MXNet: Flexible and Efficient Library
for Deep Learning

from Distributed GPU Clusters to Embedded Systems

Tiangi Chen Mu Li

W Carnegie

UNIVERSITY of Mellon
WASHINGTON University



Deep Learning

Learns multiple levels of representations of data
Significantly improve many applications on multiple domains

image understanding speech recognition natural language processing
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Image classification

multilevel feature extractions from raw pixels

to semantic meanings
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explore spatial information with convolution layers



Image Classification

State-of-the-art networks have tens to hundreds layers
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4+ Hard to define the network

< the definition of the inception network has >1k lines of codes in Caffe

+ A single image requires billions floating-point operations

" Intel i7 ~500 GFLOPS

+ @ Nvidia Titan X: ~5 TFLOPS
+ Memory consumption is linear with number of layers



Language Modeling

output hello world !

recurrent
state

neural networks:
input <go> hello world

+ Variable length of input and output sequences
+ State-of-the-art networks have many layers

< Billions of floating-point operations per sentence

<« Memory consumption is linear with both sequence length and
number of layers
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Deep Learning Workflow

Computational Graph
of the Deep Architecture
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Deep Learning Workflow

Computational Graph
of the Deep Architecture

forward

input
fullc
sigmoid
fullc

softmax

loss
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Updates and Interactions
with the graph

+ Parameter update
4+ Beam search
+ Feature extraction ...

w =w -n of(w)

+ Involves high dimensional array(tensor)
operations in both direction

+ How to program a typical DL application?



Imperative Programs

+ Execute operations step by step.
+ ¢ = b X ainvokes a kernel operation

+ Numpy programs are imperative

-

pUthon

import numpy as np

a

b
C
d

np.ones(10)
np.ones(10) * 2
b * a

c + 1



Declarative Programs

A B
N
Variable('A")
Variable('B") \+/

B * A

C + 1

compile(D)

f(A=np.ones(10), B=np.ones(10)*2)

+ Declares the computation

+ Compiles into a function

+ C =B X A only specifies the
requirement

+ SQL is declarative

Q +H O N ™ P>
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Imperative vs. Declarative Programs

+ Imperative programs are straightforward and flexible.
+ Take advantage of language native features (loop, condition)

A B
Variable('A") \ /

import numpy as np A =

a = np.ones(10) B = Variable('B") X T

b = np.ones(10) * 2 C=B*A \ /

c =b * a D =C+ 1 u

print(c) f = compile(D)

d=c+ 1 d = f(A=np.ones(10), B=np.ones(10)*2)

Easy to tweak
with python
codes



Imperative vs. Declarative Programs

+ Declarative programs see the entire graph
+ More chances for optimization
+ Easy to save and load the computation structure

Which program uses less memory to obtain d?

import numpy as np A = Variable('A") A
a = np.ones(10) B = Variable('B") ‘\N u//
b = np.ones(10) * 2 C=B*A
c=b *a D =C + 1 \/
d=c+ 1 f & compile(D)
d {{ f(A=np.ones(10), B=np.ones(10)*2)

¢ cannot share memory with d,

because it could be used in future C can share memory with D,

because C cannot be seen by user



Imperative vs. Declarative for Deep Learning

Computational Graph Updates and Interactions
of the Deep Architecture with the graph
forward  backword + Parameter update

\g 4+ Beam search

4+ Feature extraction ...
> wr
- w =w - n of(w)
—() <~

OO
Needs mutation and more
Needs heavy optimization, language native features, good for
fits declarative programs imperative programs




MXNet: Mix the Flavors Together

>>> import mxnet as mx
mx.nd.zeros((100, 50))

Imperative
NDArray API

Declarative
Symbolic Executor

>>2>

>>> a.shape

d =

(100L, 50L)
mx.nd.ones((100, 50))
a + b

>>>
>>>
>>>

>>2>

b
C =
b +=

C

import mxnet as mx

>>> net = mx.symbol.Variable( 'data')

>>> net = mx.symbol.FullyConnected(data=net, num hidden=128)
>>> net = mx.symbol.SoftmaxOutput(data=net)

>>> type(net)

<class ‘mxnet.symbol.Symbol’>

>>> texec = net.simple bind(data=data shape)



Mixed Style Training Loop in MXNet

Imperative NDArray can be set as

input nodes to the graph
executor = declarative symbol.bind()

for i in range(3):
train iter.reset()
for dbatch in train iter:
args|["data”][:] = dbatch.data[0]

args|[“softmax_label™][:] = dbatch.label[9] Executor is binded from declarative

executor.forward(is_train=True) program that describes the network
executor.backward()

for key in update keys:
args|[key] -= learning rate * grads|[key]

