MXNet: Flexible and Efficient Library
for Deep Learning

from Distributed GPU Clusters to Embedded Systems

Tiangi Chen Mu Li

W Carnegie

UNIVERSITY of Mellon
WASHINGTON University

Deep Learning

Learns multiple levels of representations of data
Significantly improve many applications on multiple domains

image understanding speech recognition natural language processing

L5 b Click on the image if you hink Rt is comect (a greon frame will com speedwell, Veronica arvensis -~ (erect 3 a & - ~
T appear), and twice If It is weong. For images that you se not suse | or procumbent blue-flowered annual found [| — nand = L3
bave the biack fame axund the Image } In waste places of Eurcpe and America) i’) stanaaruv é E
Wikipedia: open wikipedia page 2 cowan el 5
| Average Image & | {Or =)0 UUO”'H" : Q.)W 0 rd
: HLUINCE axamnle % Engli ||nf0|'mat|0n s2 S Stems Inp U
- LT =
ns a Ion Edlt Q: 8 (Ddlffercnt rUI S :% corpora U) C
e & &P ’_‘ ‘QO emantics —tl
asks=2 ELEER BV al L Ation S5
S.C =S = J
; Gt _g Given P_.:OQ_ — | ametie S, g g
f 5 hunk™ <2 A & 8 = earnlng_ > |§
=4 g .g ﬂf " ‘\1 - — T a S
5§ gleten s g Z 5 natu'al sresearch 'E i
; 5 - S QD eamnaggr
& B C w] C ¥ entiaes
£ gmndelsg - a’ 35§

Image classification

multilevel feature extractions from raw pixels

to semantic meanings

-

*
| —
| [)

-

l Ir-= '

F<

: \I.:\\~§§§ | .02

. o I .

P —, | .85
| "L—
| / .
| S—
J=

>

-/

p(cat)
p(dog)

Layer1 Layer2 Output

explore spatial information with convolution layers

Image Classification

State-of-the-art networks have tens to hundreds layers

'T*
| } . E 'E
; < _ g . 85 0. B 0. B 0. AR 14 i
i 2
A 2| pleal) 14 Byl 5 fy 88 8y 89 8y 88 Syuiagsn H
*"> s pldog E> S T CHRS SRR P S SR ST A “HE
| = 3 | & R fa Ba 48 148 Bgoa -
==

4+ Hard to define the network

< the definition of the inception network has >1k lines of codes in Caffe

+ A single image requires billions floating-point operations

" Intel i7 ~500 GFLOPS

+ @ Nvidia Titan X: ~5 TFLOPS
+ Memory consumption is linear with number of layers

Language Modeling

output hello world !

recurrent
state

neural networks:
input <go> hello world

+ Variable length of input and output sequences
+ State-of-the-art networks have many layers

< Billions of floating-point operations per sentence

<« Memory consumption is linear with both sequence length and
number of layers

MXNet Highlights
« Efficiency # Portability

ILIT

SA8/23222233000A0000000

NVIDIA

|
|
Inception 7a

1 E7 B

= e

= s

B

14444

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Deep Learning Workflow

Computational Graph
of the Deep Architecture

forward backword
input dinput
fullc o fullc

sigmoid o sigmoid
fullc o fullc

softmax 0 softmax

loss label

Oe—

Deep Learning Workflow

Computational Graph
of the Deep Architecture

forward

input
fullc
sigmoid
fullc

softmax

loss

v\ £

. 4

ik

é
‘1'\'1‘

. 4
. 4

—>

&

ik
ik

backword
d input

o fullc

o sigmoid
o fullc

0 softmax

label

Updates and Interactions
with the graph

+ Parameter update
4+ Beam search
+ Feature extraction ...

w =w -n of(w)

+ Involves high dimensional array(tensor)
operations in both direction

+ How to program a typical DL application?

Imperative Programs

+ Execute operations step by step.
+ ¢ = b X ainvokes a kernel operation

+ Numpy programs are imperative

-

pUthon

import numpy as np

a

b
C
d

np.ones(10)
np.ones(10) * 2
b * a

c + 1

Declarative Programs

A B
N
Variable('A")
Variable('B") \+/

B * A

C + 1

compile(D)

f(A=np.ones(10), B=np.ones(10)*2)

+ Declares the computation

+ Compiles into a function

+ C =B X A only specifies the
requirement

+ SQL is declarative

Q +H O N ™ P>
1l

Imperative vs. Declarative Programs

+ Imperative programs are straightforward and flexible.
+ Take advantage of language native features (loop, condition)

