
Parameter Server for Distributed Machine Learning

Mu Li1, Li Zhou1, Zichao Yang1, Aaron Li1, Fei Xia1,
David G. Andersen1 and Alexander Smola1,2

1Carnegie Mellon University
2Google Strategic Technologies

{muli, lizhou, zichaoy, aaronli, feixia, dga}@cs.cmu.edu, alex@smola.org

Abstract

We propose a parameter server framework to solve distributed machine learning
problems. Both data and workload are distributed into client nodes, while server
nodes maintain globally shared parameters, which are represented as sparse vec-
tors and matrices. The framework manages asynchronous data communications
between clients and servers. Flexible consistency models, elastic scalability and
fault tolerance are supported by this framework. We present algorithms and theo-
retical analysis for challenging nonconvex and nonsmooth problems. To demon-
strate the scalability of the proposed framework, we show experimental results on
real data with billions of parameters.

1 Introduction

Distributed optimization and inference is becoming popular for solving large scale machine learning
problems. Using a cluster of machines overcomes the problem that no single machine can solve
these problems sufficiently rapidly, due to the growth of data in both the number of observations and
parameters. Implementing an efficient distributed algorithm, however, is not easy. Both intensive
computational workloads and the volume of data communication demands careful system design.

It is worth noting that our system targets situations that go beyond the typical cluster-compute sce-
nario where a modest number of homogeneous, exclusively-used, and highly reliable is exclusively
available to the researcher. That is, we target cloud-computing situations where machines are possi-
bly unreliable, jobs may get preempted, data may be lost, and where network latency and temporary
workloads lead to a much more diverse performance profile. For instance, it is understood that syn-
chronous operations may be significantly degraded due to occasional slowdowns, reboots, migra-
tions, etc. of individual servers involved. In other words, we target real cloud computing scenarios
applicable to Google, Baidu, Amazon, Microsoft, etc. rather than low utilization-rate, exclusive use,
high performance supercomputer clusters. This requires a more robust approach to computation.

There exist several general purpose distributed machine learning systems. Mahout [5], based on
Hadoop [1] and MLI [27], based on Spark [29], adopt the iterative MapReduce [14] framework.
While Spark is substantially superior to Hadoop MapReduce due to its preservation of state and
optimized execution strategy, both of these approaches use a synchronous iterative communication
pattern. This makes them vulnerable to nonuniform performance distributions for iterative machine
learning algorithms, i.e. machines that might happen to be slow at any given time. To overcome
this limitation, distributed GraphLab [21] asynchronously schedules communication using a graph
abstraction. It, however, lacks the elastic scalability of the map/reduce-based frameworks, and re-
lies on coarse-grained snapshots for recovery. Moreover, global variables synchronization is not
a first-class primitive. Of course, beyond these general frameworks, numerous systems have been
developed that target specific applications, such as [3, 13, 24, 22, 28, 10, 15].

1

We found that many inference problems have a rather restricted structure in terms of their
parametrization where considerable gains can be made by exploiting this design. For instance, gen-
eralized linear models typically use a single massive parameter vector, or topic models use an array
of sparse vectors. In general, many relevant large-scale graphical models consist largely of a small
number of plates, thus allowing for a repeated structure of a small number of components which
are shared between observations and machines. This offers considerable efficiencies by performing
these operations in bulk and by specializing synchronization primitives for the specific datatypes.

In this paper, we focus on the parameter server approach to distributed optimization. In this model,
computational nodes are partitioned into clients and servers. Each client “owns” a portion of the data
and workload, and the servers together maintain the globally shared parameters. This architectural
idea has not new: It has been applied to several machine learning applications including latent
variable models [26, 2, 17], distributed inference on graphs [3], and deep learning [13]. Our goal is
to build a general purpose system with features only partially supported by previous work:1

Ease of use. The globally shared parameters are represented as (potentially sparse) vectors and ma-
trices, which are more convenient data structures for machine learning applications than the
widely used (key,value) store or tables. High-performance and convenient multi-threaded
linear algebra operations, such as vector-matrix multiplication between parameters and lo-
cal training data, are provided to facilitate developing applications.