Imperative parameter update on GPU



Mixed API for Quick Extensions

Various length examples Bucketing

I

— >
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+ Runtime switching between different graphs depending on input
+ Useful for sequence modeling and image size reshaping

Make use of imperative code in python, 10 lines of additional python code



3D Image Construction
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> Dee3D




3D Image Construction
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Need for Parallelization

+ Parallelize workload on multiple GPUs
+ Fine grained parallelization of small kernels
+ Overlap of memory copy with computation

- Streams

Stream 13 - kemelfficat’, iy
Stream 14

Stream 16 - kernelfficatinty | N
Sl )
m:; _@_ L,\/g Fuu_y COncurrent

Stream 19
Stream 20
Stream 21

~| Streams
- Default | | |
- Stream 13
- Stream 14

" E
- Stream 15 ernel... " - *

- Stream 16 L\ng Serlal
- Stream 17

- Stream 18

- Stream 19
- Stream 20




Writing Parallel Programs is Painful

Hard to overlap computation with communication due to dependencies

|s

data[gpuO].copyfrom(data[0:50]) data = next_batch() data[gpuO].copyfrom(data[51:100])

fc2_wgrad[cpu] = fc1[gpul] = FullcForward(data[gpul], fc1 weight[gpuT])

fc1[gpuO] = FullcForward(data[gpuO], fc1 weight[gpuO]) fc2 wgrad[gpuO] + fc2 wgrad[gpuT]
fc2_weight[cpu] -= lr*fc12_wgrad[gpuO] fc2[gpul] = FullcForward(fc1[gpul], fc2 weight[gpul])

fc2[gpuO] = FullcForward(fc1[gpuO], fc2 weight[gpuO])

\

/
\
\
I I‘|\

I
I
\

fc2 weight[cpu].copyto(

fc2 ograd[gpu0] = LossGrad(fc2[gpu0], label[0:50]) fc2 weight[gpu0] , fc2 weight[gpu1]) fc2 ograd[gpul] = LossGrad(fc2[gpu1], label[51:100])

i

fc1 ograd[gpul], fc2 wgrad[gpul] =

fc1 ograd[gpu0], fc2 werad[gpu0] = fc1_wgrad[cpu] =
-ogradlgpu0l, fc2_wgradlgpu0] \ / FullcBackward(fc2 ograd[gpul], fc2 weight[gpul])

FullcBackward(fc2 ograd[gpuO], fc2 weight[gpuO]) fc1_wgrad[gpuO] + fc1_wgrad[gpul]

fc1 weight[cpu] -=lr * fc1 wgrad[gpuO] _, fc1 wgrad[gpul] =

, fc1 wgrad[gpuO] =
_, fcl_wgrad[gpu0] FullcBackward(fc1 ograd[gpul] , fc1 weight[gpul])

FullcBackward(fcl ograd[gpuO], fc1 weight[gpuO])

fc1 weight[cpu].copyto(
fc1 weight[gpuO], fc1 weight[gpul])



Auto Parallelization for Mixed Programs

Write serial programs Run in parallel

>>> 1mport mxnet as mx

>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2
>>> B = A + 1
>>> D =B * C




Auto Parallelization for Mixed Programs

+ Schedules any resources includes array, random number generator

>>> import mxnet as mx

>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2

>>> B = A+ 1

>>> del A

md=RandomGenerator()

>>> import mxnet as mx
>>> A = mx.nd.uniform(shape, 10, -10) ,
>>> B = mx.nd.uniform(shape, 10, -10) md.Uniform(10, -10)

md.Uniform(10,-10)
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Model Parallelism

# Layer 3
‘i;l Layer 2
?‘E‘EI*F Layer



Model Parallelism

P I
‘II: Layer 2



Model Parallelism

Time for one epoch on PTB:

num of GPUs



Data Parallelism

4 4 A 4

E]]ES



Data Parallelism

1. Read a data partition

E]]ES



Data Parallelism

key-value store

1. Read a data partition
2. Pull the parameters

7

examples



Data Parallelism

key-value store

1. Read a data partition
2. Pull the parameters
3. Compute the gradient

7

examples



Data Parallelism

key-value store

Read a data partition
Pull the parameters
Compute the gradient
. Push the gradient