A B
Variable('A") \ /

import numpy as np A =

a = np.ones(10) B = Variable('B") X T

b = np.ones(10) * 2 C=B*A \ /

c =b * a D =C+ 1 u

print(c) f = compile(D)

d=c+ 1 d = f(A=np.ones(10), B=np.ones(10)*2)

Easy to tweak
with python
codes

Imperative vs. Declarative Programs

+ Declarative programs see the entire graph
+ More chances for optimization
+ Easy to save and load the computation structure

Which program uses less memory to obtain d?

import numpy as np A = Variable('A") A
a = np.ones(10) B = Variable('B") ‘\N u//
b = np.ones(10) * 2 C=B*A
c=b *a D =C + 1 \/
d=c+ 1 f & compile(D)
d {{ f(A=np.ones(10), B=np.ones(10)*2)

¢ cannot share memory with d,

because it could be used in future C can share memory with D,

because C cannot be seen by user

Imperative vs. Declarative for Deep Learning

Computational Graph Updates and Interactions
of the Deep Architecture with the graph
forward backword + Parameter update

\g 4+ Beam search

4+ Feature extraction ...
> wr
- w =w - n of(w)
—() <~

OO
Needs mutation and more
Needs heavy optimization, language native features, good for
fits declarative programs imperative programs

MXNet: Mix the Flavors Together

>>> import mxnet as mx
mx.nd.zeros((100, 50))

Imperative
NDArray API

Declarative
Symbolic Executor

>>2>

>>> a.shape

d =

(100L, 50L)
mx.nd.ones((100, 50))
a + b

>>>
>>>
>>>

>>2>

b
C =
b +=

C

import mxnet as mx

>>> net = mx.symbol.Variable('data')

>>> net = mx.symbol.FullyConnected(data=net, num hidden=128)
>>> net = mx.symbol.SoftmaxOutput(data=net)

>>> type(net)

<class ‘mxnet.symbol.Symbol’>

>>> texec = net.simple bind(data=data shape)

Mixed Style Training Loop in MXNet

Imperative NDArray can be set as

input nodes to the graph
executor = declarative symbol.bind()

for i in range(3):
train iter.reset()
for dbatch in train iter:
args|["data”][:] = dbatch.data[0]

args|[“softmax_label™][:] = dbatch.label[9] Executor is binded from declarative

executor.forward(is_train=True) program that describes the network
executor.backward()

for key in update keys:
args|[key] -= learning rate * grads|[key]

Imperative parameter update on GPU

Mixed API for Quick Extensions

Various length examples Bucketing

I

— >

[
]
[

+ Runtime switching between different graphs depending on input
+ Useful for sequence modeling and image size reshaping

Make use of imperative code in python, 10 lines of additional python code

3D Image Construction

<
&

> Dee3D

3D Image Construction

<
&

> Dee3D

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Need for Parallelization

+ Parallelize workload on multiple GPUs
+ Fine grained parallelization of small kernels
+ Overlap of memory copy with computation

- Streams

Stream 13 - kemelfficat’, iy
Stream 14

Stream 16 - kernelfficatinty | N
Sl)
m:; _@_ L,\/g Fuu_y COncurrent

Stream 19
Stream 20
Stream 21

~| Streams
- Default | | |
- Stream 13
- Stream 14

" E
- Stream 15 ernel... " - *

- Stream 16 L\ng Serlal
- Stream 17

- Stream 18

- Stream 19
- Stream 20

Writing Parallel Programs is Painful

Hard to overlap computation with communication due to dependencies

|s

data[gpuO].copyfrom(data[0:50]) data = next_batch() data[gpuO].copyfrom(data[51:100])

fc2_wgrad[cpu] = fc1[gpul] = FullcForward(data[gpul], fc1 weight[gpuT])

fc1[gpuO] = FullcForward(data[gpuO], fc1 weight[gpuO]) fc2 wgrad[gpuO] + fc2 wgrad[gpuT]
fc2_weight[cpu] -= lr*fc12_wgrad[gpuO] fc2[gpul] = FullcForward(fc1[gpul], fc2 weight[gpul])

fc2[gpuO] = FullcForward(fc1[gpuO], fc2 weight[gpuO])

\

/
\
\
I I‘|\

I
I
\

fc2 weight[cpu].copyto(

fc2 ograd[gpu0] = LossGrad(fc2[gpu0], label[0:50]) fc2 weight[gpu0] , fc2 weight[gpu1]) fc2 ograd[gpul] = LossGrad(fc2[gpu1], label[51:100])

i

fc1 ograd[gpul], fc2 wgrad[gpul] =

fc1 ograd[gpu0], fc2 werad[gpu0] = fc1_wgrad[cpu] =
-ogradlgpu0l, fc2_wgradlgpu0] \ / FullcBackward(fc2 ograd[gpul], fc2 weight[gpul])

