
JackTrip/SoundWIRE Meets
Server Farm

Juan-Pablo Cáceres and Chris Chafe
Center for Computer Research in Music
and Acoustics (CCRMA)
Stanford University
The Knoll, 660 Lomita Dr.
Stanford, California 94305-8180, USA
{jcaceres, cc}@ccrma.stanford.edu

Systems for real-time, high-quality and low-latency
audio over the Internet that take advantage of
high-speed networks are available and have been
used in the last several years for distributed concerts
and other musical applications (Renaud, Carôt, and
Rebelo 2007). The difficulty of setting up one of
these distributed sessions is, however, still very
high. Most musicians involved in such sessions
have experienced the disheartening amount of time
that can be lost in rehearsal, where most of the
time is spent adjusting the connection rather than
playing music.

Keeping delay to a minimum is one of the main
goals when tuning network parameters. Delay is
known to be disruptive in musical performance
(Chafe and Gurevich 2004), so a sensible goal is to
minimize it as much as possible. Often, there is a
tradeoff with audio quality. The longer the latency,
the better the audio (i.e., fewer dropouts) if facing
problematic network conditions. For most users
who are not familiar with the network protocols and
delivery of the Internet Protocol Suite (commonly
known as TCP/IP), understanding the meaning of
these protocols’ parameters can be daunting. (In
particular, we use the User Datagram Protocol
[UDP], which is part of the Internet Protocol Suite.)

We present here a server-based application that
can be of use to intuitively tune these parameters us-
ing “auditory displays” (Chafe and Leistikow 2001).
With it, musicians tune their network connection
much like they do their instruments, using their
ears. The implementation is part of the JackTrip
application (Cáceres and Chafe 2009), a software
program for low-latency, high-quality, and multi-
channel audio streaming over TCP/IP wide-area
networks (WANs). JackTrip is a peer-to-peer system
which can interconnect many bidirectional nodes.

The design and architecture is first geared towards
implementation of this quality-of-service (QoS)

Computer Music Journal, 34:3, pp. 29–34, Fall 2010
c© 2010 Massachusetts Institute of Technology.

evaluation method. The architecture has also been
extended to provides other types of service—in
particular, a central “mixing hub” to control audio
in a concert where multiple locations are involved.

QoS Evaluation Metrics

Cromer gives a good definition of QoS:

The term Quality of Service (QoS) refers
to statistical performance guarantees that a
network system can make regarding loss, delay,
throughput, and jitter (Comer 2005, p. 510).

Most of the networks available today are best effort
delivery, i.e., they don’t provide any specific level of
QoS. As such, this infrastructure can be problematic
because sound is unforgiving in regard to packet loss
and jitter; any lost data is immediately audible. In
evaluating a particular connection, we want to know
“instantaneous” QoS, that is, assess its quality at
any given moment. Users should be able to adjust
their settings to achieve the optimal quality given
the current bandwidth and congestion conditions.
This should be convenient and a conscious part of
setting up. It should also be monitored with regard to
longer-term changes: a connection that is perfectly
clean at 1 AM can become congested at 9 AM. A bad
connection today can be a surprisingly good one a
year from now when intermediate network upgrades
are put in place, or when the user asks that their
service be enhanced.

A connection is presently either tuned by trial
and error, or is set automatically by an adaptive
mechanism that changes the data rate depending on
bandwidth availability (Qiao et al. 2008). Adaptive
methods are typically found in unidirectional
streaming and have a disadvantage for bidirectional
high-quality audio. Latency is a parameter we
want to keep constant. To accommodate changing
amounts of jitter, adaptive methods can arbitrarily
increase and decrease the local buffering, affecting

Cáceres and Chafe 29



total latency in a way that is very disruptive for
musical performance.

In this article, we describe an implementation
of a tool that lets musicians tune a connection
completely by ear. Parameters like buffer size,
sampling rate, packet size, and packet redundancy,
among others, can be adjusted using this “auditory
display” mechanism.

“Pinging” the Network, Acoustically

The advantages of evaluating very fine-grained jitter
and packet loss using these “auditory displays”
have been previously discussed in the literature
(Chafe and Leistikow 2001). The method consists of
listening to a pitched sound in order to assess delay,
jitter, and loss. The procedure produces a tone by
recirculating audio in the network path and thus
allows for fine-grained listening of the packet flow.
(The granularity is determined by the sampling rate
and the packet size. For example, at 48 kHz and
64 samples/packet, the granularity is 1.3 msec.)
The acronym SoundWIRE describes the technique
used in this project, “sound waves on the Internet
from real-time echoes.” In principle, it uses the
Karplus-Strong plucked-string synthesis algorithm
(Karplus and Strong 1983) and simply replaces string
delay lines running in local host memory with
network “memory.”

