
	 	 1	

15-323/15-623	Spring	2019	

Project	2.	Scheduling,	MIDI,	Graphics	
Due	Feb	14	

1 Overview	
In	this	project,	you	will	build	a	real-time	program	that	outputs	music	using	MIDI.	The	
program	will	implement	music	generation	algorithms	of	your	design.	

The	main	goal	of	the	project	is	to	create	something	using	real-time	scheduling	techniques	
learned	in	class.	A	secondary	goal	is	to	use	wxSerpent	to	create	a	graphical	user	interface	
(although	in	this	project,	the	interface	requirements	are	minimal).	

2 A	Generative	Music	Algorithm	
Write	a	program	that	generates	music	according	to	some	algorithm.	The	overall	program	
should	show	some	effort	and	strategies,	but	need	not	be	a	monumental	effort.	A	trivial	loop	
to	play	an	8-note	sequence	is	too	simple,	but	a	program	that	harmonizes	melodies	in	the	
style	of	Bach	is	probably	too	complex.		

• The	program	should	create	multiple	“voices,”	that	is,	more	than	one	note	will	play	at	
a	time.	DEFINITIONS:	A	“voice”	can	refer	to	on	singer,	i.e.	literally	a	voice,	so	a	piece	
for	4	voices	means	4	singers,	usually	singing	in	harmony.	But	a	choir	can	sing	the	
same	music	by	having	multiple	singers	singing	each	of	the	four	“voices.”	Here,	
“voice”	becomes	a	little	ambiguous,	as	you	could	say	there	are	3	voices	on	each	part,	
or	you	could	say	this	is	a	4-voice	piece	for	chorus.	(You	might	have	to	read	that	again	
–	if	it	does	not	make	sense,	please	ask.)	In	any	case,	the	term	“voice”	also	applies	to	
instrumental	music:	“4	voices”	can	mean	4	independent	parts	for	different	
instruments.	

• The	program	should	use	a	scheduler	and	precise	timing	

• The	program	should	have	at	least	a	tempo	control.	

• The	program	should	not	schedule	more	than	one	measure	ahead	of	real	time	to	
permit	interactive	control	(even	if	the	program	is	not	interactive,	you	should	design	
for	that	as	a	future	possibility).	

• The	program	may	generate	images	along	with	music.	There	should	be	some	
correspondence	between	image	elements	or	their	animation	and	the	notes	being	
generated	and	played.	

You	are	encouraged	to	design	your	own	algorithms,	but	here	are	some	examples	(and	you	
may	implement	any	of	these	directly	if	you	wish):	

2.1 High	and	Low,	Fast	and	Slow	
Make	two	“voices”	that	we’ll	call	soprano	and	bass.	The	soprano	plays	random	pitches	in	the	
(high)	octave	from	C4	to	C5	while	the	bass	plays	random	(low)	pitches	from	C2	to	C3.	The	
soprano	plays	(fast)	eighth	notes	(half	a	beat	each)	while	the	bass	plays	(slow)	half	notes	(2	
beats	each).	

In	addition,	you	can	constrain	the	voices	to	different	scales.	Some	candidates	are:	

15-323/15623	(CMSIP)	Spring	2019	 	 	 Project	2	

	 2	

• Major:	0	2	4	5	7	9	11	

• Minor:	0	2	3	5	7	8	10	

• Harmonic	Minor:	0	2	3	5	7	8	11	

• Pentatonic:	0	2	5	7	9	

Where	the	numbers	are	half	steps	(midi	key	numbers)	mod	12.	I.e.	A4	=	MIDI	key	number	
69	is	in	the	Major	scale	because	69	mod	12	=	9,	which	is	one	of	the	numbers	in	the	scale,	but	
A4	is	not	in	the	Minor	scale.	Any	of	these	scales	can	be	transposed	(i.e.	mathematically	
“rotated”)	by	adding	an	offset	mod	12,	e.g.	if	you	take	the	Major	scale	and	add	3	mod	12,	you	
get	3	5	7	8	10	0	2,	which	tells	you	the	pitches	(mod	12)	that	are	in	E-flat	Major.	

