameter {, parameter}*]) statement

The notation between parentheses () means no parameters are necessary, but there can be any number of param-
eters separated by commas (,).

The formal parameters may be positional parameters that are matched with actual parameters by position from
left to right. Syntactically, these are symbols and these symbols are essentially local variables that exist only until
statement completes or a return statement causes the function evaluation to end. As in Lisp, parameters are passed
by value, so assigning a new value to a formal parameter has no effect on the actual value. However, lists and arrays
are not copied, so internal changes to a list or array produce observable side effects.

Alternatively, formal parameters may be keyword parameters. Here the parameter is actually a pair: a keyword
parameter, which is a symbol followed by a colon, and a default value, given by any expression. Within the body
of the function, the keyword parameter is named by a symbol whose name matches the keyword parameter except
there is no final colon.

8

define function foo(x: 1, y: bar(2, 3))
display "foo", x, y

exec foo(x: 6, y: 7)

In this example, x is bound to the value 6 and y is bound to the value 7, so the example prints "foo : X = 6, Y = 7".
Note that while the keyword parameters are x: and y:, the corresponding variable names in the function body are
x and y, respectively.

The parameters are meaningful only within the lexical (static) scope of statement. They are not accessible from
within other functions even if they are called by this function.

Use a begin-end statement if the body of the function should contain more than one statement or you need to
define local variables. Use a return statement to return a value from the function. If statement completes without
a return, the value false (nil) is returned.

See the Nyquist Reference Manual for complete information and details of begin-end and return statements,
and keep reading.

8 Simple Commands

8.1 exec
exec expression Unlike most other programming languages, you cannot simply type an expression as a statement.
If you want to evaluate an expression, e.g. call a function, you must use an exec statement. The statement simply
evaluates the expression. For example,

exec set-sound-srate(22050.0) ; change default sample rate

8.2 load
load expression The load command loads a file named by expression, which must evauate to a string path name
for the file. To load a file, SAL interprets each statement in the file, stopping when the end of the file or an error
is encountered. If the file ends in .lsp, the file is assumed to contain Lisp expressions, which are evaluated by the
XLISP interpreter. In general, SAL files should end with the extension .sal.

8.3 play
play expr The play statement plays the sound denoted by expr, an expression.

8.4 plot
plot expr, dur, n The plot statement plots the sound denoted by expr, an expression. If you plot a long sound,
the plot statement will by default truncate the sound to 2.0 seconds and resample the signal to 1000 points. The
optional dur is an expression that specifies the (maximum) duration to be plotted, and the optional n specifies the
number of points to be plotted. Executing a plot statement is equivalent to calling the s-plot function.

8.5 print
print expr , expr ... The print statement prints the values separated by spaces and followed by a newline. There
may be 0, 1, or more expressions separated by commas (,).

9

8.6 display
display string, expression, expression The display statement is handy for debugging. When executed, display
prints the string followed by a colon (:) and then, for each expression, the expression and its value are printed; after
the last expression, a newline is printed. For example,

display "In function foo", bar, baz

prints

In function foo : bar = 23, baz = 5.3

SAL may print the expressions using Lisp syntax, e.g. if the expression is "bar + baz," do not be surprised if
the output is "(sum bar baz) = 28.3."

8.7 set
set var op expression The set statement changes the value of a variable var according to the operator op and
the value of expression. The operators are:

= The value of expression is assigned to var.

+= The value of expression is added to var.

*= The value of var is multiplied by the value of the expression.

&= The value of expression is inserted as the last element of the list referenced by var. If var is the empty list
(denoted by nil or \#f), then var is assigned a newly constructed list of one element, the value of expression.

=̂ The value of expression, a list, is appended to the list referenced by var. If var is the empty list (denoted by nil
or \#f), then var is assigned the (list) value of expression.

@= Pushes the value of expression onto the front of the list referenced by var. If var is empty (denoted by nil or
\#f), then var is assigned a newly constructed list of one element, the value of expression.

