
Carnegie Mellon University

Master of Science in Music and Technology

A Proposal for a Music Player
for the Human Computer Music Performance Project

Author:

Dalong Cheng

Supervisor:

Roger Dannenberg

Richard Stern

Richard Randall

October 31, 2012

Contents

1 Introduction 1

1.1 Software Architecture . 1

1.2 HCMP Midi Player Mode . 2

2 General Design 2

2.1 HCMP Midi Player GUI Design . 3

2.1.1 Midi Keyboard and Data Display 3

2.2 HCMP Midi Player Library . 3

2.3 HCMP Midi Player API . 4

3 Implementation 4

3.1 Performer Thread . 5

4 Future Work 5

i

1 INTRODUCTION 1

1 Introduction

The goal of the Human Computer Music Performance (HCMP) [1] project is to

create an autonomous “artificial performer” with the ability of a human-level mu-

sical performance. An important component of the HCMP project is to develop

a player component, which can flexibly adjust and respond to changes in a music

signal. Figure 1 illustrates the role of the Player in the HCMP project. The Player

will receive control messages from the conductor and scheduler during the perfor-

mance. In my master’s project, I will design, implement and extend the HCMP

midi player for the HCMP project.

Figure 1: Architecture of HCMP

1.1 Software Architecture

In this project, I will use a classic client and server model for the overall architec-

ture. During the performance, the Player will act as the server for the conductor

component, which is constantly receiving control messages and responding accord-

ingly.

Internally, the Player will have two threads, with one thread for GUI interactive

control (control thread) and the other thread for performing music data (performer

thread). The two threads will communicate with each other through a shared

message queue, we can assume the message queue is large enough to avoid blocks

for both caller and callee threads. The performaner thread will handle time critical

operations, and there will be a timer setup before this thread is created. The

goal of the timer is to wake up the performer thread periodically. Everytime the

performer thread’s timer callback function is invoked, it will check the message

2 GENERAL DESIGN 2

queue and process any command from the control thread. Figure 2 illustrates the

overall structure of the Player.

Figure 2: Architecture of the HCMP Midi Player

1.2 HCMP Midi Player Mode

The Player will have two modes, stand-alone mode and connection mode. The user

is able to switch between the two. In stand-alone mode, the Player is similar to a

standard midi player, which can play midi files and set various playback parame-

ters. All user operations will go through the GUI to control. In connection mode

the Player will use a predefined protocol to communicate with the conductor and

all the control messages will be received from a remote conductor. In connection

mode the GUI will use another set of function to map the user operation and some

functions of the Player will be controlled by the remote conductor. The control

thread of the Player will act as a “proxy”: on one side, it will receive the message

from the conductor, on the other side, it will issue a new control message to the

performer thread.

2 General Design

In this part, I describe the design idea behind some of the features of the Player.

2 GENERAL DESIGN 3

2.1 HCMP Midi Player GUI Design

2.1.1 Midi Keyboard and Data Display

The Player will contain a virtual keyboard and midi data window. The virtual

keyboard will have parameters like channel, tempo, etc for the user to set. It

will also be integrated with a midi data window to improve the data visualization

effect. After loading a midi file, the midi data window will map each midi note to a

key on the midi keyboard. When playing the midi file, the keyboard will highlight

each midi note, the midi data window will scroll to the current message position.

Figure 3: Midi data display integrated with vitural keyboard

2.2 HCMP Midi Player Library

The Player will also generate a configration file to manage and save configurations

set by the user. The Player has a simple to use midi library to manage recently

played midi information. Figure 4 is an ideal interface for the midi library.

Figure 4: HCMP Midi player library

3 IMPLEMENTATION 4

2.3 HCMP Midi Player API

In this section, I list some of the core APIs of the HCMP Midi Player. These APIs

will be called by the GUI of the HCMP Player.

Music play related APIs

• play - play midi message

• reset - reset all the player’s settings to default value

• pause - store current play information

• set position - set play position to the given parameter

Player setting related APIs

• set track - set track for the player to play

• set tempo - set tempo information

• set channel - set channel information

• set device - set which midi device to send messages to

Connection mode related APIs, which is inherited from Zero MQ [2]

• play all - indicate conductor to play

• stop all - indicate conductor to stop

• ready - tell the conductor that the player is ready

• position - indicate conductor to set to given position

3 Implementation

The project will use Serpent [3] to develop most of the parts, because it has

many convenient built in functions for midi messages. For the GUI part, I will

use wxWidgets [4]. The first priority of master’s project is to deliver a solid

and robust midi player. I will design unit test code for each of the functional

components during development.

4 FUTURE WORK 5

3.1 Performer Thread

The performer thread will only receive control messages from the control thread.

It will immediately process the message upon receiving it. This thread will be

periodically invoked by an external timer, provided by Serpent, and process midi

message sent from the control thread. Processing the message is not a time con-

suming job so the overall overhead of waking up thread will be trivial. Most of

work of the performer thread is to maintain a queue of pending midi message and

send them at correct time.

4 Future Work

This proposal will provide a base for some future work. The Player will be inte-

grated into the HCMP project. Two other features can be added to extend the

Player’s function. There is a music score display component for the HCMP project.

The Player can be used as a default player for music display component. Display

with the addition of a midi score follower, the music display could be synchronized

to a live keyboard performance and the Player could play an accompaniment part

and the user can read the score from the Player’s virtual keyboard. Dawen Liang’s

previous work [5]on music database provide user a convenient way to record, orga-

nize and retrieve audio information from various sources. The Player can further

integrate this feature to provide a powerful audio library management tool.

References

[1] Framework for Coordination and Synchronization of Media, D.Liang, G.Xia

and R.Dannenberg, NIME 2011.

[2] http://sourceforge.net/p/livedisp/wiki/HCMP

[3] http://www.cs.cmu.edu/ music/aura/serpent-info.htm

[4] http://www.wxwidget.org

[5] Segmentation, Clustering, and Display in a Personal Music Database for Mu-

sicians, G.Xia, D.Liang, R.Dannenberg, ISMIR 2011.