FullcBackward(fc2 ograd[gpuO], fc2 weight[gpuO]) fc1_wgrad[gpuO] + fc1_wgrad[gpul]

fc1 weight[cpu] -=lr * fc1 wgrad[gpuO] _, fc1 wgrad[gpul] =

, fc1 wgrad[gpuO] =
_, fcl_wgrad[gpu0] FullcBackward(fc1 ograd[gpul] , fc1 weight[gpul])

FullcBackward(fcl ograd[gpuO], fc1 weight[gpuO])

fc1 weight[cpu].copyto(
fc1 weight[gpuO], fc1 weight[gpul])

Auto Parallelization for Mixed Programs

Write serial programs Run in parallel

>>> 1mport mxnet as mx

>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2
>>> B = A + 1
>>> D =B * C

Auto Parallelization for Mixed Programs

+ Schedules any resources includes array, random number generator

>>> import mxnet as mx

>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2

>>> B = A+ 1

>>> del A

md=RandomGenerator()

>>> import mxnet as mx
>>> A = mx.nd.uniform(shape, 10, -10) ,
>>> B = mx.nd.uniform(shape, 10, -10) md.Uniform(10, -10)

md.Uniform(10,-10)

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Model Parallelism

Layer 3
‘i;l Layer 2
?‘E‘EI*F Layer

Model Parallelism

P I
‘II: Layer 2

Model Parallelism

Time for one epoch on PTB:

num of GPUs

Data Parallelism

4 4 A 4

E]]ES

Data Parallelism

1. Read a data partition

E]]ES

Data Parallelism

key-value store

1. Read a data partition
2. Pull the parameters

7

examples

Data Parallelism

key-value store

1. Read a data partition
2. Pull the parameters
3. Compute the gradient

7

examples

Data Parallelism

key-value store

Read a data partition
Pull the parameters
Compute the gradient
. Push the gradient

A wN S

7

examples

Data Parallelism

E]]ES

vn W N~

Read a data partition
Pull the parameters
Compute the gradient

. Push the gradient

Update the weight

Implementation

% create executor for each GPU
execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu)]
% W -= learning rate * grad
kvstore.set updater(..)
% 1terating on data
for dbatch in train iter:
% 1terating on GPUs
for i in range(ngpu):
% read a data partition
copy data slice(dbatch, execs[i])
% pull the parameters
for key 1in update keys:
kvstore.pull(key, execs[i].weight array[key])
% compute the gradient
execs[i].forward(is_train=True)
execs[i].backward()
% push the gradient
for key 1in update keys:
kvstore.push(key, execs[i].grad array[key])

Implementation

% create executor for each GPU
execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu)]
% W -= learning rate * grad
kvstore.set updater(..)
% 1terating on data
for dbatch in train iter:
% 1terating on GPUs
for i in range(ngpu):
% read a data partition
copy _data slice(dbatch, execs[i])
% pull the parameters
for key 1in update keys:
kvstore.pull(key, execs[i].weight array[key])
% compute the gradient
execs[i].forward(is_train=True)
execs[i].backward()
% push the gradient
for key 1in update keys:
kvstore.push(key, execs[i].grad array[key])

automatic
parallelism for
mixed API

+ IMAGENE T with1.2m images and
1,000 classes

+ 4 x Nvidia GTX 980
+ Google Inception Network

+ IMAGENE T with1.2m images and
1,000 classes

+ 4 x Nvidia GTX 980
+ Google Inception Network

num of GPUs

Distributed Computing

key-value store

4 A 4

examples

Distributed Computing

key-value store

Store data in
examples a distributed filesystem

Distributed Computing

key-value store

multiple
worker machines

Store data in
examples a distributed filesystem

Distributed Computing

multiple
server machines

multiple
worker machines
Store data in
examples a distributed filesystem

Distributed Computing

multiple
server machines

multiple
worker machines
\ ’ read over network
Store datain
examples a distributed filesystem

