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Abstract

The design of a platform for bi-directional musical
performance using modern wide area networks (WANs)
poses several challenges that are different from related
applications, e.g. synchronous local area network (LAN)
studio systems or uni-directional WAN streaming. The
need to minimize as much as possible audio latency and
also maximize audio quality requires specific strategies
which are informed, in part, by musical decisions. We
present some of the key design elements of the JackTrip
application which has evolved through several years of
deployment in musical work over wide area networks.

1. Introduction

The SoundWIRE group at the Center for Computer
Research in Music and Acoustics (CCRMA) (Sound-
WIRE Group, 2010) focuses on experiments in bi-
directional and n-directional musical performance. Con-
certs and rehearsals between Stanford and places like
New York, Belfast, Banff, or Beijing are now routine
(Chafe, 2009).

JackTrip is the application that powers up these on-line
collaborations. Presently, it’s a Linux and Mac OS X-
based system that supports multi-machine network
performance over best-effort Internet. The technology
being used builds on early work by research groups at
McGill University (Xu & Cooperstock, 2000) and
Stanford  University (Chafe, Wilson, Leistikow,
Chisholm, & Scavone, 2000). The basic approach is to
send uncompressed audio (avoiding the latency intro-
duced by compression encode/decode algorithms) through
high-speed links like Internet2. It supports any number of
channels (as many as the computers or network paths can

handle). Since best-effort network protocols are used,
adequate network provisioning is a must.

The subject of this article is JackTrip’s design relating
to several issues that come up in implementing such a
system. It is hoped that these solutions can serve as a point-
of-departure for further applications in this same area.

The design achieves (i) the highest audio quality
possible, by using uncompressed linear sampling and
redundancy to recover from packet loss; (i) throughput
maximization, which gets audio packets onto and off of
the network as soon as the sound card can deliver them;
(iii) working with any number of channels (depending on
available computer processing power and bandwidth);
(iv) flexibility in routing and mixing audio channels from
and to the different hosts.

Other networking audio packages use different stra-
tegies for audio delivery and synchronization. These
include the use of compressed audio, artificially increased
delays that match one or more musical measures (i.e.
musicians play asynchronously with the output that was
generated one or more measures before) and one-way
recording techniques (with one location/performer at a
time) where latency is not an issue (Renaud, Carot, &
Rebelo, 2007). NetJack uses a master/slave approach to
synchronize audio clocks. This approach is most suitable
for local area networks (LAN) where jitter is smaller
(Carot, Holm, & Werner, 2009). Other systems (nStream,
SoundJack and jack-tools) also deliver uncompressed
audio (Bouillot & Cooperstock, 2009). JackTrip differs
from these applications in that its architecture 1is
optimized to keep decent audio quality at the lowest
possible latency. And it is tuneable. Depending on the
situation, the user can choose decreased delay at the
expense of audio quality for live performance or
opt for increased delay to obtain glitch-free audio. Its
multi-threaded architecture and buffering mechanisms
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Fig. 1. JackTrip architecture overview.
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(explained in detail in Section 2) have been designed,
adapted and improved towards this goal.

1.1 Peer-to-peer network audio latency

Wide area network (WAN) connections inevitably intro-
duce transmission delays between two or more hosts. For
non-interactive and ‘soft’ real-time applications, this delay
is less of a problem than for high-quality collaborative
music performance. The latter places extremely stringent
bounds on latency and jitter. The longer the audio latency
between musicians, the harder it is for them to play
synchronously (Chafe, Caceres, & Gurevich, 2010). Time
delays as short as 25 ms are already problematic for
professional ensembles like string quartets.’

It is the total delay between sound capture and sound
projection which counts. This splits out into (i) acoustic
(air path) delays, e.g. the distance between an instrument
and the capture microphone and between the speakers and
ears; (i) analogue-to-digital and digital-to-analogue con-
version (ADC/DAC) delay, i.e. the time it takes for an
analogue source to be transformed into digital and back;
(ii1) settings chosen for audio quality and packetization,
including audio sampling rate and bit depth resolution,
buffer and packet sizes, and others; (iv) network transmis-
sion delays, including physical (geographical) distance,
transmission delays induced by switches, routers, firewall
and network congestion among others.

