
MXNet: Flexible and Efficient Library
for Deep Learning

Tianqi Chen
Carnegie
Mellon
University

from Distributed GPU Clusters to Embedded Systems

Mu Li

Deep Learning
Learns multiple levels of representations of data
Significantly improve many applications on multiple domains

“deep learning” trend in the past 10 years

image understanding speech recognition natural language processing

…

Image classification

Layer 1 Layer 2 Output

multilevel feature extractions from raw pixels
to semantic meanings

.

.
.02
.

.85
.
.

 p(cat)
 p(dog)

explore spatial information with convolution layers

Image Classification

✦ Hard to define the network
❖ the definition of the inception network has >1k lines of codes in Caffe

✦ A single image requires billions floating-point operations
❖ Intel i7 ~500 GFLOPS
❖ Nvidia Titan X: ~5 TFLOPS

✦ Memory consumption is linear with number of layers

.

.
.02
.

.85
.
.

 p(cat)
 p(dog)

State-of-the-art networks have tens to hundreds layers

Language Modeling

✦ Variable length of input and output sequences
✦ State-of-the-art networks have many layers
❖ Billions of floating-point operations per sentence
❖ Memory consumption is linear with both sequence length and

number of layers

<go> hello

hello world

input

output

state
world

!

recurrent
neural networks:

MXNet Highlights
Flexibility Efficiency Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Flexibility Efficiency Portability
MXNet Highlights

MXNet Highlights

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Deep Learning Workflow
Computational Graph

of the Deep Architecture

input

fullc

fullc

sigmoid

softmax

loss

∂ softmax

∂ fullc

∂ sigmoid

∂ fullc

∂ input

label

forward backword

Deep Learning Workflow
Computational Graph

of the Deep Architecture

input

fullc

fullc

sigmoid

softmax

loss

∂ softmax

∂ fullc

∂ sigmoid

∂ fullc

∂ input

label

forward backword ✦ Parameter update
✦ Beam search
✦ Feature extraction …

Updates and Interactions
with the graph

w = w - η ∂f(w)

✦ Involves high dimensional array(tensor)
operations in both direction

✦ How to program a typical DL application?

Imperative Programs

✦ Execute operations step by step.
✦ c = b ⨉ a invokes a kernel operation
✦ Numpy programs are imperative

import	numpy	as	np	
a	=	np.ones(10)	
b	=	np.ones(10)	*	2	
c	=	b	*	a	
d	=	c	+	1	

Declarative Programs

✦ Declares the computation
✦ Compiles into a function
✦ C = B ⨉ A only specifies the

requirement
✦ SQL is declarative

A	=	Variable('A')
B	=	Variable('B')
C	=	B	*	A
D	=	C	+	1
f	=	compile(D)
d	=	f(A=np.ones(10),	B=np.ones(10)*2)	

A B

1

+

⨉

Imperative vs. Declarative Programs

✦ Imperative programs are straightforward and flexible.
✦ Take advantage of language native features (loop, condition)

import	numpy	as	np	
a	=	np.ones(10)	
b	=	np.ones(10)	*	2	
c	=	b	*	a	
print(c)	
d	=	c	+	1	

A	=	Variable('A')
B	=	Variable('B')
C	=	B	*	A
D	=	C	+	1
f	=	compile(D)
d	=	f(A=np.ones(10),	B=np.ones(10)*2)	

A B

1

+

⨉

Easy to tweak
with python

codes

Imperative vs. Declarative Programs
✦ Declarative programs see the entire graph
✦ More chances for optimization
✦ Easy to save and load the computation structure

import	numpy	as	np	
a	=	np.ones(10)	
b	=	np.ones(10)	*	2	
c	=	b	*	a	
d	=	c	+	1	

A	=	Variable('A')
B	=	Variable('B')
C	=	B	*	A
D	=	C	+	1
f	=	compile(D)
d	=	f(A=np.ones(10),	B=np.ones(10)*2)	

A B

1

+

⨉

Which program uses less memory to obtain d?