Efficiency. Communication between nodes is asynchronous. Importantly, synchronization does not
block computation. This framework allows the algorithm designer to balance algorithmic
convergence rate and system efficiency, where the best trade-off depends on data, algo-
rithm, and hardware.

Elastic Scalability. New nodes can be added without restarting the running framework. This prop-
erty is desirable, e.g. for streaming sketches or when deploying a parameter server as an
online service that must remain available for a long time. We use a distributed hash table
[9] to allow new server nodes to be dynamically inserted into the set at any time.

Fault Tolerance and Durability. Conversely, node failure is inevitable, particularly at large scale
using commodity servers. For instance, an MTBF (mean time between failure) of 3 years
amounts to one failure per day on 1,000 nodes. Scheduler pre-emption can significantly
increase this rate on industrial deployments.
We use an optimized data replication architecture that efficiently stores data on multiple
server nodes to enable fast (in less than 1 second) recovery from node failure. Moreover,
since client nodes are independent from each other, new clients can be started automatically
when one fails in the same fashion as MapReduce is capable of rescheduling new mappers.

Server Server Server

Client Client Client Client

· · ·

· · ·

Figure 1: Communication pattern between clients and servers. Clients process data while servers
synchronize parameters and perform global updates. Note that most code is shared between clients
and servers, the main difference being the manner in which they update parameters.

2 Architecture

2.1 Overview

The parameter server architecture, shown above, has two classes of nodes: The server nodes main-
tain a partition of the globally shared parameters (machine local parameters are not synchronized
by default). They communicate with each other to replicate and/or to migrate parameters for relia-
bility and scaling. The client nodes perform the bulk of the computation; the server nodes mainly

1The C++ codes are available at http://parameterserver.org/

2

http://parameterserver.org/

perform bookkeeping and global aggregation steps. Each client typically stores locally a portion
of the training data, computing local statistics such as gradients. Clients communicate only with
the server nodes, updating and retrieving the shared parameters. Clients may be added or removed;
doing so requires transmitting the appropriate portion of the training dataset to the new machine(s)
and querying the respective set of parameters.

The parameter servers may simultaneously support several independent parameter vectors (i.e. chan-
nels) for different algorithms. This is useful, e.g., when the servers may be storing parameters for
an operational model being actively queried by some nodes, while also being used to train a new
model for future use, using a different set of client nodes. Such an approach greatly simplifies model
updates and deployments since all that is required is for the clients to switch channels.

2.2 Application Examples

Our model is easiest understood by discussing a number of superficially diverse use cases that all fit
into the same framework. It is understood that specific problems can be considerably more varied
and complex than these examples.

Risk minimization by distributed subgradient iterations. The objective is to solve optimization
problems of the form

F (w) =

n∑
i=1

`(xi, yi, w) + Ω(w). (1)

Here `(xi, yi, w) is a loss function, such as a regression or classification error that depends
on the data xi, labels yi and the parameters w only via nonzero terms in xi. The optimiza-
tion algorithms typically iteratively computes the first-order gradient of F (w), which fits
into the client and server architecture: The globally shared parameters w are maintained by
servers. The clients in parallel store the training data and compute its gradient: Each client
takes a set of pairs (xi, yi), and the entries of w needed to calculate the revised gradient.
During inference, these local gradients are aggregated by servers. New updated w values
are sent back to the clients.

Risk minimization by parameter synchronization. The objective is identical to the above sce-
nario. However, in this case local parameter updates are carried out at the client side and
communication with the server is for parameter synchronization only, e.g. using a dis-
tributed variant of ADMM [8].

Distributed Gibbs Sampler. Latent variable models typically infer auxiliary unobserved variables
Z from observed dataX in a generative setting. For instance, in Latent Dirichlet Allocation
(LDA), the goal is to explain observed documents by a mixture of topics [7]. Collapsed
Gibbs sampling [16] is a widely used inference algorithm, which iteratively counts the
statistics on (document,word), (document,topic), and (word,topic) and then reassigns topics
to words based on the conditional probabilities. In the parameter server setting, documents
are partitioned to clients so that the first two statistics can be computed locally. The globally
shared word-to-topic assignments are then maintained by server nodes [26, 2] while the
clients send state change updates to the server.