A wN S

7

examples



Data Parallelism

E]]ES

vn W N~

Read a data partition
Pull the parameters
Compute the gradient

. Push the gradient

Update the weight



Implementation

% create executor for each GPU
execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu) ]
% W -= learning rate * grad
kvstore.set updater(..)
% 1terating on data
for dbatch in train iter:
% 1terating on GPUs
for i in range(ngpu):
% read a data partition
copy data slice(dbatch, execs[i])
% pull the parameters
for key 1in update keys:
kvstore.pull(key, execs[i].weight array[key])
% compute the gradient
execs[i].forward(is_train=True)
execs[i].backward()
% push the gradient
for key 1in update keys:
kvstore.push(key, execs[i].grad array[key])



Implementation

% create executor for each GPU
execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu) ]
% W -= learning rate * grad
kvstore.set updater(..)
% 1terating on data
for dbatch in train iter:
% 1terating on GPUs
for i in range(ngpu):
% read a data partition
copy _data slice(dbatch, execs[i])
% pull the parameters
for key 1in update keys:
kvstore.pull(key, execs[i].weight array[key])
% compute the gradient
execs[i].forward(is_train=True)
execs[i].backward()
% push the gradient
for key 1in update keys:
kvstore.push(key, execs[i].grad array[key])

automatic
parallelism for
mixed API



+ IMAGENE T with1.2m images and
1,000 classes

+ 4 x Nvidia GTX 980
+ Google Inception Network




+ IMAGENE T with1.2m images and
1,000 classes

+ 4 x Nvidia GTX 980
+ Google Inception Network

num of GPUs



Distributed Computing

key-value store

4 A 4

examples



Distributed Computing

key-value store

Store data in
examples a distributed filesystem




Distributed Computing

key-value store

multiple
worker machines

Store data in
examples a distributed filesystem



Distributed Computing

multiple
server machines

multiple
worker machines
Store data in
examples a distributed filesystem




Distributed Computing

multiple
server machines

multiple
worker machines
\ ’ read over network
Store datain
examples a distributed filesystem




Distributed Computing

multiple
server machines
push and pull
over network
multiple
worker machines

\ ’ read over network
Store datain
examples a distributed filesystem




Distributed Computing

multiple
server machines

push and pull
over network

multiple
worker machines

’ read over network

o code change
comparing to
single machine

Store data in
examples a distributed filesystem



Distributed Experiments

+ ImageNet with 1.2m images and
1,000 classes

+ AWS EC2 GPU instance, 4 GPUs per
machine

+ Google Inception Network




Distributed Experiments

+ ImageNet with 1.2m images and validation accuracy versus epoch
1,000 classes | |
0.7 single machine
+ AWS EC2 GPU instance, 4 GPUs per 10 machines

machine
0.525

+ Google Inception Network

0.35

accuracy

0.175

0
1 3 5 7 9 12 14 16 18 20

epoch



Distributed Experiments

+ ImageNet with 1.2m images and
1,000 classes

+ AWS EC2 GPU instance, 4 GPUs per
machine

+ Google Inception Network

validation accuracy versus epoch

0.7

0.525

0.35

accuracy

0.175

0

single machine
10 machines

multiple machines
converge faster

single machine
converges faster

1

3

5

/

°© 12 14 16 18 20

epoch



Distributed Experiments

+ ImageNet with 1.2m images and validation accuracy versus epoch
1,000 classes 07 O single machine

+ AWS EC2 GPU instance, 4 GPUs per © 10 machines
machine B

+ Google Inception Network

multiple machines
converge faster

Time for one epoch

accuracy

single machine
converges faster

1 3 5 7 9 12 14 16 18 20

1 10 epoch
num of machines
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Multiple Languages

@ pgaon ’ Scala ﬂ ju“‘é ,‘ JS GO



Multiple Languages

@ python ’ Scala SQ jUIi“a ‘ JS GO
frontend
. backend




Multiple Languages

@ pg%on ’ Scala R juli.'a ‘ JS GO

frontend

backend

single implementation performance guarantee

of backend system and regardless which frontend
common operators language is used




Minpy: MXNet Numpy Package

a NumPy is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only



Minpy: MXNet Numpy Package

ﬂ NumPy is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only

+ Native Numpy Integration

>>> import numpy as np > >>> import minpy as np



Minpy: MXNet Numpy Package

~ 1 NumPy is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only

+ Native Numpy Integration

>>> import numpy as np > >>> import minpy as np

+ Transparent CPU and GPU co-execution

>>> X = np.zeros((10, 20)) # call GPU function
>>> y = np.sort(x) # call CPU function; copy GPU->CPU
>>> z = np.log(y) # call GPU function; copy CPU->GPU



Minpy: MXNet Numpy Package

+ Small operators (Numpy) + Big operators (MXNet)

>>> symbol = mx.symbol.FullyConnected(..)

>>> bigop = minpy.core.function(sigmoid, ..)