This technique can be extended to incorporate
different-sounding “auditory pings” using other phy-
sical models (Chafe, Wilson, and Walling 2002), but
the underlying approach is the same. In the case of,
for example, a string physical model, musicians want
to tune their connection to get a sounding instru-
ment that has the highest possible pitch (low delay)
without vibrato (jitter). Users also want to mini-
mize extraneous impulses coming from packet loss.

In the next section, we present an architecture of a
server that clients can use to evaluate and tune their
connection solely based on auditory feedback, much
like the way guitar players tune their instruments.

Multi-Client Concurrent Server

We extended the JackTrip platform to include a
system for QoS evaluation. The new architecture

provides a multi-client concurrent server that can
be used, among other purposes, to evaluate QoS or
to function as a central hub that mixes or relays
audio. Taking advantage of multi-core computers, it
is possible to concurrently serve hundreds of clients
with uncompressed real-time audio and processing
plugins.

Server Architecture

The UDP is a connection-less protocol, and conse-
quently identification of a client’s IP number has to
be done on a packet-per-packet basis. Several tech-
niques for dealing with multiple clients connecting
are discussed in the literature (Stevens, Fenner, and
Rudoff 2003), but no standard exists as in the case
of Transmission Control Protocol (TCP) servers.
(See Comer [2005] or Peterson and Davie [2003] for
a good description of the differences between TCP
and UDP protocols.)

Our implementation relies on a “smart” client
which can change to a new server port number after
being assigned one for exclusive communication.
This technique has the advantages of being easily
adapted to multiple platforms (it works currently
on both Linux and OS X, and could be ported to
Windows), being lightweight, and not requiring root
privileges. In turn, the server expects its clients to
change connection ports.

Figure 1 describes the architecture of the system.
The server listens on a well-known port for client
connection requests. For every new request, the
server has to check if the originating address/port
pair is new. If it is, it registers it in an array of active
address/port pairs and blocks the requests of new
clients while this one is being processed. It then
allocates a new port to communicate exclusively
with this client, and informs it of the new port. The
client then stops sending packets to the well-known
port and starts to send them to its own assigned
one. From then on, the whole JackTrip process
is added to a thread pool and runs independently
in its own thread. The server is freed to wait for
new client requests. The thread runs until the
client stops sending packets (or the server doesn’t
receive them) for a certain amount of time. At that
point a signal is emitted, and the server deletes the

30 Computer Music Journal



Is client's 
address/port 

pair new?

Bind server's 
well-known port

Block until a 
client requests a 

connection

Client 1

Register client 
address/port pair

N

Thread Pool

Is the current 
JackTrip Worker 

spawning?

Clone an 
instance of 

JackTrip Worker 
with new 

listening server 
port

Start JackTrip 
connection to 

the client

Spawn a thread into the pool

The Worker registers itself
with the server

Y

Y

N

Send datagrams to well-known
port until server replies

S
er

ve
r 

re
pl

ie
s 

w
ith

 n
ew

 li
st

en
in

g 
po

rt
.

T
h
e
 c

lie
n
t 

se
n
d
s 

a
ll 

n
e
w

 d
a
ta

g
ra

m
s 

to
 t

h
is

 n
e

w
 p

o
rt

.

Stop all 
processes and 
remove thread 
from the pool

Block until 
timeout (no new 

packets from 
the client for N 

secs)

R
e
m

o
ve

 a
d
d
re

ss
/p

o
rt

 p
a
ir

fr
o
m

 t
h
e
 c

lie
n
t's

 r
e
g
is

tr
y

Signal Timeout

JackTrip Worker Thread 1

..
.

JackTrip Worker Thread N

JackTrip Worker Thread 3

JackTrip Worker Thread 2

Figure 1. Multi-client
concurrent server
algorithm.

client IP/port pair from the active clients registry
and removes the process from the thread pool.
The implementation is written in C++ using the
Qt libraries (Nokia Corporation 2008–2009) for
networking and multithreading.