Deep Learning. Deep learning essentially iterates several nonlinear function classes. While the
function classes themselves are fairly compactly described, inference on large amounts
of data nonetheless requires parallelization of the set of observations. [13] describe two
complementary (synchronous) variants: they decompose the set of variables over several
machines and compute different parts of the objective function respectively. Secondly they
decompose the observations over different machines.

Sketches. Typically data sketches [12, 6] are designed to perform well for a given time interval
(e.g. by counting how many items were observed since the initialization of the sketch)
rather than storing a full frequency distribution. Moreover, they are engineered for single
machine storage. The use of consistent hashing allows us to distribute the event stream
over multiple machines, thus increasing throughput and accuracy.

3

3 Interface

3.1 Key-Value Vectors

A major difference to existing approaches is that we assume that the index set of keys is ordered and
potentially dense. This allows us to use vector semantics and to send larger amounts of data in bulk
rather than dealing with individual (key,value) pairs. Moreover, it simplifies memory management,
network traffice, and it allows us to dispose of having to store a separate index set for dense vectors.

Note that this approach is a strict superset of what typical (key,value) servers provide. For the sake
of concreteness assume that the parameter server holds only one such vector. The parameter server
presents the shared parameters as (sparse) vectors to clients and servers. Applications may treat
this data as either a vector/matrix or as a set of key-value pairs, whichever is more convenient.
Individual data entries can be accessed or modified using their keys, for example the feature_id
in risk minimization problems, or the combination of word_id and topic_id in LDA. Clients
or servers can also perform linear algebra operations on entire vectors, such as addition w + u,
finding the 2-norm ‖w‖2, and more general operations αAx+ βy, as encoded in the Level 1 BLAS
subroutines. In addition, parameters can easily interact with the local training data if they are also
vectors or matrices.

Beyond convenience, this interface design leads to efficient code. Taking advantage of the structure
of the vectors and matrices, execution within linear algebra operations is optimized for space and
time locality, as is well explored by libraries such as BLAS/Lapack [4]. It is also easier to efficiently
multi-thread the internal implementation of these operators and take advantage of SIMD/vector sup-
port for both sparse and dense vectors.

3.2 Push and Pull

Data communication between nodes is captured by two operations, push and pull. The former
sends local modified data entries of the shared parameters to others, while the latter retrieves remote
modifications. Applications can specify whether to use either a new local value wk or new local
modification wk − w

(synced)
k for communication. In other words, the response to a push or pull

request is problem specific.

The parameter server minimizes network traffic by sending only needed data. For example, each
server node typically maintains only a segment of the shared parameters. When a client pushes,
the framework finds all locally updated data entries, then sends each entry to the server node that
maintains the key for this entry. On the receiving side, clients often need only a subset of the shared
parameters. Upon receiving a pull request from a client, a server returns only entries for the specific
keys needed by the client — a list either included in the pull request or pre-negotiated with the server
to further reduce traffic.2

Both push and pull operations are non-blocking. The caller (typically the computational thread)
inserts its requests into queues, and then resumes computation. Separate I/O threads managed by the
framework perform the actual network communication. This asynchronous communication results
in a data consistency model that we explain in Section 4.1, and analyze theoretically in Section 5.

3.3 User-Defined Functions on the Server

Beyond aggregating data from clients, server nodes can execute user-defined functions. These can
be beneficial because the server nodes often have more complete or up-to-date information about the
shared parameters. For example, consider proximal gradient methods for solving risk minimization,
as will be discussed further in Section 5. At each iteration, this algorithm first aggregates the gradi-
ents of the loss function and then computes a new w by solving a proximal operator associated with
the gradients and the regularizer. For instance for `1 regularizers this is the soft-shrinkage operator.
Using a server-side function to solve the proximal operator on the server nodes instead of the client
nodes reduces the amount of data that must be moved between nodes. Likewise, in the context of
sketching, the clients perform hardly any operation and the lion’s share of work occurs in the servers.

2By omitting a key list and send values only we can double the network throughput. This is easily achieved,
e.g. by transmitting only the checksum of a range of keys rather than the actual keys.