You	can	also	make	small	intervals	more	likely	than	large	ones,	i.e.	pick	pitches	that	are	near	
the	previous	pitch	with	a	higher	probability,	especially	in	the	soprano	(high)	“voice.”		

Adding	some	controls	to	change	scales	(Major,	Minor,	etc.)	or	keys	(transposition	amounts)	
will	allow	you	to	manually	control	some	changes.	You	could	also	pick	new	scales	or	
transpositions	randomly,	but	do	it	rarely	enough	that	you	get	the	sense	of	being	in	one	scale	
or	key	before	changing	to	another.	

Instead	of	a	steady	rhythm	of	one	note	every	½	or	2	beats,	you	can	sometimes	drop	a	note	
or	double	the	length	of	a	note	or	pursue	other	devices	to	create	some	rhythmic	variety.	

2.2 Chord	Arpeggiator	
Pick	a	chord.	Candidates	are	

• Major:	0	4	7	

• Major	7th:	0	4	7	11	

• Minor:	0	3	7	

• Dominant:	0	4	7	10	

(Other	chords	are	possible;	you	are	not	limited	to	these.)	

As	with	scales,	you	can	“rotate”	or	transpose	these	by	adding	an	offset.	You	can	also	extend	
the	chords	by	repeating	them	higher	or	lower	by	12	(an	octave	up	or	down).	E.g.	a	simple	
Major	triad	starting	on	C4	(MIDI	60)	would	be	60+0,	60+4,	60+7,	or	60,	64,	67.	But	you	can	
extend	this	to	the	next	octave	by	adding	12	to	each	pitch	to	get:	60,	64,	67,	72,	76,	79,	or	3	
octaves	(one	lower	one	higher)	to	get:	48,	52,	55,	60,	64,	67,	72,	76,	79.	You	can	transpose	
these	chords	by	any	number	from	0	through	11	to	get	different	chords,	e.g.	if	you	add	2	you	
get	notes	from	the	D	Major	chord:	50,	54,	57,	62,	66,	69,	74,	78,	81.	

Now,	an	arpeggiator	just	plays	the	notes	in	sequence	up,	down,	or	up	and	down,	e.g.	for	just	
one	octave	you	could	play	60,	64,	67,	60,	64,	67,	60,	64,	67,	etc.	Or	you	could	go	up	and	
down:	60,	64,	67,	64,	60,	64,	67,	64,	60,	64,	67,	64,	etc.	You	can	also	repeat	either	or	both	of	
the	top	and	bottom	notes,	sometimes	to	get	the	pattern	to	come	out	to	an	even	multiple	of	2	
or	4	notes:	60,	64,	72,	72,	67,	67,	64,	60,	60,	64,	67,	72,	72,	67,	64,	60,	60,	64,	67,	72,	72,	67,	
64,	60,	etc.	

Since	a	basic	requirement	(above)	is	“The	program	should	create	multiple	‘voices,’	that	is,	
more	than	one	note	will	play	at	a	time,”	you	can	(perhaps	as	an	option)	double	octaves	
(“doubling	octaves”	means	when	you	play	a	note	at	pitch	P,	you	play	another	note	at	the	
same	time	at	pitch	P+12	or	P-12,	and	for	that	matter,	P-24	is	a	nice	effect,	or	try	P+19,	which	

15-323/15623	(CMSIP)	Spring	2019	 	 	 Project	2	

	 3	

is	a	striking	effect).	Alternatively,	you	can	have	two	different	arpeggios	running	at	once;	a	
conventional-sounding	combination	might	be	a	slow	arpeggio	in	a	lower	octave	and	a	faster	
one	(e.g.	2x	speed)	in	an	upper	octave	(but	don’t	feel	limited	to	making	things	sound	
conventional!).	

As	with	“High	and	Low,	Fast	and	Slow”	(above),	adding	some	controls	to	change	scales	
(Major,	Minor,	etc.)	or	keys	(transposition	amounts),	and	perhaps	other	parameters,	will	
allow	you	to	manually	control	some	changes.	You	could	also	pick	new	scales	or	
transpositions	randomly,	but	do	it	rarely	enough	that	you	get	the	sense	of	being	in	one	scale	
or	key	before	changing	to	another.	

