

MXNet: Flexible and Efficient Library for Deep Learning

from Distributed GPU Clusters to Embedded Systems

Tianqi Chen

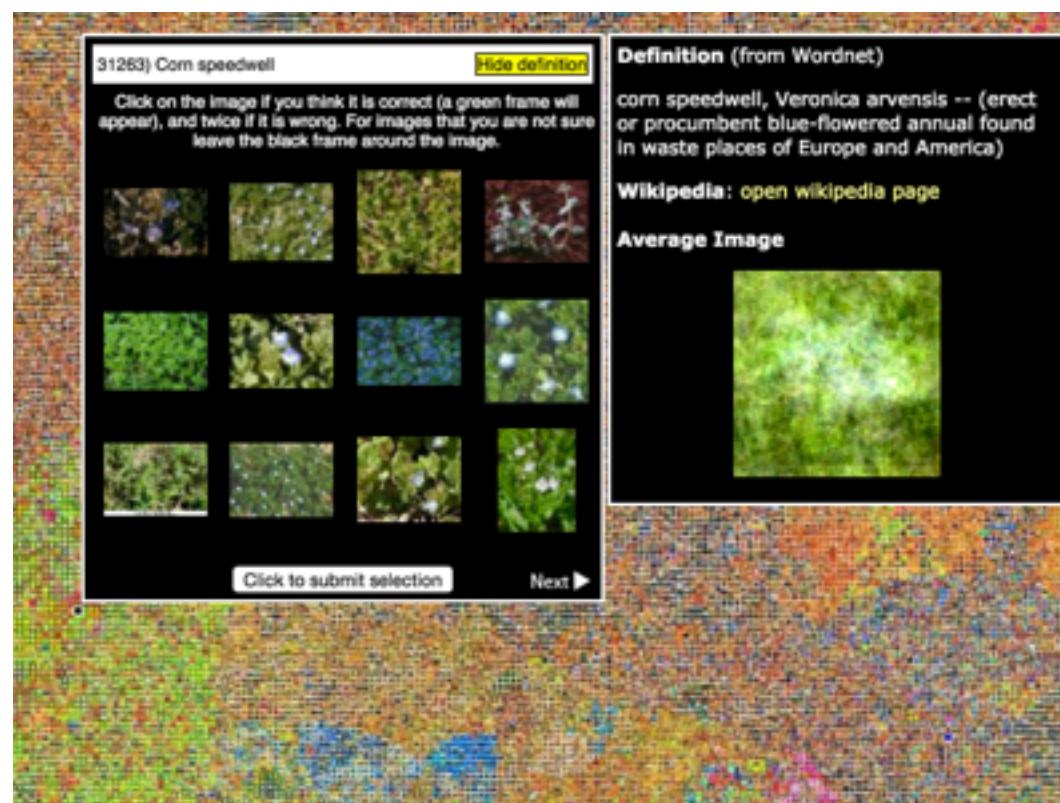
Mu Li

Deep Learning

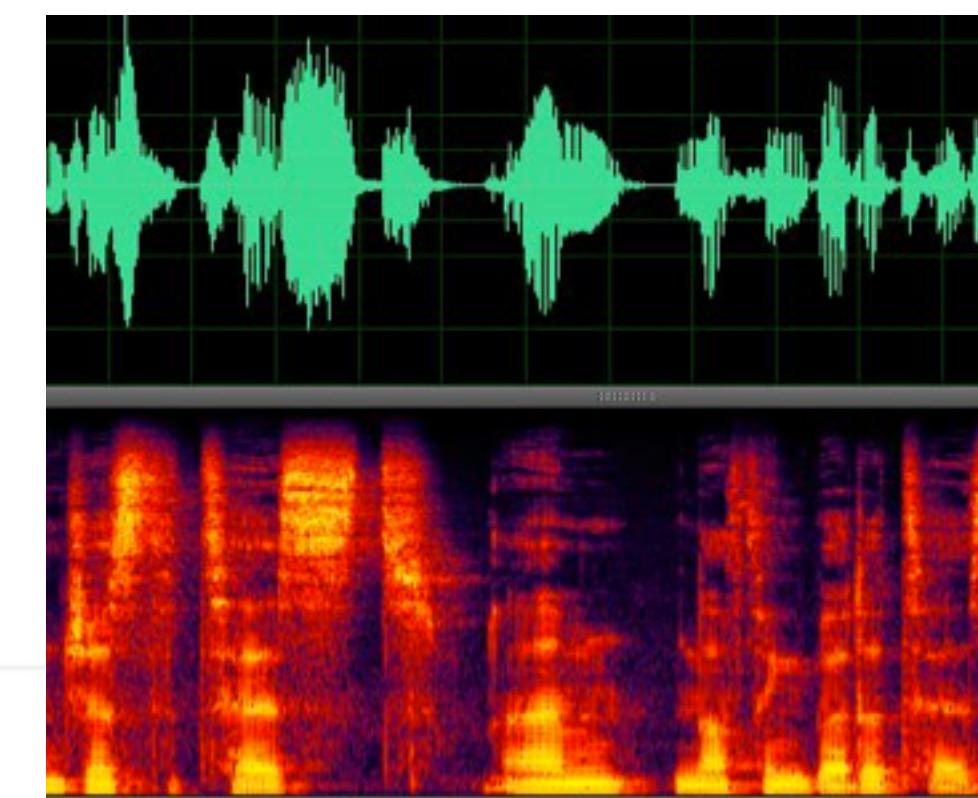
Learns multiple levels of representations of data