4

4 Toward Scale and Reliability

4.1 Consistency Model

Asynchronous communication improves the system efficiency via paralleling the usage of both CPU,
disk and network bandwidth. However, it brings data inconsistency between nodes and potentially
slows down the convergence rate of the optimization algorithms. The best trade-off between sys-
tem efficiency and algorithm convergence rate usually depends on a variety of factors, including the
algorithm’s sensitivity to data inconsistency, feature correlation in training data, and capacity differ-
ence of hardware components. Instead of binding ourselves to a particular strategy, the parameter
server provides flexible data consistency models for applications to select:

Best Effort. In this case the parameter server will not stall regardless of the availability of resources.
For instance, [26] describe such a system. However, this is only recommendable whenever
the underlying algorithms are robust with regard to delays.

Maximal Delayed Time. When a maximal delayed time τ for the push operation is set, a new push
call will be blocked until all previous push call τ time ago have been finished. In other
words, if we use the iteration number as the (logic) time and set τ = 2, then calling push
at iteration 4 will be blocked if any push operation before iteration 3 has not been finished
yet, namely the network packages associated with that operation have not been successfully
sent yet. Thus, if τ = 0, we get the bulk synchronous parallel model, where each push call
will be blocked until the data have been sent.
Also note that for an infinite delay τ = ∞, we have the best-effect model [26]. The same
applies for the pull operations.

User-defined Filters. The Parameter server supports user-defined filters for selective synchroniza-
tion. One example is the significantly modified filter, which only pushes entries that have
been changed more than by a significant amount, e.g.

|wk − w(synced)
k | > ∆.

An intuitive choice is using a large ∆ at the beginning, and then continuously decreasing
∆ when approaching a solution.

4.2 Elastic Scalability and Fault Tolerance

Server 1

Server 2

Server 3

key orderkey

We use the key-value pairs viewpoint of the
shared parameters. The basic idea comes from
distributed hash tables [9, 25], where both key-
value pairs and server nodes are inserted into
the hash ring. Each node manages the key seg-
ment starting with its insertion point to the next
point by other nodes in the anticlockwise direc-
tion, which is called the anticlockwise neigh-
bor. In the example shown on the right, the
server nodes manages segments of the same
color. Different to performing key discovery
and routing as [18], we use a DHT for assign-
ment and we store the mapping from key seg-
ments to nodes in Paxos [19], as implemented
in Zookeeper. Note that a physical node is in-
serted log p times in the form of virtual nodes to facilitate load-balancing.

Each key segment is then duplicated into the k anticlockwise neighbor server nodes for fault tol-
erance. If k = 1, then the segment with the mark in the example will be duplicated at Server 3.
A new node comes is first randomly (via a hash function) inserted into the ring, and then takes the
key segments from its clockwise neighbors. On the other hand, if a node is removed or if it fails,
its segments will be served by its nearest anticlockwise neighbors, who already own a duplicated
copy if k > 0. To recover a failed node, we just insert a node back into the failed node’s previous
positions and then request the segment data from its anticlockwise neighbors.

5

5 Theoretical Analysis

5.1 Nonconvex and nonsmooth Optimization

We provide convergence analysis for the following nonconvex optimization problems

minimize F (w) := f(w) + h(w) for w ∈ X . (2)

Here f : Rp → R is continuously differentiable but not necessary convex and h : Rp → R ∪ {∞}
is LSC, convex but possibly nonsmooth.

We consider the proximal gradient methods [11, 23]. Given a closed proper convex function h(w) :
Rp → R ∪ {+∞}, define the proximal operator as

Proxγ(x) = argmin
y∈X

h(y) +
1

2γ
‖x− y‖2 .

To minimize the composite objective function f(w)+h(w), proximal gradient methods update w in
two steps: a forward step performing steepest gradient descent on f and a backward step, carrying
out projection using h. For a given learning rate γt > 0 at iteration t this can be written as

w(t+ 1) = Proxγt [w(t)− γt∇f(w(t))] for t ∈ N (3)

5.2 Asynchronous and Convergence Guarantee

We treat the server nodes as a single unit to simplify the discussion. This simplification does not
affect the correctness of the analysis. However, we assume that the prox operator Proxγ(x) can be
carried out independently over the partitions induced by a distributed representation of the parame-
ters. For instance, for an `1 penalty this is trivially true since the prox operator acts coordinate-wise.