c cannot share memory with d,
because it could be used in future C can share memory with D,

because C cannot be seen by user

Imperative vs. Declarative for Deep Learning
Computational Graph

of the Deep Architecture
forward backword

Needs heavy optimization,
 fits declarative programs

Needs mutation and more
language native features, good for

imperative programs

Updates and Interactions
with the graph

✦ Parameter update
✦ Beam search
✦ Feature extraction …

w = w - η ∂f(w)

MXNet: Mix the Flavors Together

Imperative
NDArray API

Declarative
Symbolic Executor

>>>	import	mxnet	as	mx
>>>	a	=	mx.nd.zeros((100,	50))
>>>	a.shape
(100L,	50L)
>>>	b	=	mx.nd.ones((100,	50))
>>>	c	=	a	+	b
>>>	b	+=	c	

>>>	import	mxnet	as	mx	
>>>	net	=	mx.symbol.Variable('data')
>>>	net	=	mx.symbol.FullyConnected(data=net,	num_hidden=128)	
>>>	net	=	mx.symbol.SoftmaxOutput(data=net)
>>>	type(net)
<class	‘mxnet.symbol.Symbol’>	
>>>	texec	=	net.simple_bind(data=data_shape)

Mixed Style Training Loop in MXNet

executor	=	declarative_symbol.bind()	
for	i	in	range(3):	
				train_iter.reset()			
				for	dbatch	in	train_iter:
								args["data"][:]	=	dbatch.data[0]
								args["softmax_label"][:]	=	dbatch.label[0]	
								executor.forward(is_train=True)	
								executor.backward()									
				for	key	in	update_keys:	
								args[key]	-=	learning_rate	*	grads[key]	

Imperative NDArray can be set as
input nodes to the graph

Executor is binded from declarative
program that describes the network

Imperative parameter update on GPU

Mixed API for Quick Extensions

✦ Runtime switching between different graphs depending on input
✦ Useful for sequence modeling and image size reshaping

Bucketing

Make use of imperative code in python, 10 lines of additional python code

Various length examples

3D Image Construction

Dee3D

100 lines of Python codes

3D Image Construction

Dee3D

100 lines of Python codes

MXNet Highlights

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Need for Parallelization

✦ Parallelize workload on multiple GPUs
✦ Fine grained parallelization of small kernels
✦ Overlap of memory copy with computation

Fully concurrent

Serial👎

👍

Writing Parallel Programs is Painful
Hard to overlap computation with communication due to dependencies

data = next_batch()data[gpu0].copyfrom(data[0:50])

_, fc1_wgrad[gpu0] =
FullcBackward(fc1_ograd[gpu0] , fc1_weight[gpu0])

fc1_ograd[gpu0], fc2_wgrad[gpu0] =
FullcBackward(fc2_ograd[gpu0] , fc2_weight[gpu0])

fc2_ograd[gpu0] = LossGrad(fc2[gpu0], label[0:50])

fc2[gpu0] = FullcForward(fc1[gpu0], fc2_weight[gpu0])

fc1[gpu0] = FullcForward(data[gpu0], fc1_weight[gpu0])
fc2_wgrad[cpu] =

 fc2_wgrad[gpu0] + fc2_wgrad[gpu1]

fc2_weight[cpu].copyto(
 fc2_weight[gpu0] , fc2_weight[gpu1])

fc2_weight[cpu] -= lr*fc12_wgrad[gpu0]

fc1_weight[cpu] -= lr * fc1_wgrad[gpu0]

fc1_wgrad[cpu] =
 fc1_wgrad[gpu0] + fc1_wgrad[gpu1]

fc1_weight[cpu].copyto(
 fc1_weight[gpu0] , fc1_weight[gpu1])

data[gpu0].copyfrom(data[51:100])

_, fc1_wgrad[gpu1] =
FullcBackward(fc1_ograd[gpu1] , fc1_weight[gpu1])

fc1_ograd[gpu1], fc2_wgrad[gpu1] =
FullcBackward(fc2_ograd[gpu1] , fc2_weight[gpu1])

fc2_ograd[gpu1] = LossGrad(fc2[gpu1], label[51:100])

fc2[gpu1] = FullcForward(fc1[gpu1], fc2_weight[gpu1])

fc1[gpu1] = FullcForward(data[gpu1], fc1_weight[gpu1])