Significantly improve many applications on multiple domains

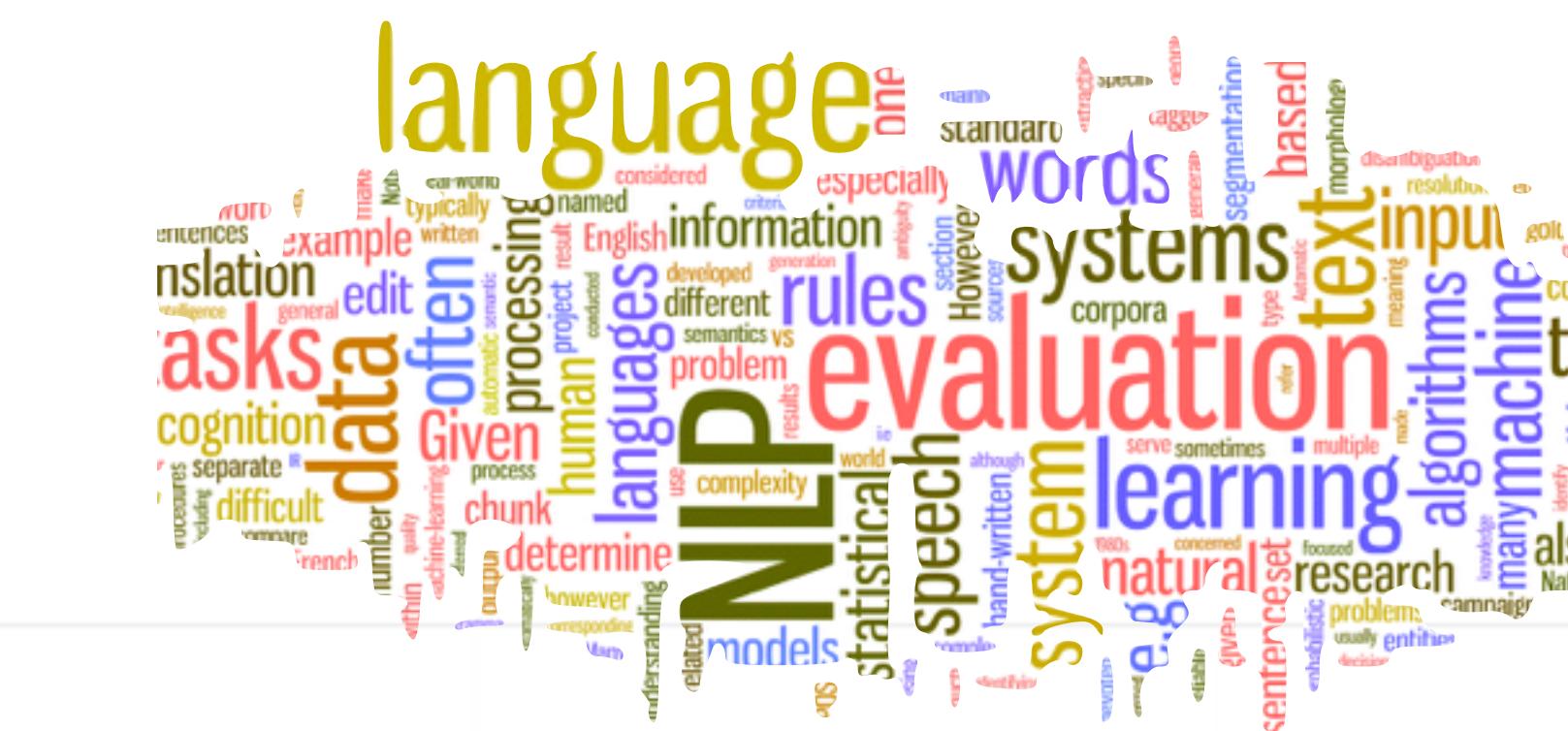
image understanding



speech recognition



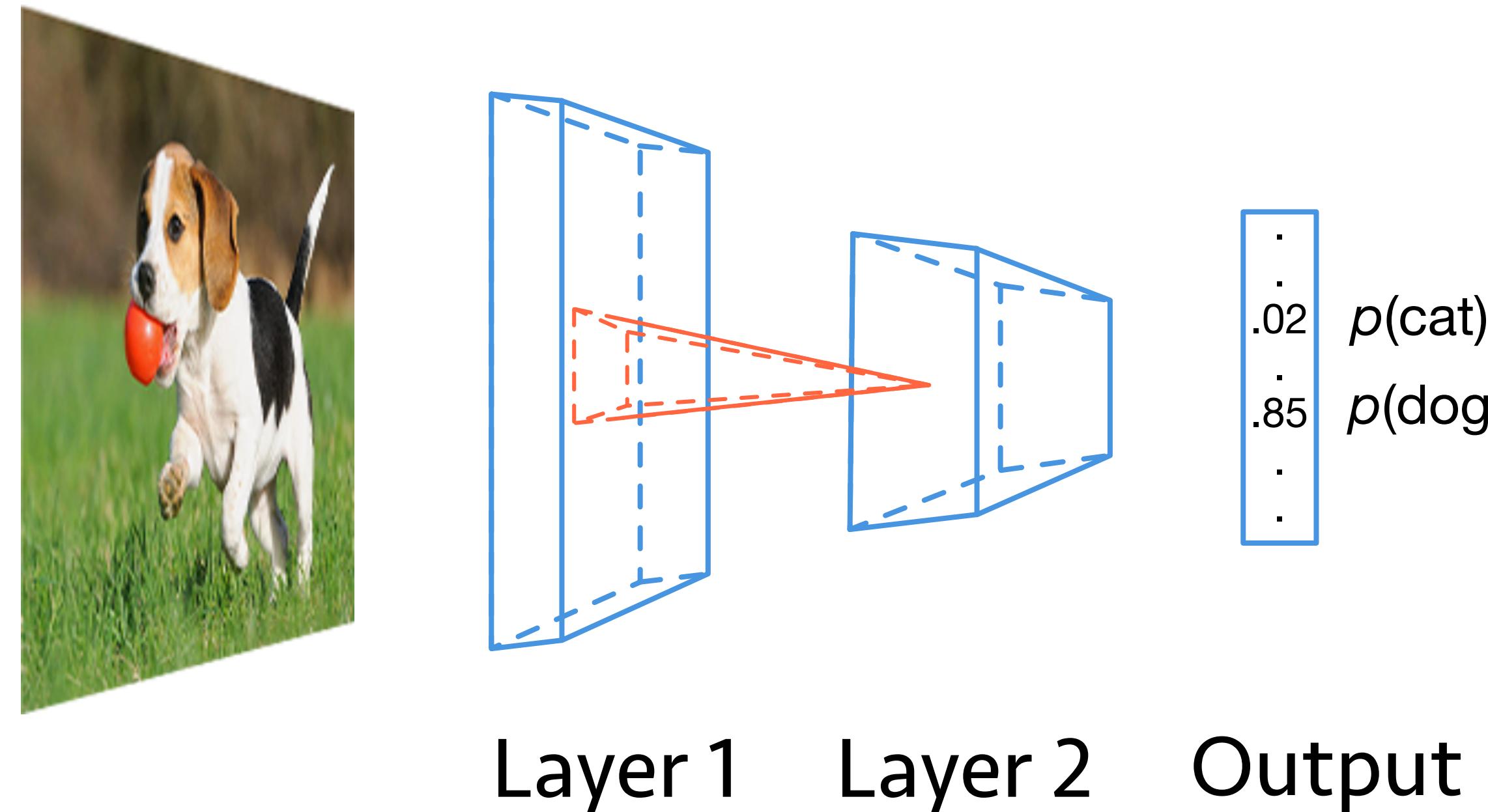
natural language processing



“deep learning” trend in the past 10 years

Image classification

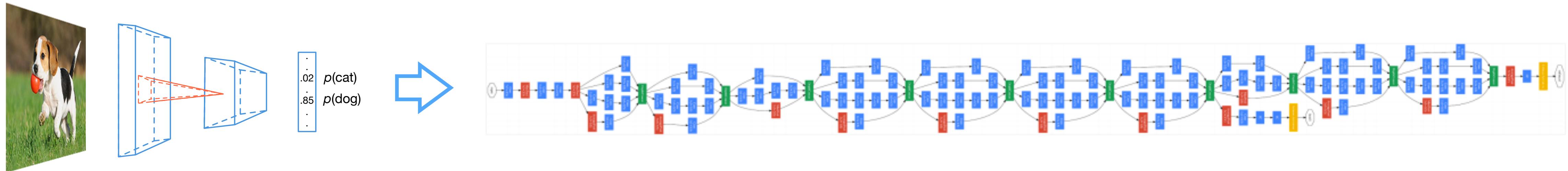
multilevel feature extractions from raw pixels
to semantic meanings



explore spatial information with convolution layers

Image Classification

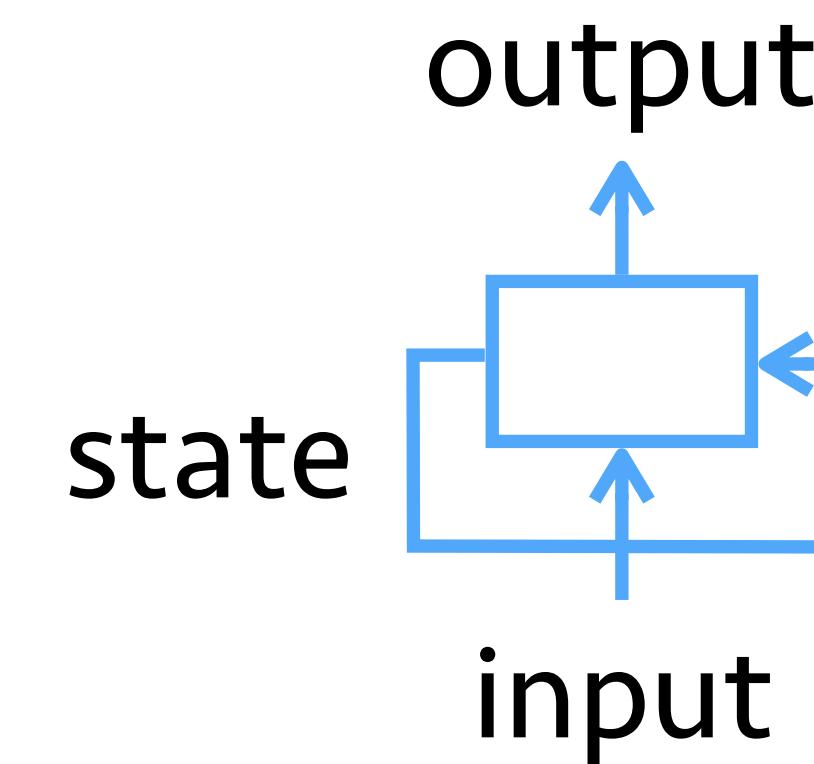
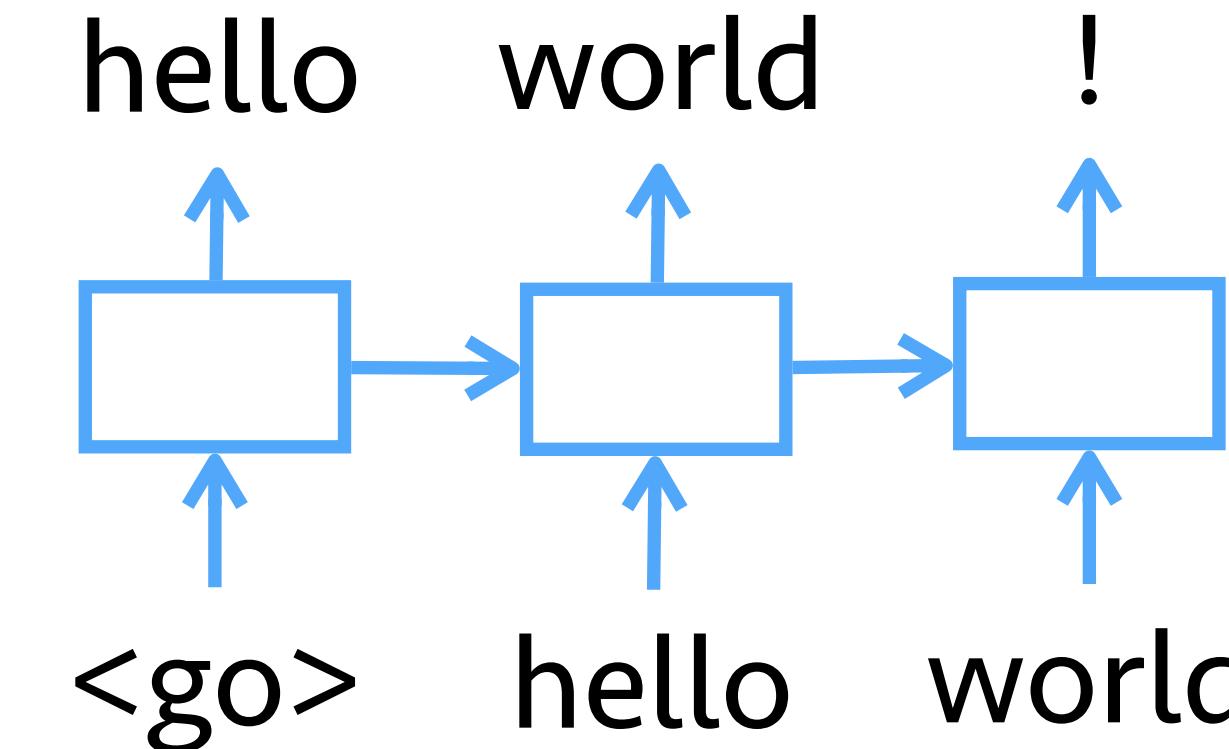
State-of-the-art networks have tens to hundreds layers