First, assume data are partitioned into m clients so that we can rewrite f(w) =
∑m
i=1 fi(w). Next,

in every iteration, each client i simultaneously computes the local gradient ∇fi and then pushes it
to the server. Note that each client runs at its own pace without synchronization at the beginning of
each iteration. At the same time the server gathers the updates from clients and push the new value
of w back after solving the proximal operator.

We analyze the combination of the “maximal delayed time” model with a “significantly-modified”
filter. Assume a maximal delay τ iterations is allowed for the former. In other words, if client i has
value w(ti) at iteration t, then we have t− τ ≤ ti ≤ t. For the latter, assume values are sent only if
their absolute local modifications are large than ∆t. Thus, at iteration t, the gradient received by the
server from client i will be

Gi(t) = ∇fi(w(ti) + σw(ti)) + σ∇i
(t).

Here w(ti) is the delayed copy of parameters at client i, and σw and σ∇ are error due to small
changed values are filtered, which satisfy ‖σw(ti)‖∞ ≤ ∆ti and ‖σ∆(t)‖∞ ≤ ∆t. The inexact
gradient used by the server to compute w(t+ 1) is then s(t) =

∑m
i=1Gi(t).

The following Theorem 2 indicates that if proper learning rate and ∆t are chosen, then this algorithm
is guaranteed to converge to a stationary point under the week consistency model discussed above.
The theorem needs the following assumption.

Assumption 1 (Lipschitz Continuity) There exists positive constant Li such that ‖∇fi(x) −
∇fi(y)‖ ≤ Li ‖x− y‖ for any x, y ∈ X and all i = 1, . . . ,m.

Theorem 2 Assume Assumption 1 and denote by L =
∑m
i=1 Li. Let τ be the maximal delay and

∆t = O(1
t) for the significant-modified filter. For any ε > 0, the asynchronous implementation will

converge to a stationary point if the learning rate γt satisfies γt ≤ ((1 + τ)L+ ε)−1 for all t > 0.

Proof. Denote by δ(t) = w(t+ 1)− w(t), we first upper bound the change of F from iteration t to
t+ 1. Note that w(t+ 1) = Proxγt(w(t)−γts(t)), take derivatives at the both sides of the proximal

6

operator definition we obtain 1
γt

(w(t)− w(t+ 1))− s(t) ∈ ∂h(w(t+ 1)). By the convexity of h,

h(w(t+ 1))− h(w(t)) ≤
〈

1

γt
(w(t)− w(t+ 1))− s(t), w(t+ 1)− w(t)

〉
= − 1

γt
‖δ(t)‖2 − 〈s(t), δ(t)〉 (4)

On the other hand, apply Assumption 1

f(w(t+ 1))− f(w(t)) =

m∑
i=1

fi(w(t+ 1))− fi(w(t)) (5)

≤
m∑
i=1

〈δ(t),∇fi(w(t))〉+ Li ‖δ(t)‖2 (6)

= 〈δ(t),∇f(w(t))〉+ L ‖δ(t)‖2 (7)

Combining (4) and (7), we have

F (w(t+ 1))− F (w(t)) ≤
(
L− 1

γt

)
‖δ(t)‖2 + 〈δ(t),∇f(w(t))− s(t)〉

≤
(
L− 1

γt

)
‖δ(t)‖2 + ‖δ(t)‖ ‖∇f(w(t))− s(t)‖ (8)

Next we upper bound the different between the gradient∇f(w(t)) and the inexact gradient s(t). By
the way we compute s(t),

‖∇f(w(t))− s(t)‖ =

∥∥∥∥∥
m∑
i=1

∇fi(w(t))−∇fi (w(ti) + σw(ti))− σ∇i
(t)

∥∥∥∥∥
≤

m∑
i=1

t−ti∑
j=1

‖∇fi(w(t− j + 1))−∇fi(w(t− j))‖

+ ‖∇fi(w(ti))−∇fi(w(ti) + σw(ti))‖+ ‖σ∇i
(t)‖ (triangle inequality)

≤
m∑
i=1

t−ti∑
j=1

Li ‖δ(t− j)‖+ Li ‖σw(ti)‖+ Li ‖σ∇i(t)‖ (Assumption 1)

≤
m∑
i=1

τ∑
j=1

Li ‖δ(t− j)‖+ 2Li
√
p∆t−τ (delay ≤ τ and ‖w‖ ≤ √p‖w‖∞)