Auto Parallelization for Mixed Programs

Write serial programs Run in parallel

>>>	import	mxnet	as	mx
>>>	A	=	mx.nd.ones((2,2))	*2
>>>	C	=	A	+	2
>>>	B	=	A	+	1	
>>>	D	=	B	*	C	

A = 2

C = A + 2 B = A + 1

D = B ⨉ C

Auto Parallelization for Mixed Programs

>>>	import	mxnet	as	mx
>>>	A	=	mx.nd.ones((2,2))	*2
>>>	C	=	A	+	2
>>>	B	=	A	+	1	
>>>	del	A	

A = 2

C = A + 2 B = A + 1

A.__del__()

>>>	import	mxnet	as	mx
>>>	A	=	mx.nd.uniform(shape,	10,	-10)	
>>>	B	=	mx.nd.uniform(shape,	10,	-10)

md=RandomGenerator()

md.Uniform(10, -10)

md.Uniform(10,-10)

✦ Schedules any resources includes array, random number generator

MXNet Highlights

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Model Parallelism

Layer 1

Layer 2

Layer 3

Model Parallelism

Layer 1

Layer 2

Layer 3

Model Parallelism

se
c

0
100
200
300
400

num of GPUs

1 2 4

2.1x

Time for one epoch on PTB:

Layer 1

Layer 2

Layer 3

Data Parallelism

examples

Data Parallelism

examples

1. Read a data partition

Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters

Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters
3. Compute the gradient

Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters
3. Compute the gradient
4. Push the gradient

Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters
3. Compute the gradient
4. Push the gradient
5. Update the weight

Implementation
%	create	executor	for	each	GPU	
execs	=	[symbol.bind(mx.gpu(i))	for	i	in	range(ngpu)]	
%	w	-=	learning_rate	*	grad	
kvstore.set_updater(…)	
%	iterating	on	data		
for	dbatch	in	train_iter:	
				%	iterating	on	GPUs	
				for	i	in	range(ngpu):	
								%	read	a	data	partition	
								copy_data_slice(dbatch,	execs[i])	
								%	pull	the	parameters
								for	key	in	update_keys:	
												kvstore.pull(key,	execs[i].weight_array[key])	
								%	compute	the	gradient	
								execs[i].forward(is_train=True)	
								execs[i].backward()									
								%	push	the	gradient	
								for	key	in	update_keys:	
												kvstore.push(key,	execs[i].grad_array[key])	
			

Implementation
%	create	executor	for	each	GPU	
execs	=	[symbol.bind(mx.gpu(i))	for	i	in	range(ngpu)]	
%	w	-=	learning_rate	*	grad	
kvstore.set_updater(…)	
%	iterating	on	data		
for	dbatch	in	train_iter:	
				%	iterating	on	GPUs	
				for	i	in	range(ngpu):	
								%	read	a	data	partition	
								copy_data_slice(dbatch,	execs[i])	
								%	pull	the	parameters
								for	key	in	update_keys:	
												kvstore.pull(key,	execs[i].weight_array[key])	
								%	compute	the	gradient	
								execs[i].forward(is_train=True)	
								execs[i].backward()									
								%	push	the	gradient	
								for	key	in	update_keys:	
												kvstore.push(key,	execs[i].grad_array[key])	
			

automatic
parallelism for

mixed API

Results
✦ with 1.2m images and

1,000 classes
✦ 4 x Nvidia GTX 980
✦ Google Inception Network

Results
✦ with 1.2m images and

1,000 classes
✦ 4 x Nvidia GTX 980
✦ Google Inception Network

ho
ur

0
1
2
3
4

num of GPUs

1 2 4

3.7xTime for one epoch:

examples

Distributed Computing

key-value store

examples

Distributed Computing

key-value store

examples
Store data in

a distributed filesystem

examples

Distributed Computing

key-value store

multiple
worker machines

examples
Store data in

a distributed filesystem

examples

Distributed Computing

multiple
worker machines

examples
Store data in

a distributed filesystem

multiple
server machines

examples

Distributed Computing

multiple
worker machines

examples
Store data in

a distributed filesystem

multiple
server machines

read over network

examples

Distributed Computing

multiple
worker machines

examples
Store data in

a distributed filesystem

multiple
server machines

push and pull  
over network

read over network

examples

Distributed Computing

multiple
worker machines

examples
Store data in

a distributed filesystem

multiple
server machines

push and pull  
over network

read over network

No code change
comparing to

single machine

Distributed Experiments
✦ ImageNet with 1.2m images and

1,000 classes
✦ AWS EC2 GPU instance, 4 GPUs per

machine
✦ Google Inception Network

Distributed Experiments

ac
cu

ra
cy

0

0.175

0.35

0.525

0.7

epoch
1 3 5 7 9 12 14 16 18 20

single machine
10 machines

validation accuracy versus epoch✦ ImageNet with 1.2m images and
1,000 classes

✦ AWS EC2 GPU instance, 4 GPUs per
machine

✦ Google Inception Network

Distributed Experiments

ac
cu

ra
cy

0

0.175

0.35

0.525

0.7

epoch
1 3 5 7 9 12 14 16 18 20

single machine
10 machines

validation accuracy versus epoch✦ ImageNet with 1.2m images and
1,000 classes

✦ AWS EC2 GPU instance, 4 GPUs per
machine

✦ Google Inception Network

single machine
converges faster

multiple machines
converge faster

Distributed Experiments

ac
cu

ra
cy

0

0.175

0.35

0.525

0.7

epoch
1 3 5 7 9 12 14 16 18 20

single machine
10 machines

validation accuracy versus epoch✦ ImageNet with 1.2m images and
1,000 classes

✦ AWS EC2 GPU instance, 4 GPUs per
machine

✦ Google Inception Network

ho
ur

0

2

4

1 10

9.8x

Time for one epoch

num of machines

single machine
converges faster

multiple machines
converge faster

MXNet Highlights

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Multiple Languages

Multiple Languages

frontend

backend

Multiple Languages

single implementation
of backend system and

common operators

performance guarantee
regardless which frontend

language is used

frontend

backend

Minpy: MXNet Numpy Package
is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only

Minpy: MXNet Numpy Package
is the de facto scientific computing package in Python

>>>	import	minpy	as	np >>>	import	numpy	as	np

✦ Native Numpy Integration

Great flexibility (500+ operators) but CPU-only

Minpy: MXNet Numpy Package
is the de facto scientific computing package in Python

>>>	import	minpy	as	np >>>	import	numpy	as	np

✦ Native Numpy Integration

>>>	x	=	np.zeros((10,	20))	#	call	GPU	function	
>>>	y	=	np.sort(x)									#	call	CPU	function;	copy	GPU->CPU	
>>>	z	=	np.log(y)										#	call	GPU	function;	copy	CPU->GPU

Great flexibility (500+ operators) but CPU-only

✦ Transparent CPU and GPU co-execution

Minpy: MXNet Numpy Package

✦ Small operators (Numpy) + Big operators (MXNet)

>>>	symbol	=	mx.symbol.FullyConnected(…)	
>>>	bigop	=	minpy.core.function(sigmoid,	…)	
>>>	def	training_loss(w,	x,	y):	
...					pred	=	bigop(input=x,	fc_weight=w)	
...					prob	=	pred	*	y	+	(1	–	pred)	*	(1	–	y)	
...					return	–np.sum(np.log(prob))	

Minpy: MXNet Numpy Package

>>>	grad_func	=	minpy.core.grad_and_loss(train_loss)
>>>	dw	=	grad_fn(w,	x,	y)

✦ Imperative style auto-differentiation

✦ Small operators (Numpy) + Big operators (MXNet)