- ♦ Hard to define the network
 - ❖ the definition of the inception network has >1k lines of codes in Caffe
- ♦ A single image requires billions floating-point operations
 - ❖ Intel i7 ~500 GFLOPS
 - ❖ Nvidia Titan X: ~5 TFLOPS
- ♦ Memory consumption is linear with number of layers

Language Modeling

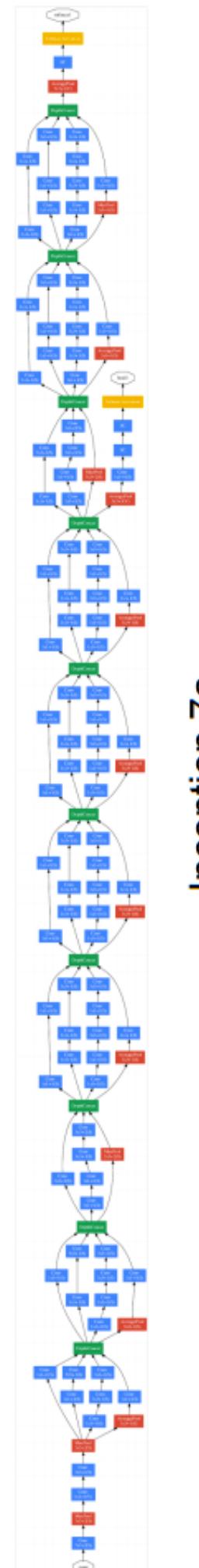
recurrent
neural networks:



- ◆ Variable length of input and output sequences
- ◆ State-of-the-art networks have many layers
 - ❖ Billions of floating-point operations per sentence
 - ❖ Memory consumption is linear with both sequence length and number of layers

MXNet Highlights

FLAG Flexibility



ROCKET Efficiency

Gears Portability

MXNet Highlights

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

Language Supports

Memory Optimization

Runs Everywhere

MXNet Highlights

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

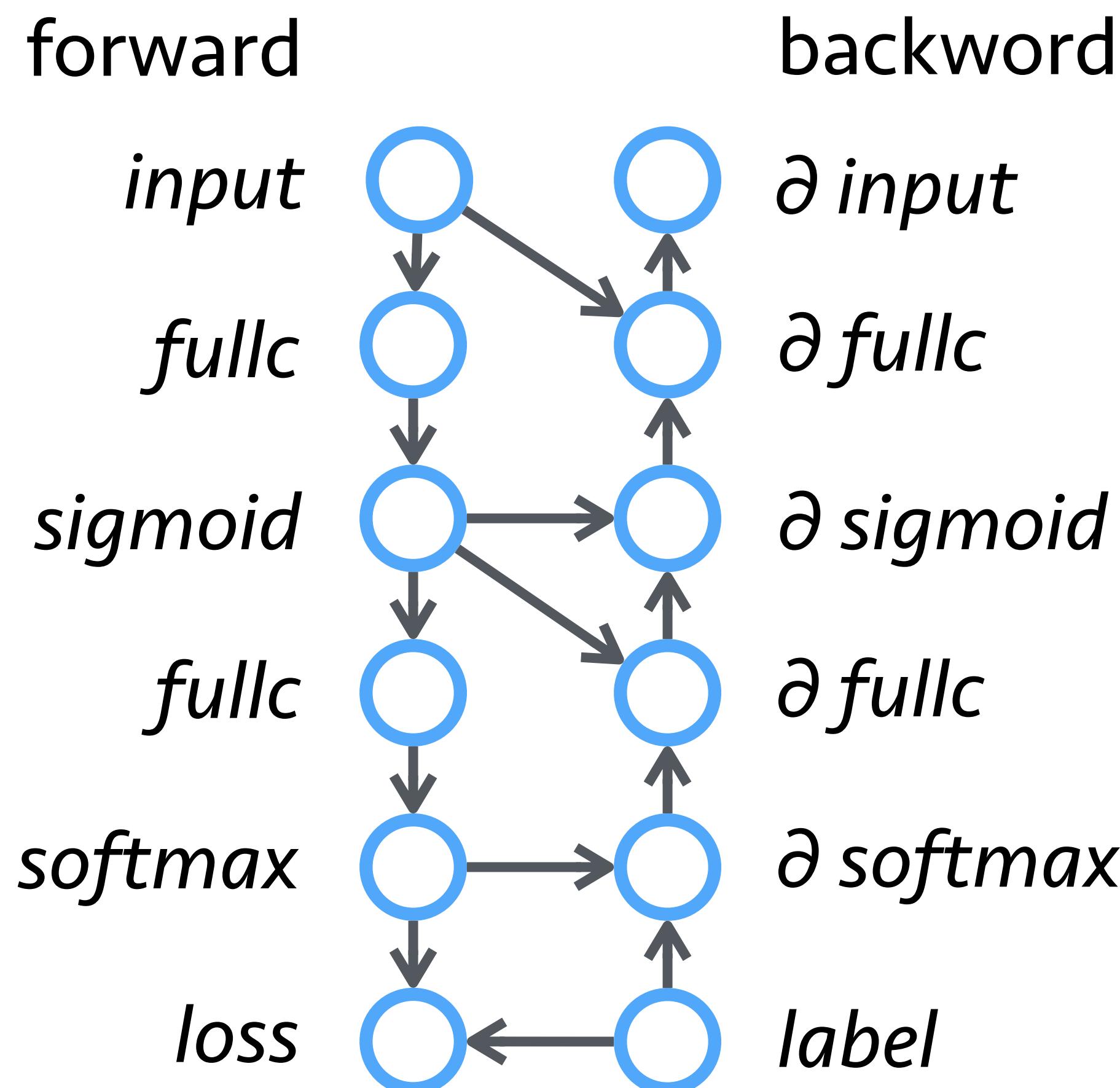
Language Supports

Memory Optimization

Runs Everywhere

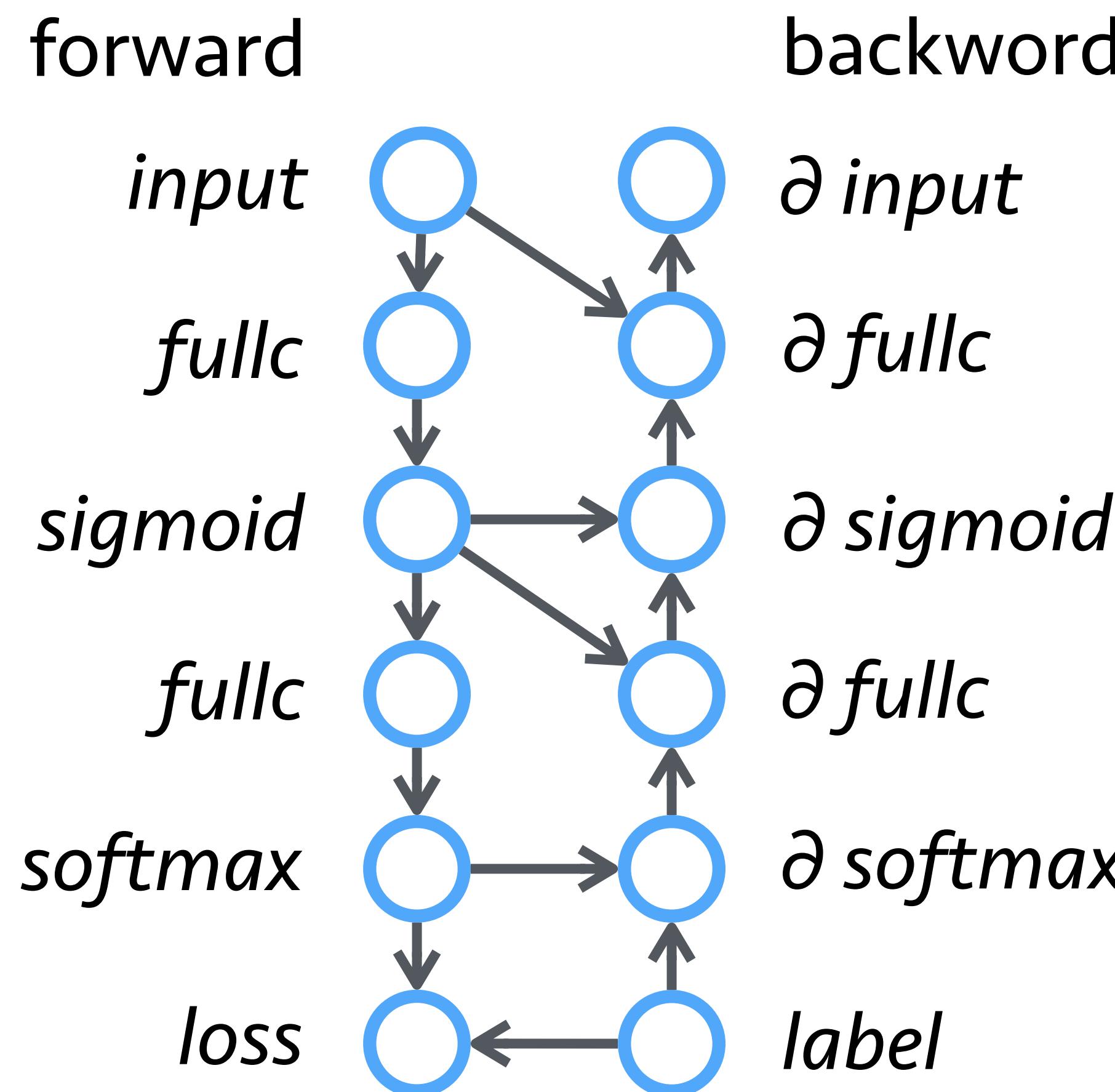
Deep Learning Workflow

Computational Graph of the Deep Architecture



Deep Learning Workflow

Computational Graph of the Deep Architecture



Updates and Interactions with the graph

- ◆ Parameter update
- ◆ Beam search
- ◆ Feature extraction ...