=

τ∑
j=1

L ‖δ(t− j)‖+ 2L
√
p∆t−τ (9)

Substituting (9) into (8), we have

F (w(t+ 1))− F (w(t))

≤
(
L− 1

γt

)
‖δ(t)‖2 +

τ∑
j=1

L ‖δ(t)‖ ‖δ(t− j)‖+ ‖δ(t)‖ 2L
√
p∆t−τ

≤
(
L+

τL

2
+
ε

2
− 1

γt

)
‖δ(t)‖2 +

τ∑
t=1

L

2
‖δ(t− j)‖2 + 2L2p∆2

t−τ (10)

Summing over t we have the following chain

F (w(T + 1))− F (w(0)) ≤
T∑
t=0

(
(1 + τ)L+

ε

2
− 1

γt

)
‖δ(t)‖2 + 2L2p∆2

t−τ (11)

7

16 32 64 128 256
1

2

4

8

16

clients

s
p

e
e

d
u

p
 (

x
)

l
1
−LR on CTRb

D2P
Ideal

1 2 4 8 16
1

2

4

8

16

clients

s
p
e
e
d
u
p
 (

x
)

RICA on imagenet

D2P
Ideal

Figure 2: Linear scalability for two problems and associated decompositions. Left: optimization
over 31 billion attributes in a binary classification problem. Right: problem decomposition in RICA
on image net. Both instances show essentially a perfect speedup over two orders of magnitude.

Denote by c(t) = 1
γt
− (1 + τ)L− ε

2 , since γt ≤ 1
(1+τ)L+ε for all t, then all c(t) ≥ ε

2 > 0. So

ε

2

T∑
t=0

‖δ(t)‖2 ≤
T∑
t=0

c(t) ‖δ(t)‖2 ≤ F (x(0))− F (x(T + 1)) +

T∑
t=1

2L2p∆2
t−τ (12)

for any T . Since ∆t = O(1
t), and by the fact that 1 + 1

22 + 1
32 + . . . = π2

6 . Then the RHS of (12)
is constant when T →∞, which implies limt→∞ δ(t)→ 0. So limt→∞ Proxγt(w(t))−w(t)→ 0,
thus we find a local minimal point.

Intuitively, the difference between w(t − τ) and w(t) will be small when approaching a stationary
point. Besides, since ∆t is decreasing to zero, so are the values in σw and σ∇i

. The inexact gradient
s(t), therefore, would be a good approximation of the true gradient ∇f(w(t)), so the convergence
results of proximal gradient methods can be applied.

6 Experimental Results

In this section we solve two challenging problems — `1-regularized logistic regression (`1-LR) with
sparse training data:

min
w∈Rp

n∑
i=1

log(1 + exp(−yi 〈xi, w〉)) + λ‖w‖1

and reconstruction ICA (RICA) with dense training data:

min
W∈R`×p

n∑
i=1

1

2

∥∥WW>xi − xi
∥∥2

2
+ λ ‖Wxi‖1 .

The former is convex, but the latter is highly nonconvex. We use an asynchronous proximal gradient
method. The proximal operator has closed-form solution for `1-LR, i.e. the soft-shrinkage operator.
We solve it by ADMM [8] for RICA. More details are presented in [20].

We run `1-LR and RICA on clusters with 256 AMD CPU cores and 16 Tesla K20 graphical cards,
respectively. A range of sparse and dense datasets have been evaluated. CTRb and imagenet are
the largest two. The former is a sparse Ads click-through dataset from a major search company. It
contains 0.34B observations, 2.2B unique features, and 31B nonzero entries. The latter has been
obtained from http://www.image-net.org with 100K images resized into 100x100 pixels.

8

http://www.image-net.org

Due to the space constraint, we only report the scalability results on these two datasets with maximal
delay τ = 4. For RICA we use 1 Billion parameters W ∈ R106×104

. We measure the scalability,
shown in Figure 2, on the speedup of training time to achieve the same convergence precision. A
ninefold speedup is observed when increasing the clients by 16 times for `1-LR, while we see a 13.5
fold acceleration for RICA.