The default transport protocol in JackTrip is User
Datagram Protocol (UDP), a low-overhead, fast but
unreliable mechanism for transmitting network packets.
There is no guarantee that a UDP packet will ever reach its
destination. Transmission Control Protocol (TCP) provides
an alternative with an acknowledgment scheme which
guarantees correct delivery, re-transmitting lost packets and
fixing out-of-order ones (see Comer (2005) for a good
description of the different protocols). The retransmission
feature in TCP comes at a cost in terms of audio delay. Its
‘elastic’ behaviour produces an ever-changing delay that is
extremely disturbing for musicians in real-time perfor-
mance. Using UDP, latency can be constrained within
predefined bounds, but it requires the implementation of its

! Recordings of experiments with the St Lawrence String
Quartet are available at http://ccrma.stanford.edu/groups/
soundwire/research/slsq/
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own strategies to deal with late and lost packets. The
implementation of these techniques (see Sections 2.3 and
2.4) gives the developer better control of the trade-offs to be
made specifically for live musical performance.

The application’s own header data accompanies each
audio packet to describe local properties like audio buffer
size, sampling rate, bit depth, number of channels, a
sequence number and a time stamp.

Currently, JackTrip uses Jack (Davis, 2009) as its
default host audio server. Jack has several advantages: it
runs on Linux and Mac OS X, it has the ability to make
audio connections between many different audio clients
on the same host, and its current implementation takes
advantage of multi-processor machines (Letz , Orlarey, &
Fober, 2005). An option to use native sound servers
through RtAudio (Scavone, 2002) is also available.

2. JackTrip’s multi-threaded architecture

JackTrip’s multi-threaded design is implemented in
C++using the Qt library (Nokia Corporation, 2008—
2009) and also can take advantage of multi-core
machines. Figure 1 shows the multi-threaded architecture
of the application. There is one thread that processes
Jack’s audio via a callback function. The other proces-
sing threads in JackTrip are the Sender, which wraps
audio packets from the audio thread with the header
information into UDP packets, and the Receiver that
unwraps the packet and has it ready when the audio
process callback needs it.

Inter-thread communication is implemented using
ring (or circular) buffers as shown in Figure 1. This is
one of the critical latency-reducing parts of the design.
The only thread that blocks against its input from the
ring buffer is the UDP Sender thread; there’s no need to
send audio that hasn’t been generated. Every time a
buffer is available on the ring buffer, the sender thread
immediately sends it as a UDP packet. Conversely, the
receiving ring buffer cannot block, since local audio must
obtain a packet from the ring buffer when it is scheduled
to—otherwise audio glitches will be heard. JackTrip
maximizes reliability, audio flexibility and minimizes as
much as possible peer-to-peer audio delay. Two para-
meters which affect local audio latency are sampling
rate and buffer size. For example, using a sampling
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Fig. 2. Ring buffers.

rate of 96 kHz and an audio buffer of 64 frames
(or samples), the rate of audio packet delivery is every
64/96000 x 1000 =0.67 ms.>

2.1 Thread scheduling

Threads in JackTrip are scheduled as real-time priority,
i.e. jack audio and socket threads will take priority over
any other non-critical process. This avoids interruptions
during time-critical tasks.

2.2 Buffering mechanism

Two types of scheduling problems can occur on the
receive side, illustrated in Figure 2.

e Overrun condition. The receiving ring buffer is full, i.e.
there is no space to write new buffers coming from the
UDP Receiver thread. This normally happens when
asynchronous clocks drift, e.g. the peer’s clock runs
faster than the local clock.

e Under-run condition. The receiving ring buffer is
empty, i.e. there are no new packets to read. This is
caused either because there are packets that are
delayed or lost in the network or because the
clocks of the two machines have drifted the other way.

This is different from common streaming applications
that can stop playback (e.g. audio-video playback on
browsers) when they reach an under-run condition, and
won’t have the overflow problem because real-time is not
a concern. Typically, these applications adaptively

2 Internal redundancy and other factors can make the actual
local latency approximately the double of this number, but
the delivery rate, i.e. the rate at which packets are sent and
received, corresponds to that number.

increase or reduce their buffer size. In JackTrip, latency
needs to be constant and another method is needed to
deal with both under and over-run conditions.

Ring buffers have a read and a write pointer (Figure
2). On initialization, both the read and write pointers are
in a ‘symmetric’ position. The longer the buffer size, the
higher the latency.® The length of the buffer is a provision
for network jitter; slight variations around this symmetry
are produced by packets not arriving at exactly the same
frequency. In an ideal situation, where both machines
have clocks that match exactly and no packets are lost,
the symmetric position will be maintained on average
throughout the connection. The higher the jitter the
longer the ring buffer needs to be to avoid glitches.