$w = w - \eta \partial f(w)$

◆ Involves high dimensional array(tensor) operations in both direction

◆ How to program a typical DL application?

Imperative Programs

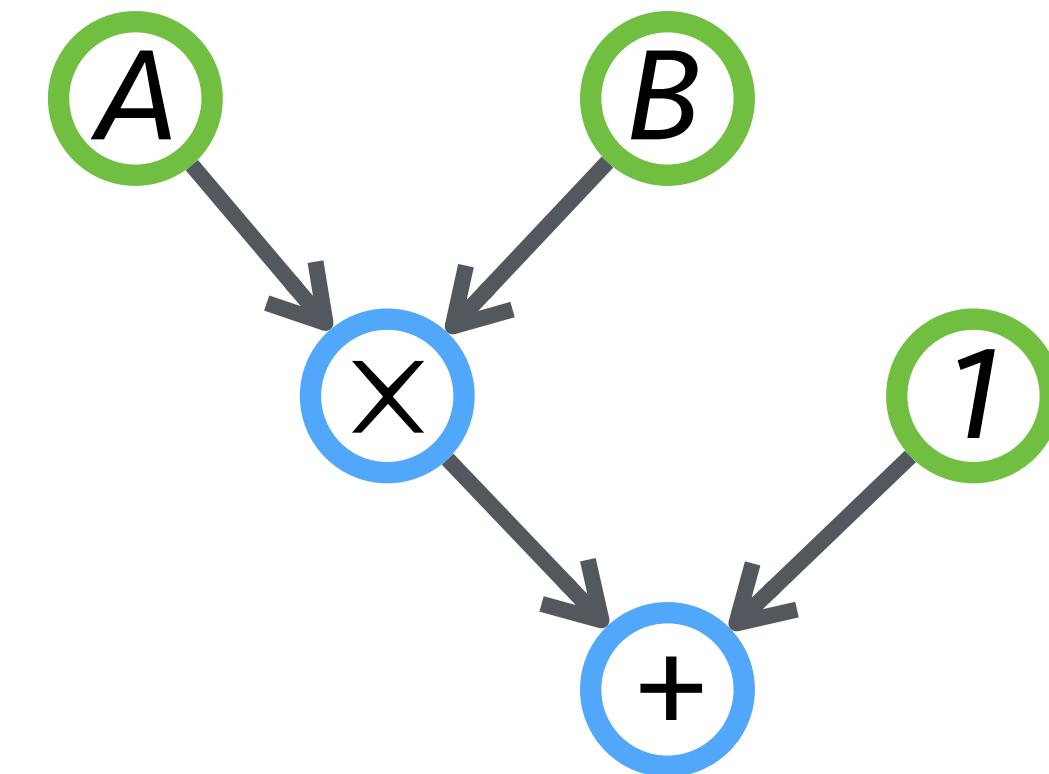
- ◆ Execute operations step by step.
- ◆ $c = b \times a$ invokes a kernel operation
- ◆ Numpy programs are imperative


```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1
```

Declarative Programs

- ◆ Declares the computation
- ◆ Compiles into a function
- ◆ $C = B \times A$ only specifies the requirement
- ◆ SQL is declarative

```
A = Variable('A')
B = Variable('B')
C = B * A
D = C + 1
f = compile(D)
d = f(A=np.ones(10), B=np.ones(10)*2)
```



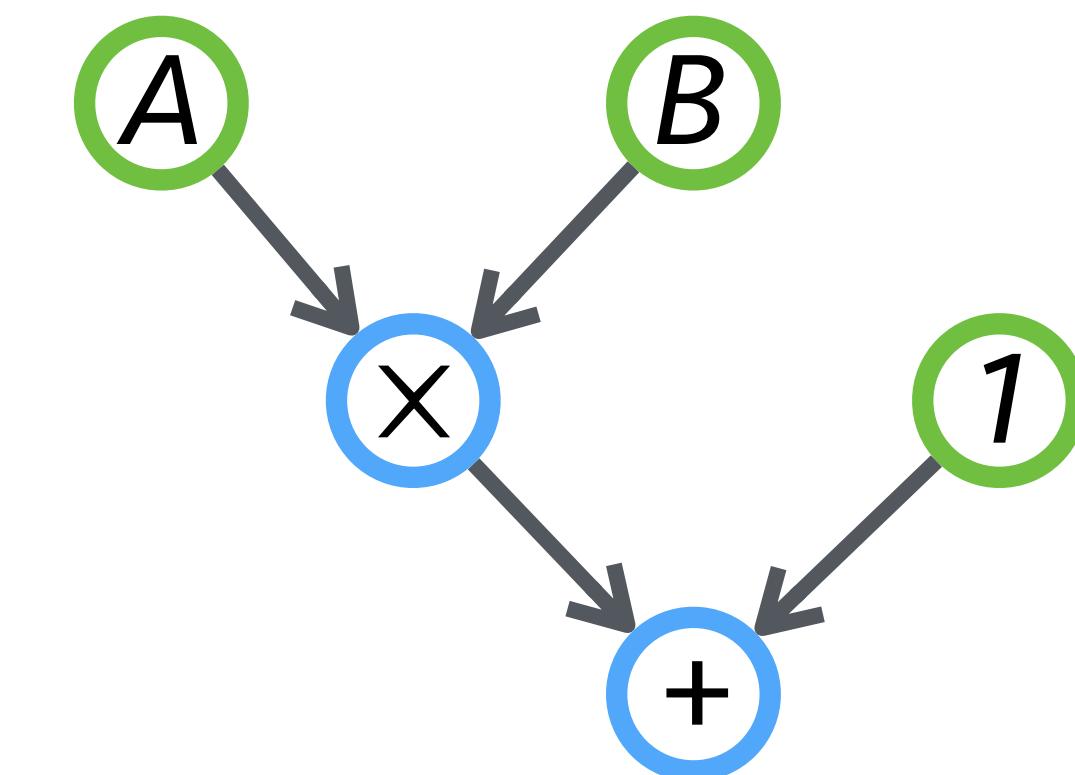
Imperative vs. Declarative Programs

- ◆ Imperative programs are straightforward and flexible.
- ◆ Take advantage of language native features (loop, condition)

```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
print(c)
d = c + 1
```

Easy to tweak
with python
codes

```
A = Variable('A')
B = Variable('B')
C = B * A
D = C + 1
f = compile(D)
d = f(A=np.ones(10), B=np.ones(10)*2)
```



Imperative vs. Declarative Programs

- ◆ Declarative programs see the entire graph
- ◆ More chances for optimization
- ◆ Easy to save and load the computation structure

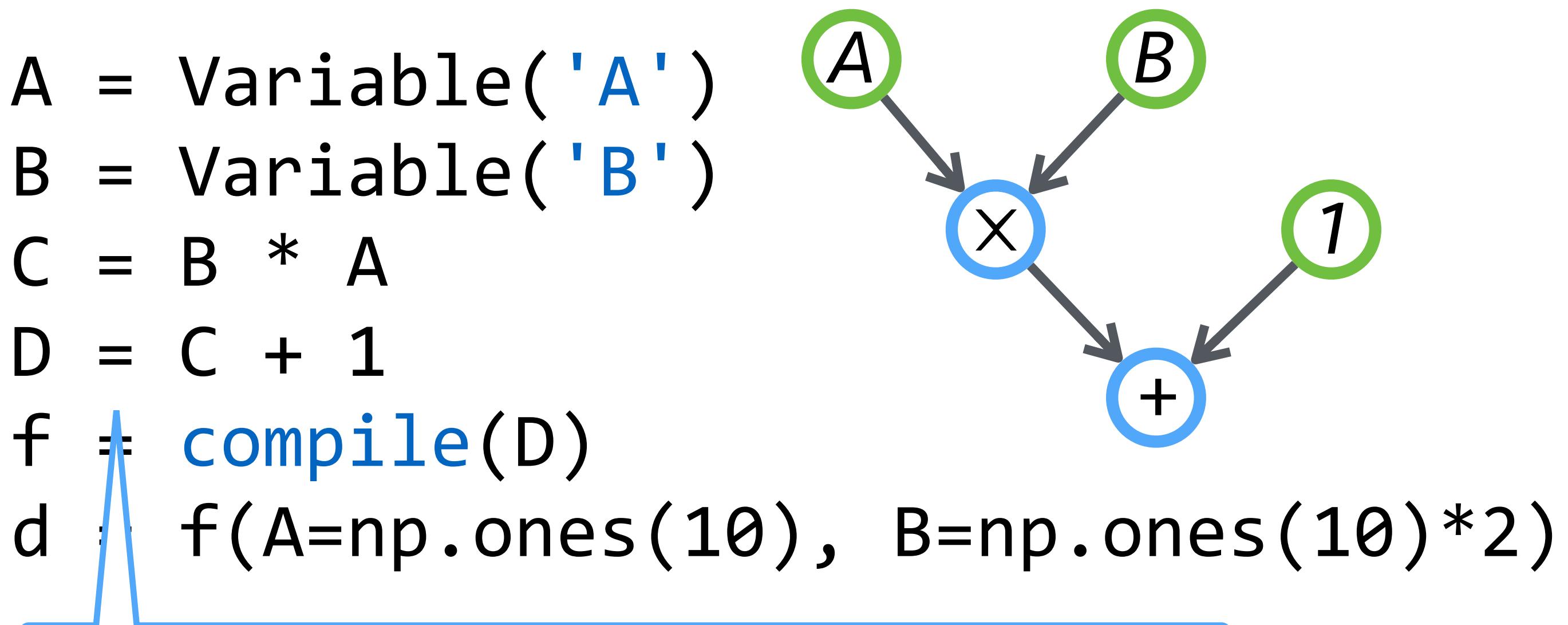
Which program uses less memory to obtain d ?

```
import numpy as np
a = np.ones(10)
b = np.ones(10) * 2
c = b * a
d = c + 1
```