Distributed Computing

multiple
server machines
push and pull
over network
multiple
worker machines

\ ’ read over network
Store datain
examples a distributed filesystem

Distributed Computing

multiple
server machines

push and pull
over network

multiple
worker machines

’ read over network

o code change
comparing to
single machine

Store data in
examples a distributed filesystem

Distributed Experiments

+ ImageNet with 1.2m images and
1,000 classes

+ AWS EC2 GPU instance, 4 GPUs per
machine

+ Google Inception Network

Distributed Experiments

+ ImageNet with 1.2m images and validation accuracy versus epoch
1,000 classes | |
0.7 single machine
+ AWS EC2 GPU instance, 4 GPUs per 10 machines

machine
0.525

+ Google Inception Network

0.35

accuracy

0.175

0
1 3 5 7 9 12 14 16 18 20

epoch

Distributed Experiments

+ ImageNet with 1.2m images and
1,000 classes

+ AWS EC2 GPU instance, 4 GPUs per
machine

+ Google Inception Network

validation accuracy versus epoch

0.7

0.525

0.35

accuracy

0.175

0

single machine
10 machines

multiple machines
converge faster

single machine
converges faster

1

3

5

/

°© 12 14 16 18 20

epoch

Distributed Experiments

+ ImageNet with 1.2m images and validation accuracy versus epoch
1,000 classes 07 O single machine

+ AWS EC2 GPU instance, 4 GPUs per © 10 machines
machine B

+ Google Inception Network

multiple machines
converge faster

Time for one epoch

accuracy

single machine
converges faster

1 3 5 7 9 12 14 16 18 20

1 10 epoch
num of machines

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Multiple Languages

@ pgaon ’ Scala ﬂ ju“‘é ,‘ JS GO

Multiple Languages

@ python ’ Scala SQ jUIi“a ‘ JS GO
frontend
. backend

Multiple Languages

@ pg%on ’ Scala R juli.'a ‘ JS GO

frontend

backend

single implementation performance guarantee

of backend system and regardless which frontend
common operators language is used

Minpy: MXNet Numpy Package

a NumPy is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only

Minpy: MXNet Numpy Package

ﬂ NumPy is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only

+ Native Numpy Integration

>>> import numpy as np > >>> import minpy as np

Minpy: MXNet Numpy Package

~ 1 NumPy is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only

+ Native Numpy Integration

>>> import numpy as np > >>> import minpy as np

+ Transparent CPU and GPU co-execution

>>> X = np.zeros((10, 20)) # call GPU function
>>> y = np.sort(x) # call CPU function; copy GPU->CPU
>>> z = np.log(y) # call GPU function; copy CPU->GPU

Minpy: MXNet Numpy Package

+ Small operators (Numpy) + Big operators (MXNet)

>>> symbol = mx.symbol.FullyConnected(..)

>>> bigop = minpy.core.function(sigmoid, ..)

>>> def training loss(w, X, y):
pred = bigop(input=x, fc_weight=w)
prob = pred * y + (1 - pred) * (1 - vy)
return -np.sum(np.log(prob))

Minpy: MXNet Numpy Package

+ Small operators (Numpy) + Big operators (MXNet)

>>> symbol = mx.symbol.FullyConnected(..)

>>> bigop = minpy.core.function(sigmoid, ..)

>>> def training loss(w, X, y):
pred = bigop(input=x, fc_weight=w)
prob = pred * y + (1 - pred) * (1 - vy)
return -np.sum(np.log(prob))

+ Imperative style auto-differentiation

>>> grad func = minpy.core.grad and loss(train loss)
>>> dw = grad _fn(w, X, y)

Bring Torch to MXNet

’ Torchis a popular Lua framework for

¢ both scientific computing and deep learning

Bring Torch to MXNet

’ Torchisa popular Lua framework for

¢ Dboth scientific computing and deep learning

+ Tensor Computation

>>> import mxnet as mx

>>> X = mx.th.randn(2, 2, ctx=mx.gpu(0))
>>> y = mx.th.abs(x)

>>> print y.asnumpy()

+ Modules (Layers)

>>> import mxnet as mx
>>> data = mx.symbol.Variable(‘data’)
>>> fc¢ = mx.symbol.TorchModule(data ©=data,
lua string=‘nn.Linear(784, 128)°,..
mx.symbol.TorchModule(data 0=fc,
lua_string=‘nn.LogSoftMax()"’,..