>>> def training loss(w, X, y):
pred = bigop(input=x, fc_weight=w)
prob = pred * y + (1 - pred) * (1 - vy)
return -np.sum(np.log(prob))



Minpy: MXNet Numpy Package

+ Small operators (Numpy) + Big operators (MXNet)

>>> symbol = mx.symbol.FullyConnected(..)

>>> bigop = minpy.core.function(sigmoid, ..)

>>> def training loss(w, X, y):
pred = bigop(input=x, fc_weight=w)
prob = pred * y + (1 - pred) * (1 - vy)
return -np.sum(np.log(prob))

+ Imperative style auto-differentiation

>>> grad func = minpy.core.grad and loss(train loss)
>>> dw = grad _fn(w, X, y)



Bring Torch to MXNet

’  Torchis a popular Lua framework for

¢ both scientific computing and deep learning



Bring Torch to MXNet

’  Torchisa popular Lua framework for

¢ Dboth scientific computing and deep learning

+ Tensor Computation

>>> import mxnet as mx

>>> X = mx.th.randn(2, 2, ctx=mx.gpu(0))
>>> y = mx.th.abs(x)

>>> print y.asnumpy()

+ Modules (Layers)

>>> import mxnet as mx
>>> data = mx.symbol.Variable( ‘data’)
>>> fc¢ = mx.symbol.TorchModule(data ©=data,
lua string=‘nn.Linear(784, 128)°,..
mx.symbol.TorchModule(data 0=fc,
lua_string=‘nn.LogSoftMax()"’,..

>>> mlp
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Memory Optimization

Traverse the computation graph to reduce the memory footprint
with linear time complexity

aliveness analysis shared space between
variables

@—>®—0©

sharea and b

NOW a Is
deletable



Results for Deep CNNs

IMAGENET winner neural networks

Training Prediction

B baseline B8 mxnet B baseline B mxnet

memory (GB)

alexnet inception vgg alexnet inception vgg



Neural Art
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Neural Art

1M pixels
GTX 980Tl 6G

in 20x speed
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Train on the Cloud

Consume data from
distributed filesystems

ihadmmp HDFS

amazon S3

webservices

g Microsot  Blob
Sl Azure

multithreaded read/write
to hide network latency



Train on the Cloud

Consume data from
distributed filesystems

:hadmtap HDFS

amazon S3

webservices

g Microsot  Blob
Sl Azure

multithreaded read/write
to hide network latency

Launch distributed jobs

o W%
WD Pt

SSH

2) M

GRID ENGINE  qsub
f .
\ /A V. Yarn

easily extend to other cluster
resource management software



Deploy Everywhere
Beyond é " =.
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source file
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Deploy Everywhere

.
H

Beyond Q
Amalgamation '
+ Fit the core library with all

dependencies into a single C++
source file

+ Easy to compile on

BlindTool by Joseph Paul Cohen, demo on Nexus 4

Runs in browser
with Javascript

® ® / MXNetJS: Deep Learning Classific... * | =

4 o

webdocs.cs.ualberta.ca/~bx3/ (6 Q. Search »

MXNetJS: Deep Learning
Classification on Browser

http://g-ecx.images-amz Image URL Classify the Image

start... prediction... this can take a while
finished prediction...
Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs




Deploy Everywhere

Beyond Q . ,
N l Runs in browser
+ Fit the core library with all
dependencies into a single C++  e——

with Javascript
source file webdooscousbertacaioy | @ § Q Search >

MXNetJS: Deep Learning
Classification on Browser

http://g-ecx.images-amz Image URL Classify the Image

Amalgamation

4+ Easy to compile on The first image for

search "dog” at
images.google.com
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start... prediction... this can take a while
finished prediction...
Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

BlindTool by Joseph Paul Cohen, demo on Nexus 4
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Deploy Everywhere

Beyond Q . ,
N l Runs in browser
+ Fit the core library with all
dependencies into a single C++  e——

with Javascript
source file webdooscousbertacaioy | @ § Q Search >

MXNetJS: Deep Learning
Classification on Browser

http://g-ecx.images-amz Image URL Classify the Image

Amalgamation

4+ Easy to compile on The first image for

search "dog” at
images.google.com

Outputs “"beagle” e
with prob = 73% Wl b, W,
within 1 sec ——

start... prediction... this can take a while
finished prediction...
Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

BlindTool by Joseph Paul Cohen, demo on Nexus 4
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TX1 on Flying Drone
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TX1on Flying Drone

O
AEVENA 7% | Simple

TX1 with customized board Realtime detection and tracking on TXT
~10 frame/sec with 640x480 resolution
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Go mxnet.dmlc.ml to Get Started

O ® @MXNet Documents
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