7 Conclusion

In this paper, we described a parameter server framework to solve distributed machine learning
problems. This framework is easy to use: Globally shared parameters can be used as local sparse
vectors or matrices to perform linear algebra operations with local training data. It is efficient:
All communication is asynchronous and flexible consistent models are supported to balance the
trade-off between system efficient and fast algorithm convergence rate. Furthermore, it provides
elastic scalability and fault tolerant aiming for stable long term deployment. We present convergence
analysis under weak data consistency requirement. Last, we show experiments of two challenging
tasks on real datasets with billions of variables to demonstrate the linear scalability.

References

[1] Apache hadoop, 2009. http://hadoop.apache.org/core/.

[2] Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and A. J. Smola.
Scalable inference in latent variable models. In Proceedings of The 5th ACM International
Conference on Web Search and Data Mining (WSDM), 2012.

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J.
Smola. Distributed large-scale natural graph factorization. In World Wide Web Conference, Rio
de Janeiro, 2013.

[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, second edition, 1995.

[5] Apache Foundation. Mahout project, 2012. http://mahout.apache.org.

[6] R. Berinde, G. Cormode, P. Indyk, and M.J. Strauss. Space-optimal heavy hitters with strong
error bounds. In J. Paredaens and J. Su, editors, Proceedings of the Twenty-Eigth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS, pages
157–166. ACM, 2009.

[7] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, January 2003.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1–123, 2010.

[9] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed hash
tables. In Peer-to-peer systems II, pages 80–87. Springer, 2003.

[10] W.Y. Chen, Y. Song, H. Bai, C.J. Lin, and E.Y. Chang. Parallel spectral clustering in distributed
systems. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(3):568–586,
2011.

[11] P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal processing. In Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212. Springer,
2011.

[12] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams. In SDM,
2005.

[13] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Senior,
P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In Neural Information
Processing Systems, 2012.

9

http://mahout.apache.org

[14] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. CACM,
51(1):107–113, 2008.

[15] John Duchi, Alekh Agarwal, and Martin Wainwright. Distributed dual averaging in networks.
In Advances in Neural Information Processing Systems 23, 2010.

[16] T.L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy
of Sciences, 101:5228–5235, 2004.

[17] Q. Ho, J. Cipar, H. Cui, S. Lee, J. Kim, P. Gibbons, G. Gibson, G. Ganger, and E. Xing. More
effective distributed ml via a stale synchronous parallel parameter server. In NIPS, 2013.

[18] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the world wide web.
In Symposium on the Theory of Computing STOC, pages 654–663, New York, May 1997.
Association for Computing Machinery.

[19] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.
[20] M. Li, D. G. Andersen, and A. J. Smola. Distributed delayed proximal gradient methods. In

NIPS Workshop on Optimization for Machine Learning, 2013.
[21] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M.

Hellerstein. Distributed graphlab: A framework for machine learning and data mining in the
cloud. In PVLDB, 2012.

[22] N. Parikh and S. Boyd. Graph projection block splitting for distributed optimization, 2012.
submitted.

[23] N. Parikh and S. Boyd. Proximal algorithms. To appear in Foundations and Trends in Opti-
mization, 2013.

[24] P. Richtarik and M. Takac. Distributed coordinate descent method for learning with big data.
Technical report, 2013.

[25] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and rout-
ing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, Heidelberg, Germany, November 2001.

[26] A. J. Smola and S. Narayanamurthy. An architecture for parallel topic models. In Very Large
Databases (VLDB), 2010.

[27] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin, M. I.
Jordan, and T. Kraska. Mli: An api for distributed machine learning. 2013.

[28] Christina Teflioudi, Faraz Makari, and Rainer Gemulla. Distributed matrix completion. In
Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 655–664. IEEE,
2012.

[29] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
cauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Fast and interactive analytics over
hadoop data with spark. USENIX ;login:, 37(4):45–51, August 2012.

10

	Introduction
	Architecture
	Overview
	Application Examples

	Interface
	Key-Value Vectors
	Push and Pull
	User-Defined Functions on the Server

	Toward Scale and Reliability
	Consistency Model
	Elastic Scalability and Fault Tolerance

	Theoretical Analysis
	Nonconvex and nonsmooth Optimization
	Asynchronous and Convergence Guarantee

	Experimental Results
	Conclusion