2.3 Riff-o-matic	
The	basic	idea	here	is	to	write	a	short	melodic	“riff”	and	repeat	it.	To	write	a	riff,	at	
minimum	you	need	to	create	a	sequence	of	pitches.	They	could	be	random,	perhaps	
constrained	to	an	octave	range	(12	MIDI	note	numbers,	e.g.	from	60	to	72),	could	be	
constrained	to	a	scale	(see	above),	could	be	weighted	toward	small	intervals,	etc.	You’ll	need	
to	pick	a	duration.	“Riff”	implies	short,	so	something	in	the	range	of	2	to	4	beats	is	about	
right.	

The	rhythm	in	your	riff	can	be	simple,	e.g.	all	eighth	notes	(0.5	beats),	or	complex,	e.g.	pick	
random	but	short	durations	of	0.25,	0.5,	0.75,	or	1.	However,	if	you	do	that,	you’ll	find	the	
riff	might	sound	rhythmically	confusing	because	there	are	few	notes	landing	on	downbeats.	
An	alternative	to	that	is	to	assemble	the	riff	from	some	beat-long	rhythmic	units,	which	
might	include:	[0],	[0,	0.5],	[0,	0.25,	0.75],	[0,	0.5,	0.75],	[0,	0.25,	0.5,	0.75].	Each	number	in	
these	arrays	represents	a	note	to	be	played	at	the	given	offset	from	the	beat	(beat	times	are	
assumed	to	be	integers	0,	1,	2,	…	,	but	you	might	scale	everything	to	achieve	a	different	
tempo	rather	than	have	exactly	1	beat	per	second).	Notice	that	every	array	includes	zero,	so	
this	always	plays	a	note	on	the	beat.	Of	course,	these	can	be	weighted	to	be	more	or	less	
probable,	other	rhythms	can	be	added,	durations	can	be	greater	than	one	beat,	etc.	

Once	you’ve	created	a	riff,	let’s	assume	4/4	time	(4	beats	per	measure)	and	play	the	riff	on	a	
measure	downbeat	(beat	mod	4	==	0).	Then,	1,	2,	or	4	measures	later,	play	the	riff	again.	
Maybe	play	the	riff	as	much	as	4	to	8	times	(experiment	with	this).	Then	make	another	riff	
and	play	it	for	a	while.	Once	you’ve	created	the	expectation	that	riffs	always	repeat,	you	can	
break	the	rule	(sometimes).	You	could	also	modify	or	mutate	riffs	rather	than	computing	
each	one	from	scratch.	

This	all	gives	you	a	large	space	of	decisions	and	control.	You	can	make	decisions	manually	
through	graphical	controls	or	keyboard	input,	or	you	can	make	decisions	with	some	kind	of	
randomized	planning	process.	

Once	again,	a	basic	requirement	(above)	is	“The	program	should	create	multiple	‘voices,’	
that	is,	more	than	one	note	will	play	at	a	time,”	and	as	with	arpeggios,	you	can	(perhaps	as	
an	option)	double	octaves	(see	arpeggios	for	details),	generate	and	play	2	riffs	at	once,	or	
satisfy	this	requirement	in	some	more	creative	way.	

2.4 Other	Ideas	
You	do	not	have	to	be	an	experienced	musician	to	take	this	class,	so	we’ve	provided	several	
fairly	detailed	project	directions	in	the	previous	subsections.	However,	we	encourage	you	to	
develop	your	own	ideas	if	you	want	to	try	something	different.	Maybe	you	have	some	
compositional	experience	and	want	to	implement	some	intuitions	about	how	to	generate	
your	style	of	music.	That’s	fine.	The	only	pitfall	you	should	avoid	is	trying	to	recreate	some	

15-323/15623	(CMSIP)	Spring	2019	 	 	 Project	2	

	 4	

existing	composition:	e.g.	it’s	fine	if	you	love	Beethoven’s	“Moonlight	Sonata,”	but	don’t	try	
to	force	fit	your	desire	to	have	a	machine	perform	your	favorite	music	into	an	assignment	
where	the	goal	is	to	generate	new	music.	(Maybe	we	can	find	an	outlet	in	another	project	for	
you	if	you	desire	to	work	with	human-composed	music	sequences	–	let	the	staff	know.)	