Server Applications

The server has been deployed in a couple of applica-
tions, presented in the following. Although we had

these two scenarios in mind when we created the ser-
ver architecture, it is also possible to imagine and de-
sign different applications using the presented work.

Quality of Service (QoS) Evaluation

Each connection between the client and the server
recirculates audio and implements a Karplus-
Strong string model (Karplus and Strong 1983).
This configuration has been discussed in detailed

Cáceres and Chafe 31



Figure 2. Karplus-Strong
algorithm implemented in
the network path,
recirculating audio.

previously (Chafe et al. 2002). Figure 2 shows a basic
implementation of the algorithm. The ipsilateral
host (which in our system corresponds to the server)
generates excitations (plucks or noise bursts) that
are “echoed” back from the contralateral host
(the client) recirculating in a loop that includes a
low-pass filter (LPF).

To test a connection, a client connects against
a known server IP number (e.g., that of a server
at Stanford University’s CCRMA). The path is
sonified with this string model. As the network
delay increases, the pitch of the sting will be lower.
Variances in the latency will be perceived as vibrato
of the string model. Packet losses are translated
into impulsive types of sounds (for the case when
the receiver plays zeros when it doesn’t receive a
packet) or into wavetable types of sounds (for the
mode when the system keeps looping through the
last packet received). (More details on these two
modes can be found in Cáceres and Chafe [2009].)

Providing this service for intuitive and quick eval-
uation of connection QoS is the original intended
application of this technology. By connecting to the
server and “listening” to the path, users can tune
their connections to its optimal settings. As men-
tioned earlier, there is a trade-off between latency
and sound quality. In the presence of jitter, the local
buffering has to be increased to avoid late packets,
but at the same time we don’t want to increase it
too much (to avoid unnecessary latency). Doing this
without a tuning tool, by trial and error, requires
experience and can be frustrating for new users. If, in
turn, musicians can listen and tune the connection
in the same way they tune an instrument, the setup
is much faster and intuitive. Again, the goal for
musicians is to tune their pitch to be as high as
possible (lower latency) with the smallest possible
vibrato (jitter).

Our prototype server application, JamTest, is
currently deployed on a 16-core server running
Fedora Linux. Users can connect using a GUI-based
QoS testing client on Linux or Mac OS X.

Star-Topology Connection/Mixing Hub

Mixing and managing remote connections when
more than two sites are involved can be very
complicated. Engineers have to deal with audio
channels coming from different places (sometimes
on confusingly different channels), all with different
levels. They also need to make sure local audio is
sent to the peer with proper gains. A solution to
centrally manage these types of situations designates
a master location which can mix and/or relay all
the channels and send them back to the respective
connected peers.

The present server implementation allows a
server to dynamically connect and disconnect audio
from different clients. In this case the server will
act as a “hub” between several locations. Each
client can have a different number of channels
and different network tuning parameters. (JackTrip
presently uses Jack [Davis 2009] as its audio host.
This has the limitation that sampling rate and buffer
are fixed at Jack start-time and cannot be tuned after
the server has started.)

Figure 3 illustrates this for an example with three
clients. The server can mix and re-route all the
audio channels between the clients, hence allowing
a multi-site performance with one site acting as a
master relay service and/or mixer.

Conclusions and Future Work

The first decade of the 21st century evidenced a
dramatic increase in the speed and reliability of
high-speed networks. This increase is expected to
continue. We have provided a system for musicians
to tune and optimize their connections against a
reference server in a way that lets them adapt to
their given network situation. The server can also
be used to interconnect multiple sites with arbitrary
numbers of channels, and it can be a “mixing hub”
that distributes audio to all the locations from a

32 Computer Music Journal



JackTrip
Multi-Client Server

Mixing Hub

Client 1

Client 2

Client 3

2 channels

6 channels

4 channels

Figure 3. Multi-client
server as a hub.

central place. This system has been used success-
fully in numerous concerts since the summer of
2009.

Scalability in network performance is a big issue
that still needs to be solved. Learning how to con-
nect hundreds or even thousands of remote locations
for a global jam session is a pending goal. Multicast
at the network layer would provide a solution for
a fully connected peer-to-peer mesh. Clients would
select from a list of peers they want to connect with,
and then send just one packet via multicast (using
its underlying network layer implementation). Net-
work routers and switches determine when a copy
needs to be made. Access Grid (Daw 2005) imple-
ments this for a fixed number of audio channels;
however, this infrastructure is not yet ubiquitous.
Furthermore, when the number of audio channels
and other settings differ among the clients, a new
and consistent solution is required so that they can
inter-operate.