>>>	symbol	=	mx.symbol.FullyConnected(…)	
>>>	bigop	=	minpy.core.function(sigmoid,	…)	
>>>	def	training_loss(w,	x,	y):	
...					pred	=	bigop(input=x,	fc_weight=w)	
...					prob	=	pred	*	y	+	(1	–	pred)	*	(1	–	y)	
...					return	–np.sum(np.log(prob))	

Bring Torch to MXNet
Torch is a popular Lua framework for

 both scientific computing and deep learning

✦ Tensor Computation

Bring Torch to MXNet
Torch is a popular Lua framework for

 both scientific computing and deep learning

>>>	import	mxnet	as	mx	
>>>	x	=	mx.th.randn(2,	2,	ctx=mx.gpu(0))	
>>>	y	=	mx.th.abs(x)	
>>>	print	y.asnumpy()

>>>	import	mxnet	as	mx	
>>>	data	=	mx.symbol.Variable(‘data’)	
>>>	fc			=	mx.symbol.TorchModule(data_0=data,		
...																														lua_string=‘nn.Linear(784,	128)’,…		
>>>	mlp		=	mx.symbol.TorchModule(data_0=fc,		
...																														lua_string=‘nn.LogSoftMax()’,…

✦ Modules (Layers)

MXNet Highlights

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Memory Optimization

a

b c

dnow a is
deletable

aliveness analysis

b ca

shared space between
variables

share a and b

Traverse the computation graph to reduce the memory footprint  
with linear time complexity

m
em

or
y

(G
B)

0

2.25

4.5

6.75

9

alexnet inception vgg

baseline mxnet

Results for Deep CNNs

Training

2.6x

1.8x

m
em

or
y

(G
B)

0

2.25

4.5

6.75

9

alexnet inception vgg

baseline mxnet

Prediction

4.4x 4x3.2x1.8x

winner neural networks

Neural Art

Neural Art

1M pixels
 GTX 980 TI 6G

in 20x speed

MXNet Highlights

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Train on the Cloud
Consume data from

distributed filesystems

multithreaded read/write  
to hide network latency

HDFS

S3

Blob

…

Train on the Cloud
Consume data from

distributed filesystems

multithreaded read/write  
to hide network latency

HDFS

S3

Blob

…

Launch distributed jobs

easily extend to other cluster
resource management software

MPI

SSH

Yarn

qsub

…

Deploy Everywhere
Beyond

Deploy Everywhere
Beyond

✦ Fit the core library with all
dependencies into a single C++
source file

✦ Easy to compile on …

Amalgamation

Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all
dependencies into a single C++
source file

✦ Easy to compile on …

Amalgamation

Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all
dependencies into a single C++
source file

✦ Easy to compile on …

Amalgamation Runs in browser  
with Javascript

Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all
dependencies into a single C++
source file

✦ Easy to compile on …

Amalgamation Runs in browser  
with Javascript

The first image for
search “dog” at

images.google.com

http://images.google.com

Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all
dependencies into a single C++
source file

✦ Easy to compile on …

Amalgamation Runs in browser  
with Javascript

The first image for
search “dog” at

images.google.com

Outputs “beagle”
with prob = 73%

within 1 sec

http://images.google.com

TX1 on Flying Drone

TX1 with customized board

Drone

TX1 on Flying Drone

TX1 with customized board

Drone

Realtime detection and tracking on TX1
~10 frame/sec with 640x480 resolution

Conclusion

Mixed Programming API

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports

Acknowledgement
MXNet is developed by over 100 collaborators

Bing Xu
Dato

Eric Xie
U Washington

Yizhi Liu
MediaV

Tianjun Xiao
Microsoft

Chiyuan Zhang
MIT

Yutian Li
Standford

Yuan Tang
Uptake

Qian Kou
Indiana University

Hu Shiwen
Shanghai

Chutao Hong
Microsoft

Min Lin
Qihoo360

Naiyan Wang
TuSimple

Tong He
Simon Fraser University

Minjie Wang
NYU

Zheng Zhang
NYU Shanghai

Alex Smola
CMU

Carlos Guestrin
U Washington

Major Developers

Advisors

Hardware and  
software supports

Go mxnet.dmlc.ml to Get Started