c **cannot** share memory with d ,
because it could be used in future

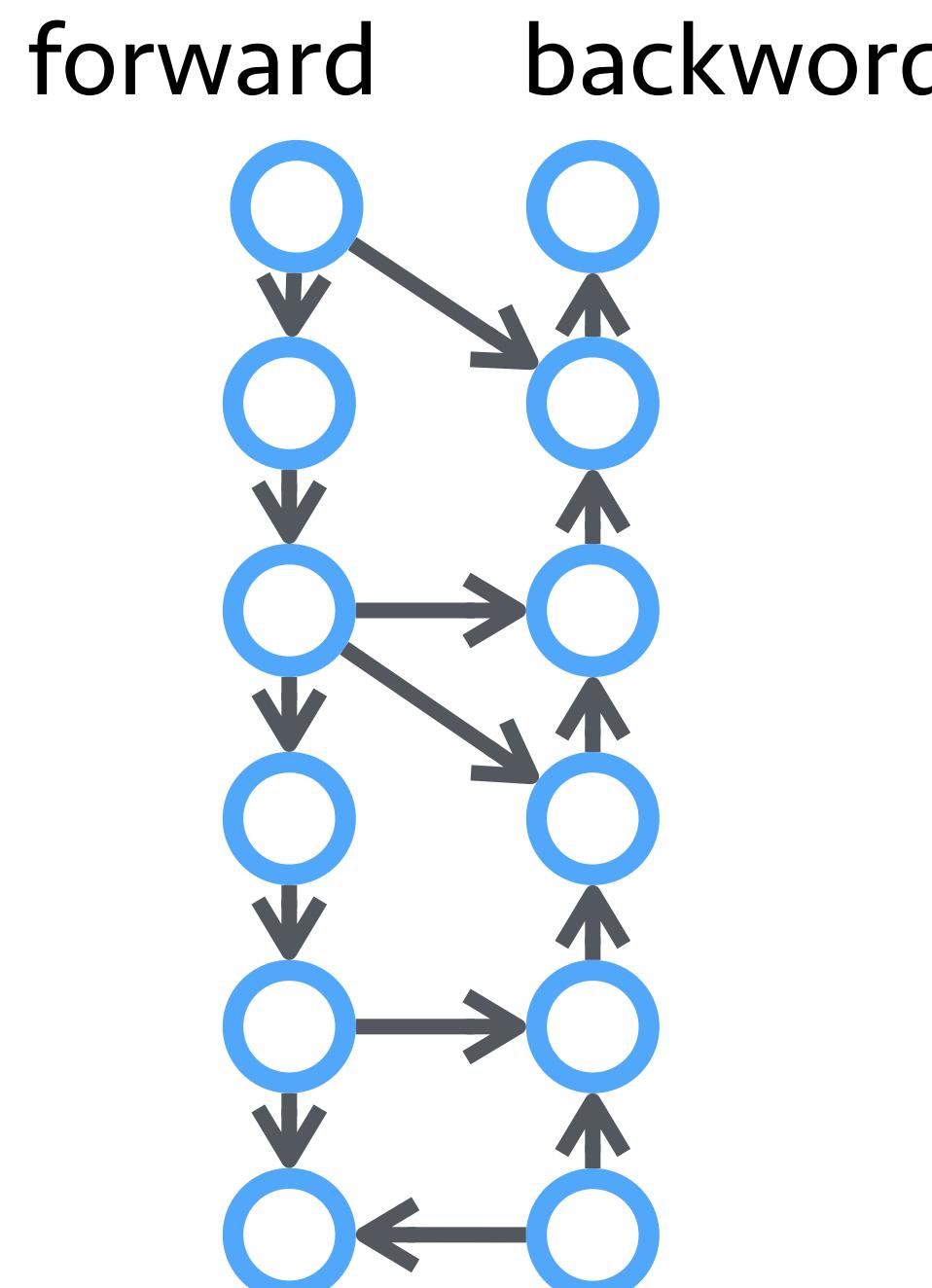
```
A = Variable('A')
B = Variable('B')
C = B * A
D = C + 1
f = compile(D)
d = f(A=np.ones(10), B=np.ones(10)*2)
```

C **can** share memory with D ,
because C cannot be seen by user

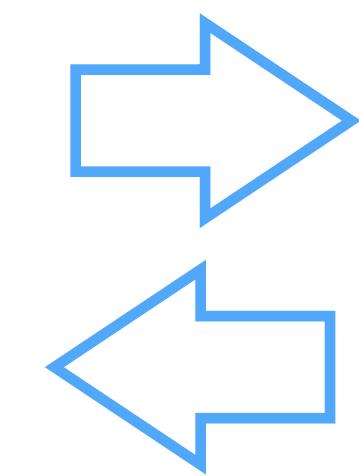


Imperative vs. Declarative for Deep Learning

Computational Graph of the Deep Architecture



Needs heavy optimization,
fits **declarative** programs



Updates and Interactions with the graph

- ◆ Parameter update
- ◆ Beam search
- ◆ Feature extraction ...

$$w = w - \eta \partial f(w)$$

Needs mutation and more
language native features, good for
imperative programs

MXNet: Mix the Flavors Together

Imperative NDArray API

```
>>> import mxnet as mx
>>> a = mx.nd.zeros((100, 50))
>>> a.shape
(100L, 50L)
>>> b = mx.nd.ones((100, 50))
>>> c = a + b
>>> b += c
```

Declarative Symbolic Executor

```
>>> import mxnet as mx
>>> net = mx.symbol.Variable('data')
>>> net = mx.symbol.FullyConnected(data=net, num_hidden=128)
>>> net = mx.symbol.SoftmaxOutput(data=net)
>>> type(net)
<class 'mxnet.symbol.Symbol'>
>>> texec = net.simple_bind(data=data_shape)
```

Mixed Style Training Loop in MXNet

```
executor = declarative_symbol.bind()  
for i in range(3):  
    train_iter.reset()  
    for dbatch in train_iter:  
        args["data"][:] = dbatch.data[0]  
        args["softmax_label"][:] = dbatch.label[0]  
        executor.forward(is_train=True)  
        executor.backward()  
    for key in update_keys:  
        args[key] -= learning_rate * grads[key]
```

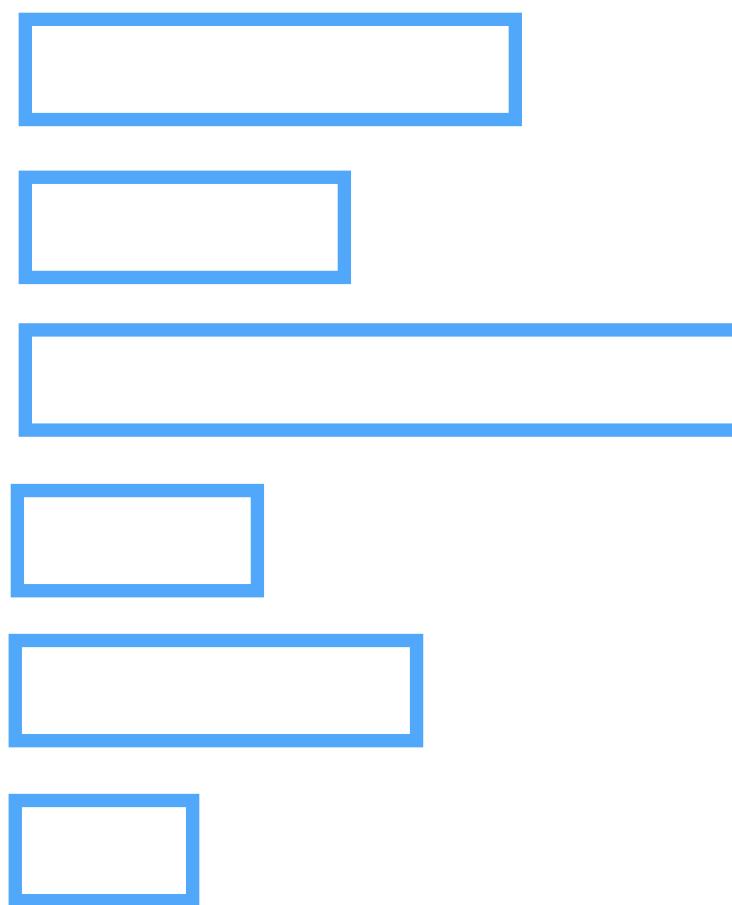
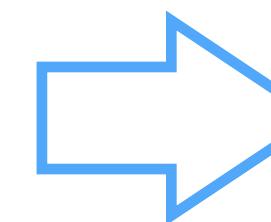
Imperative NDArray can be set as input nodes to the graph