<= Sets the new value of var to the minimum of the old value of var and the value of expression.

>= Sets the new value of var to the maximum of the old value of var and the value of expression.

The set command can also perform multiple assignments separated by commas (,):

; example from Rick Taube’s SAL description
loop
with a, b = 0, c = 1, d = {}, e = {}, f = -1, g = 0
for i below 5
set a = i, b += 1, c *= 2, d &= i, e @= i, f <= i, g >= i
finally display "results", a, b, c, d, e, f, g

end

9 Control Constructs

9.1 begin end
A begin-end statement consists of a sequence of statements surrounded by the begin and end keywords. This
form is often used for function definitions and after then or else where the syntax demands a single statement but
you want to perform more than one action. Variables may be declared using an optional with statement immediately
after begin. For example:

10

begin
with db = 12.0,

linear = db-to-linear(db)
print db, "dB represents a factor of", linear
set scale-factor = linear

end

9.2 if then else
An if statement evaluates a test expression. If it is true, it evaluates the statement following then. If false, the
statement after elseis evaluated. Use a begin-end statement to evaluate more than one statement in then or else
parts.

Here are some examples...

if x < 0 then x = -x ; x gets its absoute value

if x > upper-bound then
begin
print "x too big, setting to", upper-bound
x = upper-bound

end
else
if x < lower-bound then
begin
print "x too small, setting to", lower-bound
x = lower-bound

end

Notice in this example that the else part is another if statement. An if may also be the then part of another
if, so there could be two possible if’s with which to associate an else. An else clause always associates with
the closest previous if that does not already have an else clause.

9.3 loop
The loop statement is by far the most complex statement in SAL, but it offers great flexibility for just about any
kind of iteration. However, when computing sounds, loops are generally the wrong approach, and there are special
functions such as seqrep and simrep to use iteration to create sequential and simultaneous combinations of sounds
as well as special functions to iterate over scores, apply synthesis functions, and combine the results.

Therefore, loops are mainly for imperative programming where you want to iterate over lists, arrays, or other
discrete structures. You will probably need loops at some point, so at least scan this section to see what is available,
but there is no need to dwell on this section for now.

The basic function of a loop is to repeatedly evaluate a sequence of actions which are statements. Before the
loop begins, local variables may be declared in a with statement.

The stepping clauses do several things. They introduce and initialize additional local variables similar to the
with statement. However, these local variables are updated to new values after the actions. In addition, some step-
ping clauses have associated stopping conditions, which are tested on each iteration before evaluating the actions.

There are also stopping clauses that provide additional tests to stop the iteration. These are also evaluated and
tested on each iteration before evaluating the actions.

When some stepping or stopping condition causes the iteration to stop, the finally clause is evaluated (if
present). Local variables and their values can still be accessed in the finally clause. After the finally clause,
the loop statement completes.

The stepping clauses are the following:

11

repeat expression

Sets the number of iterations to the value of expression, which should be an integer (FIXNUM).

for var = expression [then expr2]

Introduces a new local variable named var and initializes it to expression. Before each subsequent iteration,
var is set to the value of expr2. If the then part is omitted, expression is re-evaluated and assigned to var on each
subsequent iteration. Note that this differs from a with statement where expressions are evaluated and variables are
only assigned their values once.

for var in expression

Evaluates expression to obtain a list and creates a new local variable initialized to the first element of the list.
After each iteration, var is assigned the next element of the list. Iteration stops when var has assumed all values
from the list. If the list is initially empty, the loop actions are not evaluated (there are zero iterations).

for var from from-expr [[to | below | downto | above] to-expr] [by step-expr]

Introduces a new local variable named var and intialized to the value of the expression from-expr (with a default
value of 0). After each iteration of the loop, var is incremented by the value of step-expr (with a default value of
1). The iteration ends when var is greater than the value of to-expr if there is a to clause, greater than or equal to
the value of to-expr if there is a below clause, less than the value of to-expr if there is a downto clause, or less
than or equal to the value of to-expr if there is an above clause. (In the cases of downto and above, the default
increment value is -1. If there is no to, below, downto, or above clause, no iteration stop test is created for this
stepping clause.