Scaling up and distributing physical models
embedded in the network path can also serve
to perform “global string network symphonies,”
where the global network becomes the instrument
itself, an instrument distributed throughout the
world.

Acknowledgments

This work was carried out in cooperation with
MusicianLink, Inc., and funded by National Science
Foundation Award Grant No. IIP-0741278 with a
sub-award to CCRMA. See the online final report
(Chafe 2009). Fernando Lopez-Lezcano and Carr
Wilkerson from CCRMA have provided continu-
ous assistance in the implementation and server
infrastructure setup.

References

Cáceres, J.-P., and C. Chafe. 2009. “JackTrip: Under the
Hood of an Engine for Network Audio.” Proceedings
of International Computer Music Conference. San
Francisco, California: International Computer Music
Association, pp. 509–512.

Chafe, C. 2009. “STTR Phase I: MusicianLink Platform
for Audio Collaboration and Real-Time Distributed
Audio Processing.” Technical report, Center for Com-
puter Research in Music and Acoustics (CCRMA),
Stanford University. Available at http://ccrma.stanford
.edu/∼cc/pub/pdf/qosServer-nsfFinalReport.pdf. Ac-
cessed 1 April 2010. Final Report, Technical Research
Summary, National Science Foundation Small Business
Technology Transfer Research Award No. IIP-0741278.

Chafe, C., and M. Gurevich. 2004. “Network Time Delay
and Ensemble Accuracy: Effects of Latency, Asymme-
try.” Proceedings of the AES 117th Convention. New
York: Audio Engineering Society p. 6208.

Chafe, C., and R. Leistikow. 2001. “Levels of Temporal
Resolution in Sonification of Network Performance.”
Proceedings of the Seventh International Conference
on Auditory Display (ICAD 2001). Helsinki: Labora-
tory of Acoustics and Audio Signal Processing and the
Telecommunications Software and Multimedia Labora-
tory, Helsinki University of Technology, pp. 50–55.

Chafe, C., S. Wilson, and D. Walling. 2002. “Physical
Model Synthesis with Application to Internet Acous-
tics.” Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP
’02), volume 4. Los Alamitos, California: Institute of
Electrical and Electronics Engineers, pp. 4056–4059.

Comer, D. E. 2005. Internetworking with TCP/IP, Vol
1. Upper Saddle River, New Jersey: Prentice Hall, 5th
edition.

Davis, P. 2009. “JACK: Connecting a World of Au-
dio.” Available at http://jackaudio.org/. Last accessed
November 2009.

Cáceres and Chafe 33

http://ccrma.stanford.edu/~cc/pub/pdf/qosServer-nsfFinalReport.pdf
http://jackaudio.org/


Daw, M. 2005. “Advanced Collaboration with the Ac-
cess Grid.” Ariadne 42. Available at http://www
.ariadne.ac.uk/issue42/daw/intro.html. Last accessed
November 2009.

Karplus, K., and A. Strong. 1983. “Digital Synthesis of
Plucked-String and Drum Timbres.” Computer Music
Journal 7(2):43–55.

Nokia Corporation. 2008–2009. “Qt Software.” Available
at www.qtsoftware.com/. Last accessed November
2009.

Peterson, L. L., and B. S. Davie. 2003. Computer Networks:
A Systems Approach. San Francisco, California: Morgan
Kaufmann, 3rd edition.

Qiao, Z., R. Venkatasubramanian, L. Sun, and E. Ifeachor.
2008. “A New Buffer Algorithm for Speech Quality
Improvement in VoIP Systems.” Wireless Personal
Communications 45(2):189–207.

Renaud, A. B., A. Carôt, and P. Rebelo. 2007.
“Networked Music Performance: State of the
Art.” Proceedings of the AES 30th Interna-
tional Conference. New York: Audio Engineering
Society.

Stevens, W. R., B. Fenner, and A. M. Rudoff. 2003.
Unix Network Programming, Volume 1: The Sockets
Networking API. Boston, Massachusetts: Addison-
Wesley Professional, 3rd edition.

34 Computer Music Journal

http://www.ariadne.ac.uk/issue42/daw/intro.html
http://www.qtsoftware.com/