3 Image	Generation	
If	you	wish,	you	can	add	some	animation	to	your	program.	Alternatively,	you	can	skip	this	
section.	Unlike	MIDI,	where	you	turn	a	note	on,	creating	a	“sound	object”	that	adds	to	
existing	“sound	objects,”	with	graphics	in	wxSerpent,	you	write	code	to	draw	on	a	canvas	on	
every	frame.	You	do	not	create,	say,	a	circle	“object”	that	persists,	but	instead	redraw	the	
circle	at	every	frame.	It	is	up	to	you	whether	you	create	a	list	of	“objects”	to	draw	(e.g.	you	
could	have	an	array	of	shapes	and	colors	that	you	update	from	time	to	time	and	draw	by	
iterating	through	the	shapes	in	the	array)	or	just	draw	procedurally	(e.g.	you	could	have	a	
single	paint	method	that	has	code	to	draw	each	shape,	probably	with	conditionals	to	control	
what	or	how	many	to	draw,	and	parameters	to	control	details).	

Keep	in	mind	that	drawing	on	a	canvas	is	a	somewhat	indirect	process.	See	“Interactive	
Drawing”	in	serpent/doc/serpent-by-example.htm	and	
serpent/doc/src/drawing.srp	for	some	sample	code	that	uses	a	canvas.	Also,	
serpent/wxslib/wxs_test.srp	has	a	canvas	and	shows	lots	of	other	wxSerpent	
capabilities.	We	will	also	provide	a	minimal	program	to	draw	on	a	canvas	with	this	project.		

To	draw	on	a	canvas,	you	need	to:	

• Subclass	Canvas	

• Define	(at	least)	a	paint(x)	method	in	the	subclass	to	override	the	inherited	
paint	method,	which	does	nothing.		

• Call	drawing	primitives	inside	paint(x),	e.g.	draw_ellipse(x, y, w, h)	
will	draw	an	ellipse.	See	serpent/doc/wxserpent.htm	for	descriptions	of	all	
the	drawing	primitives.	

• Make	an	instance	of	your	canvas	subclass.	Let’s	call	it	p2canvas.	

• When	you	want	to	(re)draw	the	canvas,	call	p2canvas.refresh(t).	This	can	be	
called	anywhere	and	anytime	in	the	program.	At	some	later	point	in	time	(but	as	
soon	as	the	control	returns	from	the	Serpent	interpreter	to	wxWidgets),	wxWidgets	
will	set	up	a	drawing	context	for	the	canvas	and	invoke	the	paint(x)	method,	
expecting	you	to	call	drawing	primitives.	

One	possible	direction	for	image	generation	is	“string	art,”	especially	with	dynamically	
changing	parameters:	c.f.	https://courses.ideate.cmu.edu/15-104/f2017/week-4-due-sep-
23/	-	stringart but	please	use	your	imagination	and	have	fun	–	we	are	not	grading	this	as	
fine	art.	

4 Implementation	
It	should	be	obvious	in	this	class	that	you	should	use	a	single	scheduler	with	precise	timing.		

You	should	run	the	scheduler	by	polling	for	work	roughly	every	2	milliseconds.	This	should	
be	done	within	the	same	thread	handling	the	graphical	interface.	See	the	example	code	
p2canvas.srp.	

15-323/15623	(CMSIP)	Spring	2019	 	 	 Project	2	

	 5	

Your	program	should	be	written	for	wxserpent64.	You	do	not	need	an	elaborate	interface,	
but	you	should	have	start	and	stop	buttons	and	a	spin	control	or	slider	for	tempo,	plus	a	
canvas	for	graphical	output	if	there	is	any.	

Use		programs/mididevice.srp	to	provide	menu-based	selection	of	the	output	device.	