Executor is binded from declarative program that describes the network

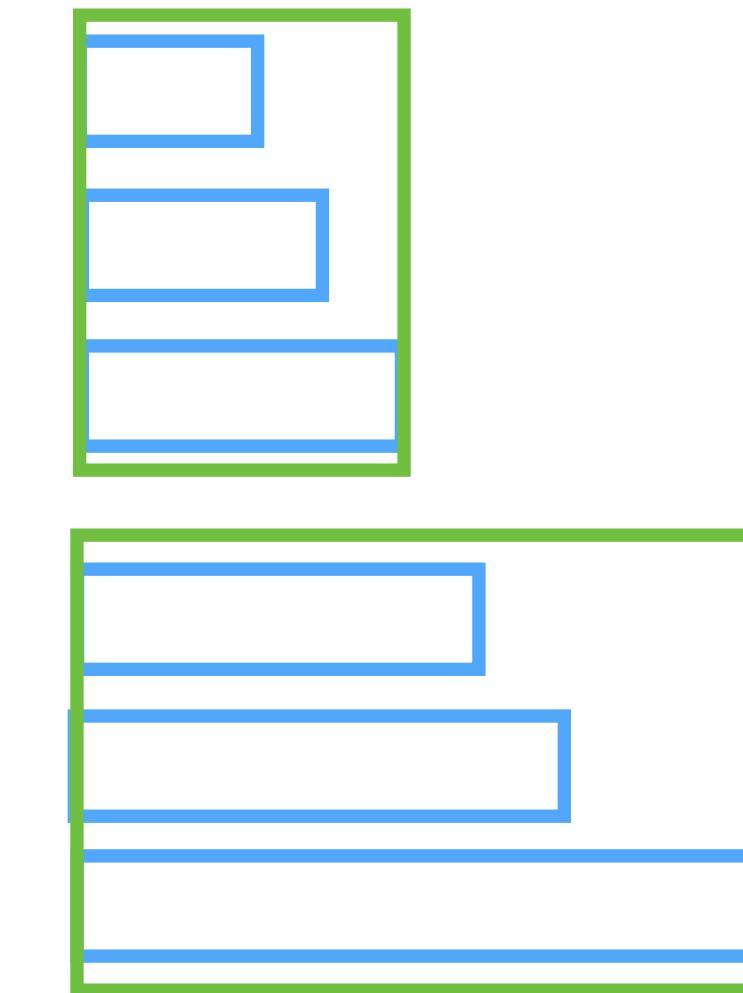
Imperative parameter update on GPU

Mixed API for Quick Extensions

Various length examples



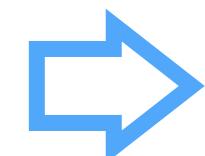
Bucketing



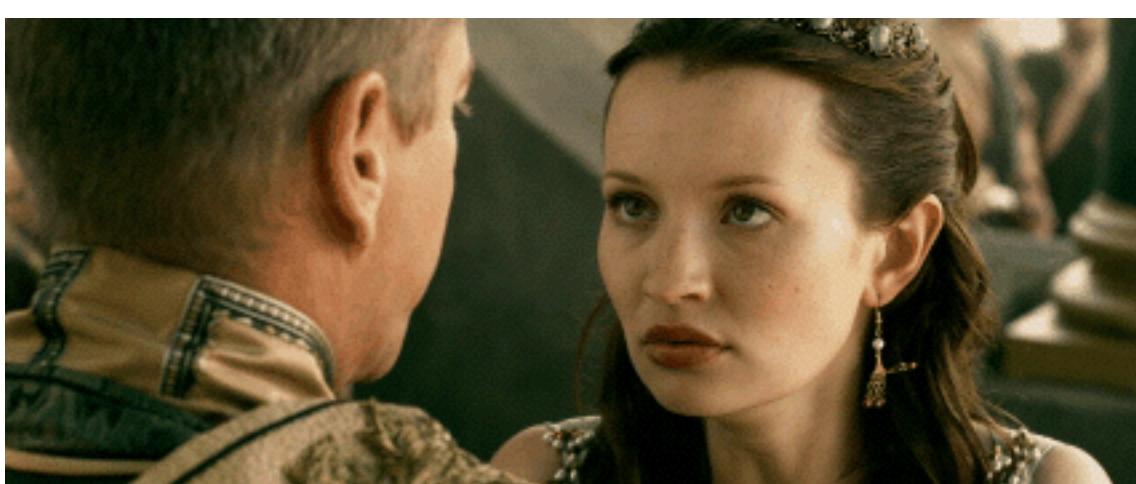
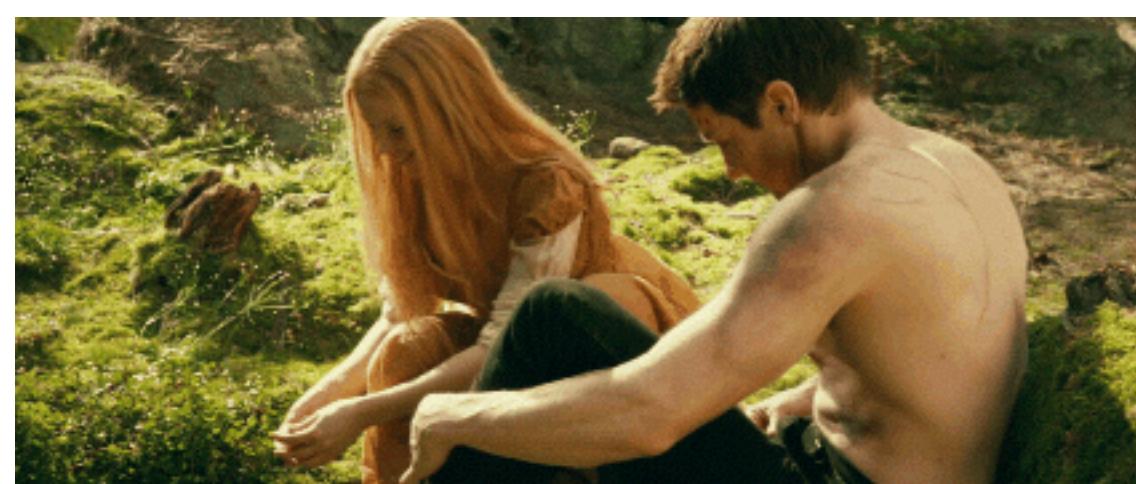
- ◆ Runtime switching between different graphs depending on input
- ◆ Useful for sequence modeling and image size reshaping