2.3 Buffer glitches

Primarily as a result of receive buffers not being sized to
accommodate network jitter, glitches occur and have to
be dealt with. The application has two different modes
that respond to under-runs (Figure 2).

e Silent mode. Send a packet of zeros (silence) to the
process callback.

e Wavetable mode. Re-send the last available packet to
the process callback. This will produce a wavetable
synthesizer type of sound when there are no new
packets available for some time, since it is going to
loop on the last received one.

For under-runs, the pointers are not reset because we

always want to be able to read the most recent packet.
To deal with buffer overflows, the ring buffer read

pointer is reset to the symmetric position with respect to

3 This latency can be visualized as the signed ‘distance’ between
the read and write pointer.
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Fig. 3. UDP redundancy, RedunFactor = 3.

the write pointer. Some packets* will be lost in the process
but the clock drift will be reset to its original position,
thus avoiding another glitch for an extended amount of
time.

2.4 Packet redundancy algorithm

As an unreliable transport mechanism, UDP has no
provisions to notify the sender when or if a packet was
successfully delivered, or if the receiving order matches
the sender’s. With today’s good network Quality of
Service (QoS), we generally experience a very low
number of lost or out-of-order packets. But, since even
one misplaced packet will be perceived as a glitch,
JackTrip includes a mechanism to recover (within certain
bounds) lost or unordered packets.

Jacktrip’s redundancy algorithm is used when suffi-
cient bandwidth is available. The technique is illustrated
on Figure 3. The sender bundles RedunFactor copies of
every audio+header packet into a bigger UDP packet
(with RedunFactor € 7.7). This is done for every new
audio+header buffer, so each UDP packet has an
overlap of RedunFactor — 1 buffers, as illustrated in the
figure. On the receiving end, Algorithm 1 reads a UDP
packet and determines if it has not already received the
extra copies. New copies are sent to the ring buffer, and
extra copies are discarded. Lost packets are recovered as
illustrated in Figure 3.

4 Half of the ring buffer for even buffer sizes, and half minus 1
for odd buffer sizes, to be precise.

Algorithm 1 Packet redundancy receiving end

For every new UDP packet
CurSeqNum —Packet highest sequence num
if (CurSeqNum — LastSeqNum) < RedunFactor then
NumNewPackets = CurSeqNum — LastSeqNum
else
NumNew Packets = RedunFactor
end if
for i = (NumNewPackets — 1) to 0 do
Send P[CurSeqNum — i] to Ring Buffer
end for
LastSeqNum «— CurSeqNum

2.5 Processing plugins

JackTrip also has the ability to dynamically add plugins
into the audio process callback (Figure 1). One plugin
implements loopback mode, i.e. audio received from a
peer is immediately sent back. This allows a location to
listen to its echo from a remote peer. The aural
evaluation of network quality (Chafe & Leistikow,
2001) or the synchronization of music through ‘feedback
locking’ (Caceres, Hamilton, Iyer, Chafe, & Wang, 2008)
are two practical applications that use this approach.
Plugins can also be used for ‘Internet acoustics’ or
sonification through physical models (Chafe, Wilson, &
Walling, 2002), e.g. a network implementation of the
Karplus-Strong algorithm for strings and drums synthesis.

3. Conclusions and future work

‘Broader’ broad-band networks have the capacity to
support high-quality audio. JackTrip serves to illustrate
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some of the software design decisions for achieving low-
latency, bi-directional audio using these networks. Its
particular uses have different requirements: collaborative
music making is different from, for example, one-way
remote studio recording where latency is not the issue but
packet loss is. Depending on the application, JackTrip
allows the user to tune its configuration, for example
trading off some reliability (allowing for minor glitches)
in favour of tighter latency.

At the design stage, the engineer must provide the
methods that support the highest-quality musical
performance. In particular, JackTrip deals with packet
loss by providing a redundancy algorithm, and deals with
clock drifts and late or unrecoverable packets by using
lower-level strategies in ring buffers that can, e.g. sound
like a wavetable synthesizer, thus extending the musical
sonority of the moment. Clock drift between remote
WAN machines is still an unsolved issue and there are
presumably new techniques to be tried in the future,
like adaptive re-sampling, packet cross-fading, and others.

The current work of JackTrip is focused on the
application layer, but new network projects like Open-
Flow (OpenFlow Consortium, 2008) and Dynamic
Circuit Network (Internet2, 2009) provide the opportu-
nity to start experimenting with lower layers; it would be
possible to dynamically specify network paths to mini-
mize latency, or to obtain dedicated bandwidth for a
more reliable QoS.
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