Be	sure	to	call	sched_select(rtsched)	in	the	appropriate	places.	If	you	are	not	
processing	a	scheduled	event,	for	example	you	might	be	processing	a	callback	from	a	button	
or	slider,	then	the	scheduler	has	no	notion	of	the	current	time	(either	virtual	or	real),	so	you	
must	call	sched_select(rtsched)	to	establish	a	context	in	which	the	scheduler	can	
schedule	something	–	otherwise,	timing	anomalies	might	occur.	Furthermore,	you	should	
only	send	MIDI	from	within	a	scheduled	event.	This	allows	the	MIDI	output	to	compute	an	
output	timestamp	from	the	logical	time,	which	only	exists	within	event	execution.	For	
example,	if	you	want	to	send	a	note-on	in	response	to	a	button	(not	a	scheduled	event),	you	
should	simply	schedule	it,	e.g.	call	
 sched_cause(0, midi_out, 'note', chan, pitch, vel)	

5 15-623	and	Extra	Features	
15-623	students,	in	addition	to	the	above	requirements,	should		

• Incorporate	their	drum	machine	sequencer	from	Project	1	into	this	project	(or	
rewrite	it	to	provide	that	functionality).	

• At	least	have	a	mode	in	which	all	music	generation	is	automatic.	We	suggest	building	
some	manual	controls	anyway	for	testing.	When	you	get	something	you	can	control	
manually,	then	play	with	it	and	get	a	sense	of	what	control	changes,	how	often,	how	
much,	etc.	seem	to	make	for	interesting	music.	Then	design	some	random-choice	
algorithms	that	will,	from	time-to-time	automatically	make	a	parameter	change.	One	
way	to	do	this	is	to	simply	manipulate	sliders	and	buttons	(that	you	have	created	for	
manual	control)	via	algorithms.	If	you	do	this,	you’ll	see	what	your	algorithm	is	
doing	because	controls	will	be	updated	on	the	screen.	See	the	method	(which	
applies	to	Slider,	Button,	and	other	classes)	set_and_act(x),	which	is	probably	
the	best	way	to	do	this.	

15-323	and	15623	students	should	feel	free	to	add	additional	features.	The	graders	can	
award	up	to	10%	extra	credit	for	interesting	extra	work	in	the	area	of	music	control,	
scheduling,	and	algorithmic	composition.	(Since	this	is	not	a	graphical	user	interface	class	
and	interfaces	can	become	a	large	implementation	effort,	we	will	not	award	extra	points	for	
elaborate	or	extra-beautiful	interfaces,	so	keep	it	simple	and	functional.)	

6 Grading	Criteria	
1. Correctness:	Does	the	program	compile,	run,	and	produce	the	desired	behavior?	

Program	should	generate	some	coherent	music	as	intended	(or	incoherent	for	that	
matter,	but	it	should	correctly	implement	your	intention.)	

2. Modularity:	Your	program	should	isolate	different	concerns.	In	particular,	you	
should	clearly	separate	MIDI	I/O,	the	Graphical	Interface,	data	input	(if	any),	and	the	
implementation	of	application-specific	real-time	behavior	(sequencer,	drumming,	or	
composition).	

3. Programming	style:		

a. Follow	style	guidelines	in	Serpent	documentation.	

15-323/15623	(CMSIP)	Spring	2019	 	 	 Project	2	

	 6	

b. Code	should	be	clearly	written	and	commented	to	optimize	readability	
(include	high-level	design	and	specifications	at	the	top	of	the	file	or	in	a	
separate	document,	give	concise	comments	within	the	code,	avoid	verbose	
or	redundant	inline	comments.)	A	2-page	instruction	manual	in	Latex	is	
overkill.	A	program	with	10	lines	of	comments	needs	work.	Low-level	
comments	on	every	variable	and	method	is	not	a	substitute	for	quality	
documentation.	

4. Effort:	As	stated	above,	keep	it	simple,	but	if	your	program	is	not	in	line	with	the	
examples	we	described	don’t	expect	full	credit.	

Hand-in Instructions

You should put all your work, Source files and Documentation, into a zip file and submit it
through Autolab.