Make use of imperative code in python, **10 lines** of additional python code

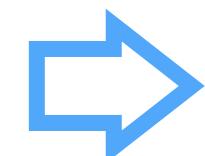
3D Image Construction



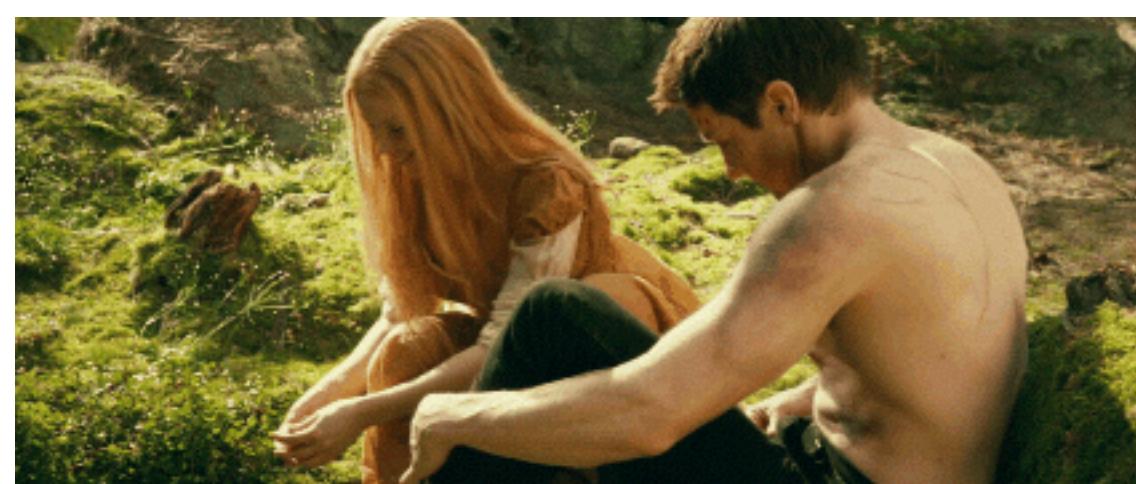
100 lines of Python codes



3D Image Construction



100 lines of Python codes



MXNet Highlights

🚩 **Flexibility**

🚀 **Efficiency**

⚙️ **Portability**

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

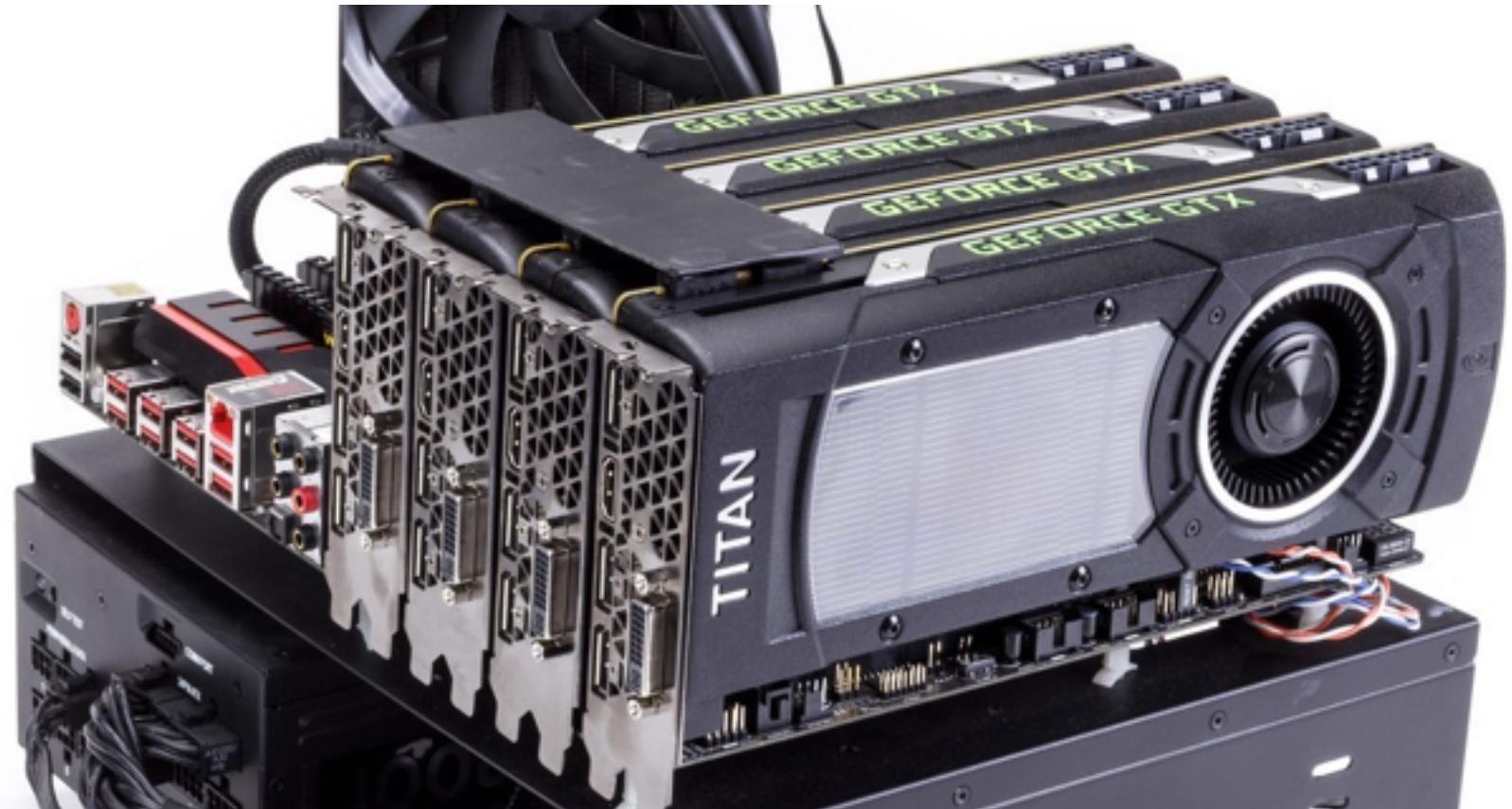
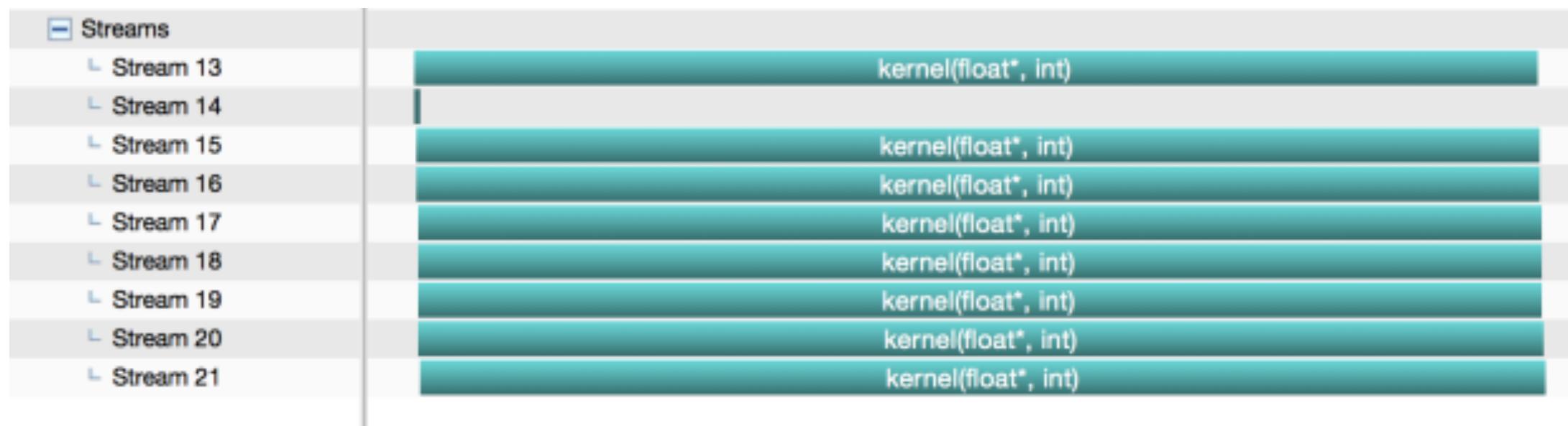
Language Supports

Memory Optimization

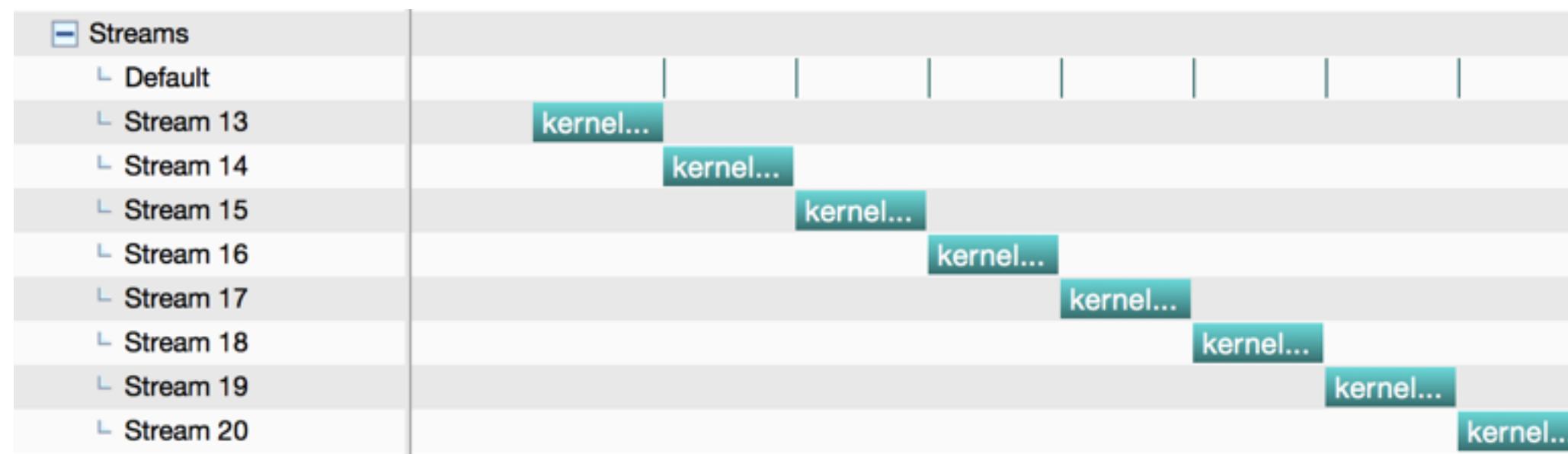
Runs Everywhere

Need for Parallelization

- ◆ Parallelize workload on multiple GPUs
- ◆ Fine grained parallelization of small kernels
- ◆ Overlap of memory copy with computation