The stopping clauses are the following:

while expression

The iterations are stopped when expression evaluates to false. Anything not false is considered to be true.

until expression

The iterations are stopped when expression evaluates to true. The finally clause is defined as follows:

finally statement

The statement is evaluated when one of the stepping or stopping clauses ends the loop. As always, statement
may be a begin-end statement. If an action evaluates a return statement, the finally statement is not executed.
Loops often fall into common patterns, such as iterating a fixed number of times, performing an operation on some
range of integers, collecting results in a list, and linearly searching for a solution. These forms are illustrated in the
examples below.

; iterate 10 times
loop
repeat 10
print random(100)

end

; print even numbers from 10 to 20
; note that 20 is printed. On the next iteration,
; i = 22, so i >= 22, so the loop exits.
loop
for i from 10 to 22 by 2
print i

end

; collect even numbers in a list

12

loop
with lis
for i from 0 to 10 by 2
set lis @= i ; push integers on front of list,

; which is much faster than append,
; but list is built in reverse

finally set result = reverse(lis)
end

; now, the variable result has a list of evens
; find the first even number in a list
result = #f ; #f means "false"
loop
for elem in lis
until evenp(elem)
finally result = elem

end
; result has first even value in lis (or it is #f)

9.4 simrep Example
The last slide of the lecture from Week 1 defines function pluck-chord as follows:

function pluck-chord(pitch, interval, n)
begin
with s = pluck(pitch)
loop
for i from 1 below n
set s += pluck(pitch + interval * i)

end
return s

end

play pluck-chord(c3, 5, 2)
play pluck-chord(d3, 7, 4) ~ 3
play pluck-chord(c2, 10, 7) ~ 8

But we mentioned earlier that loops should not normally be used to compute sounds. Just to preview what is
coming up ahead, here is how pluck-chord should be written:

function pluck-chord(pitch, interval, n)
return simrep(i, n, pluck(pitch + i * interval))

play pluck-chord(c3, 5, 2)
play pluck-chord(d3, 7, 4) ~ 3
play pluck-chord(c2, 10, 7) ~ 8

Note that this version of the function is substantially smaller (loop is powerful, but sometimes a bit verbose). In
addition, one could argue this simrep version is more correct – in the case where n is 0, this version returns silence,
whereas the loop version always initializes s to a pluck sound, even if n is zero, so it never returns silence.

10 Acknowledgments
Thanks to Sai Samarth for editing assistance.

13

Portions of this work are taken almost verbatim from Music and Computers, A Theoretical and Historical
Approach (http://sites.music.columbia.edu/cmc/MusicAndComputers/) by Phil Burk, Larry Polansky,
Douglas Repetto, Mary Robert, and Dan Rockmore. Other portions are taken almost verbatim from Introduction
to Computer Music: Volume One (http://www.indiana.edu/~emusic/etext/toc.shtml) by Jeffrey Hass. I
would like to thank these authors for generously sharing their work and knowledge.

14

http://sites.music.columbia.edu/cmc/MusicAndComputers/
http://www.indiana.edu/~emusic/etext/toc.shtml

	Introduction
	Fundamentals of Computer Sound
	What is Sound?
	Analog Sound
	Digital Audio Representation
	The Table-Lookup Oscillator

	Nyquist, SAL, Lisp
	Using SAL

	Examples
	Constants, Variables and Functions
	Using SAL
	Defining Functions
	Simple Commands
	exec
	load
	play
	plot
	print
	display
	set

	Control Constructs
	begin end
	if then else
	loop
	simrep Example

	Acknowledgments