>>> mlp

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Memory Optimization

Traverse the computation graph to reduce the memory footprint
with linear time complexity

aliveness analysis shared space between
variables

@—>®—0©

sharea and b

NOW a Is
deletable

Results for Deep CNNs

IMAGENET winner neural networks

Training Prediction

B baseline B8 mxnet B baseline B mxnet

memory (GB)

alexnet inception vgg alexnet inception vgg

Neural Art

>y

.~

EANN

l
s J

Neural Art

1M pixels
GTX 980Tl 6G

in 20x speed

MXNet Highlights
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Train on the Cloud

Consume data from
distributed filesystems

ihadmmp HDFS

amazon S3

webservices

g Microsot Blob
Sl Azure

multithreaded read/write
to hide network latency

Train on the Cloud

Consume data from
distributed filesystems

:hadmtap HDFS

amazon S3

webservices

g Microsot Blob
Sl Azure

multithreaded read/write
to hide network latency

Launch distributed jobs

o W%
WD Pt

SSH

2) M

GRID ENGINE qsub
f .
\ /A V. Yarn

easily extend to other cluster
resource management software

Deploy Everywhere
Beyond é " =.

Deploy Everywhere

R d M I
eyond & —

Amalgamation

+ Fit the core library with all
dependencies into a single C++
source file

+ Easy to compile on

Deploy Everywhere

Bevond =
s) 6 B

Amalgamation

+ Fit the core library with all
dependencies into a single C++
source file

+ Easy to compile on

BlindTool by Joseph Paul Cohen, demo on Nexus 4

Deploy Everywhere

.
H

Beyond Q
Amalgamation '
+ Fit the core library with all

dependencies into a single C++
source file

+ Easy to compile on

BlindTool by Joseph Paul Cohen, demo on Nexus 4

Runs in browser
with Javascript

® ® / MXNetJS: Deep Learning Classific... * | =

4 o

webdocs.cs.ualberta.ca/~bx3/ (6 Q. Search »

MXNetJS: Deep Learning
Classification on Browser

http://g-ecx.images-amz Image URL Classify the Image

start... prediction... this can take a while
finished prediction...
Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

Deploy Everywhere

Beyond Q . ,
N l Runs in browser
+ Fit the core library with all
dependencies into a single C++ e——

with Javascript
source file webdooscousbertacaioy | @ § Q Search >

MXNetJS: Deep Learning
Classification on Browser

http://g-ecx.images-amz Image URL Classify the Image

Amalgamation

4+ Easy to compile on The first image for

search "dog” at
images.google.com

!
\ - . .
- 4 : . :

"' ‘ y ._ V' ’ ‘)

\\\ . '.__ .‘_\.v AL : .. 3
. R A \ ' o CARY A 0O

» e N i4 X,) 5 Y5

y e\ A' .-' . N . y i,‘ Tl :)
PUES N VN NG A b e

start... prediction... this can take a while
finished prediction...
Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

BlindTool by Joseph Paul Cohen, demo on Nexus 4

http://images.google.com

Deploy Everywhere

Beyond Q . ,
N l Runs in browser
+ Fit the core library with all
dependencies into a single C++ e——

with Javascript
source file webdooscousbertacaioy | @ § Q Search >

MXNetJS: Deep Learning
Classification on Browser

http://g-ecx.images-amz Image URL Classify the Image

Amalgamation

4+ Easy to compile on The first image for

search "dog” at
images.google.com

Outputs “"beagle” e
with prob = 73% Wl b, W,
within 1 sec ——

start... prediction... this can take a while
finished prediction...
Top-1: n02088364 beagle, value=0.7355721592903137, time-cost=0.927secs

BlindTool by Joseph Paul Cohen, demo on Nexus 4

http://images.google.com

TX1 on Flying Drone

O
AEVENA ERRLJsimple

TX1with customized board

TX1on Flying Drone

O
AEVENA 7% | Simple

TX1 with customized board Realtime detection and tracking on TXT
~10 frame/sec with 640x480 resolution

Conclusion
m Flexibility # Efficiency £ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing
Language Supports

Memory Optimization

Runs Everywhere

Acknowledgement

MXNet is developed by over 100 collaborators

Major Developers

Advisors

Hardware and
software supports

Bing Xu Eric Xie Chiyuan Zhang Minjie Wang
Dato U Washington MIT NYU

Naiyan Wang Yizhi Liu Tianjun Xiao Yutian Li

TuSimple MediaV Microsoft Standford

Yuan Tang Qian Kou Min Lin Chutao Hong

Uptake Indiana University Qihoo360 Microsoft
Tong He Hu Shiwen
Simon Fraser University Shanghai

Zheng Zhang AlexSmola Carlos Guestrin
NYU Shanghai CcMU U Washington

<3

NVIDIA.

Go mxnet.dmlc.ml to Get Started

O ® @MXNet Documents

& = C | | mxnet.dmlic.ml

@xnet

=
i

Flexible and Efficient Library for Deep Learning

O star § 3,142 i O Fork | 1,080