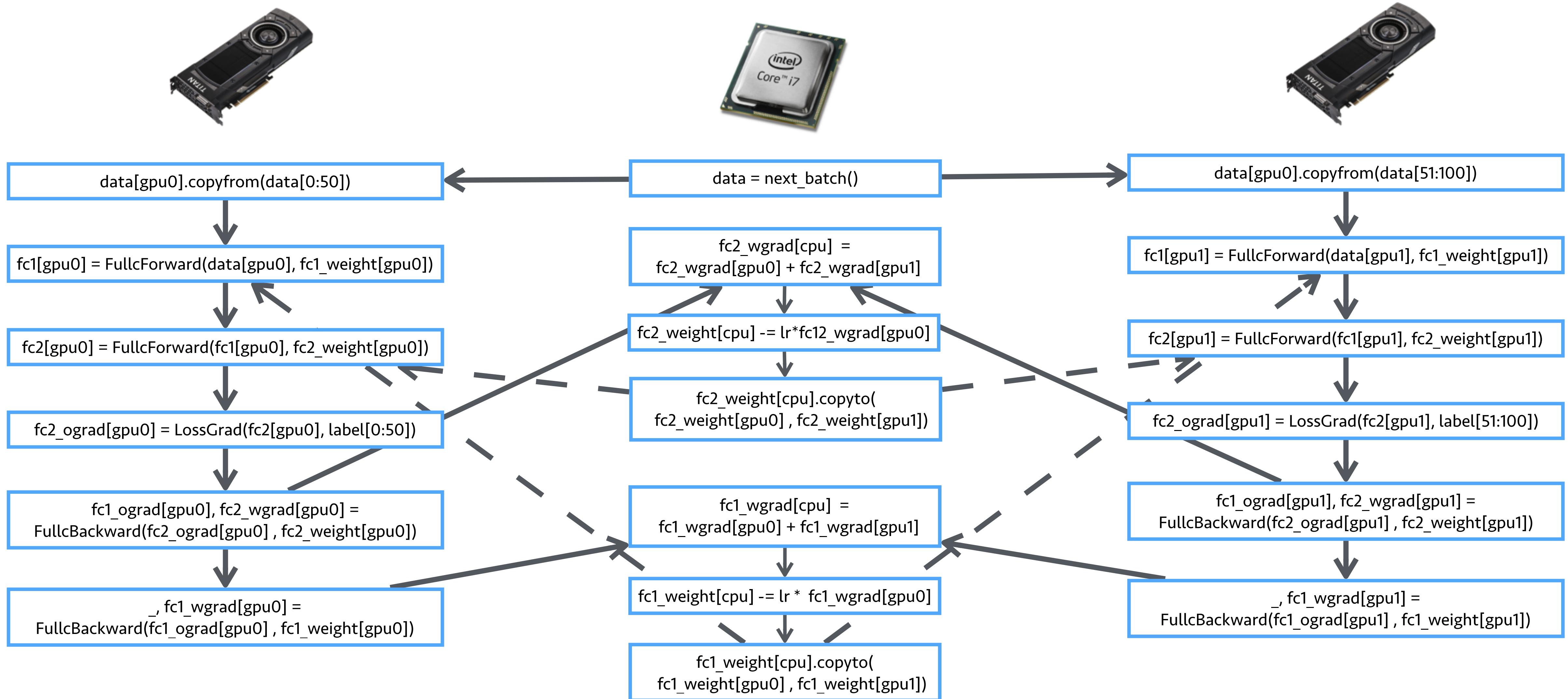
Fully concurrent



Serial

Writing Parallel Programs is Painful

Hard to overlap computation with communication due to dependencies

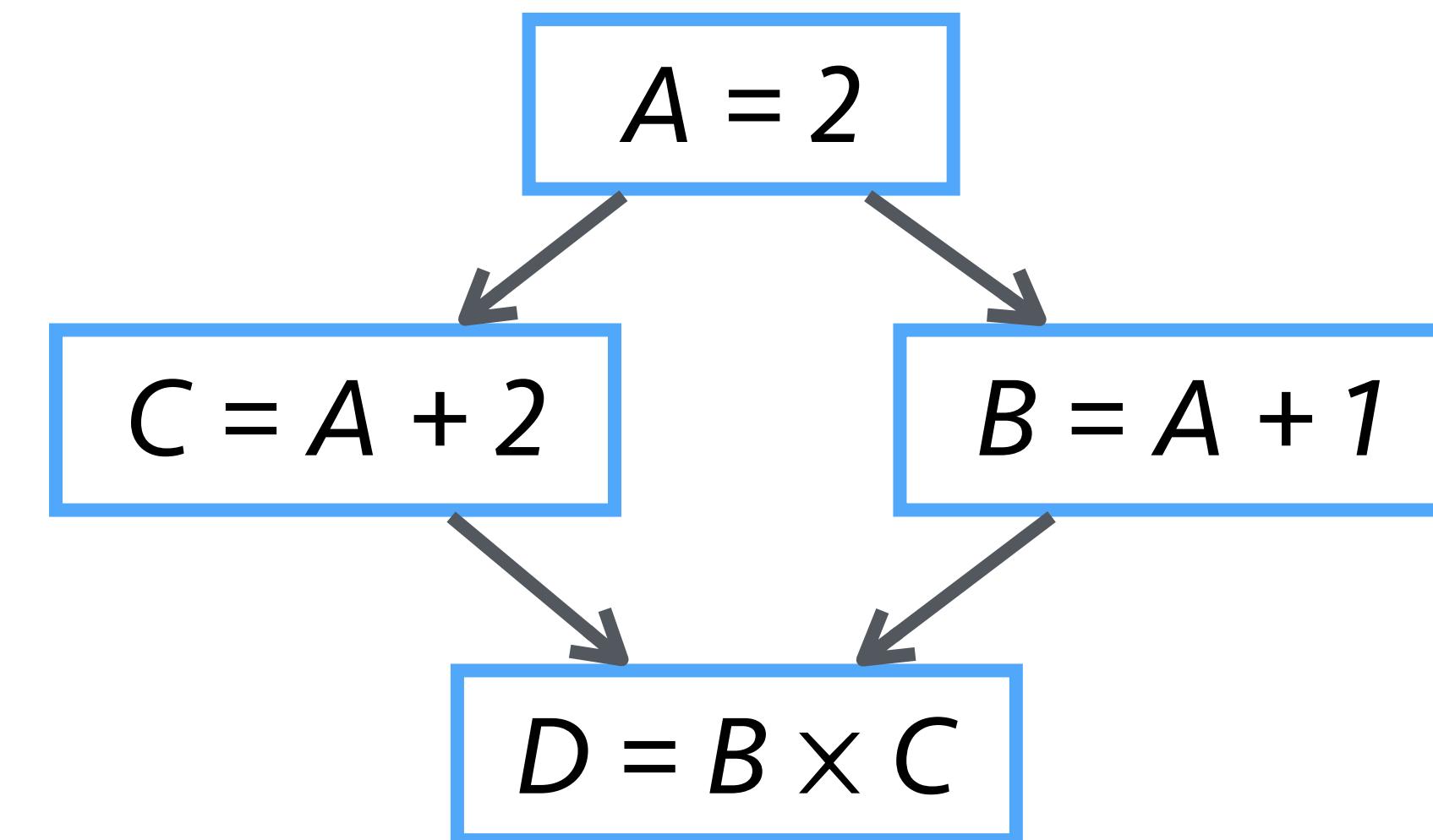


Auto Parallelization for Mixed Programs

Write **serial** programs

```
>>> import mxnet as mx  
>>> A = mx.nd.ones((2,2)) *2  
>>> C = A + 2  
>>> B = A + 1  
>>> D = B * C
```

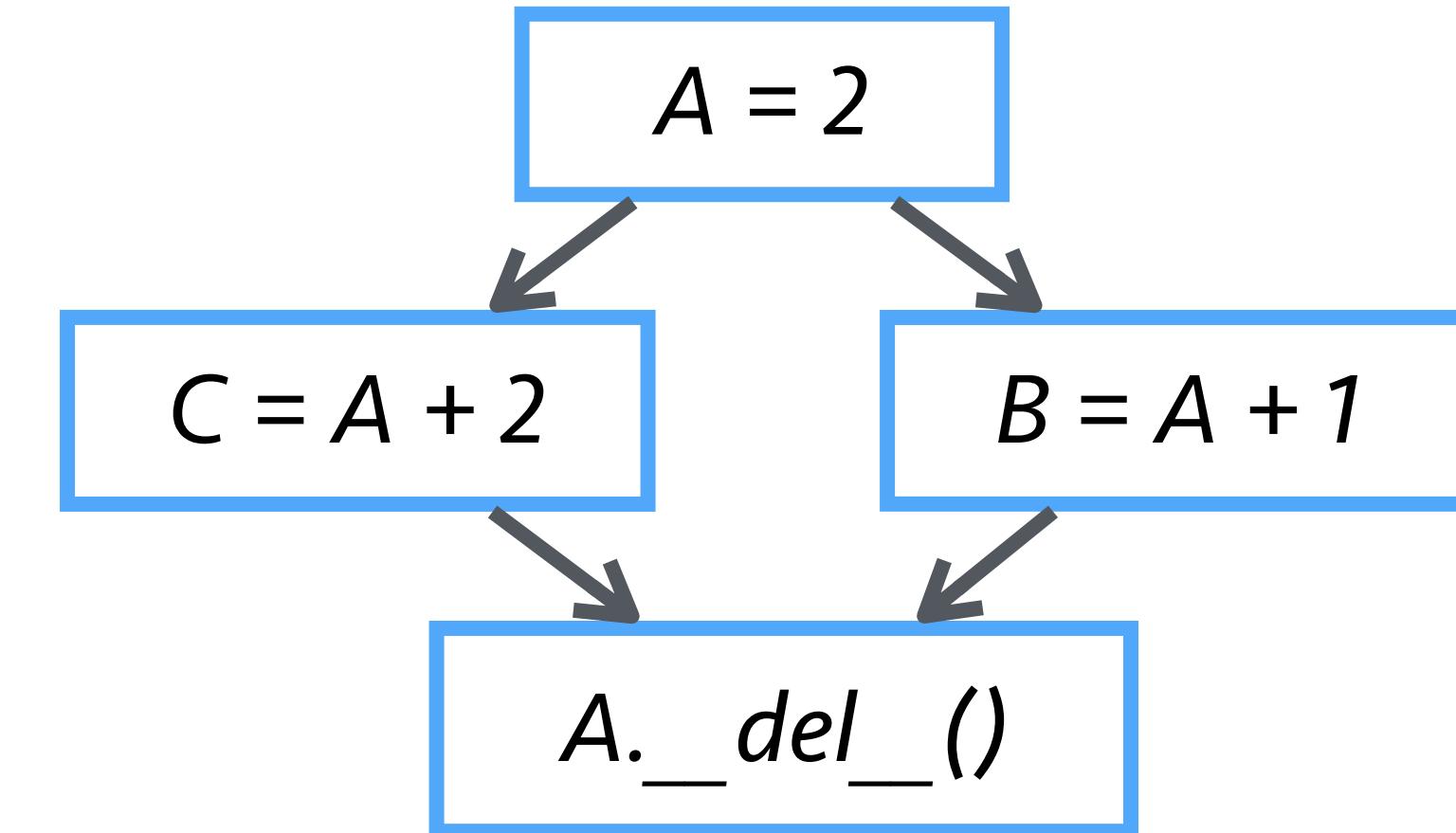
Run in **parallel**



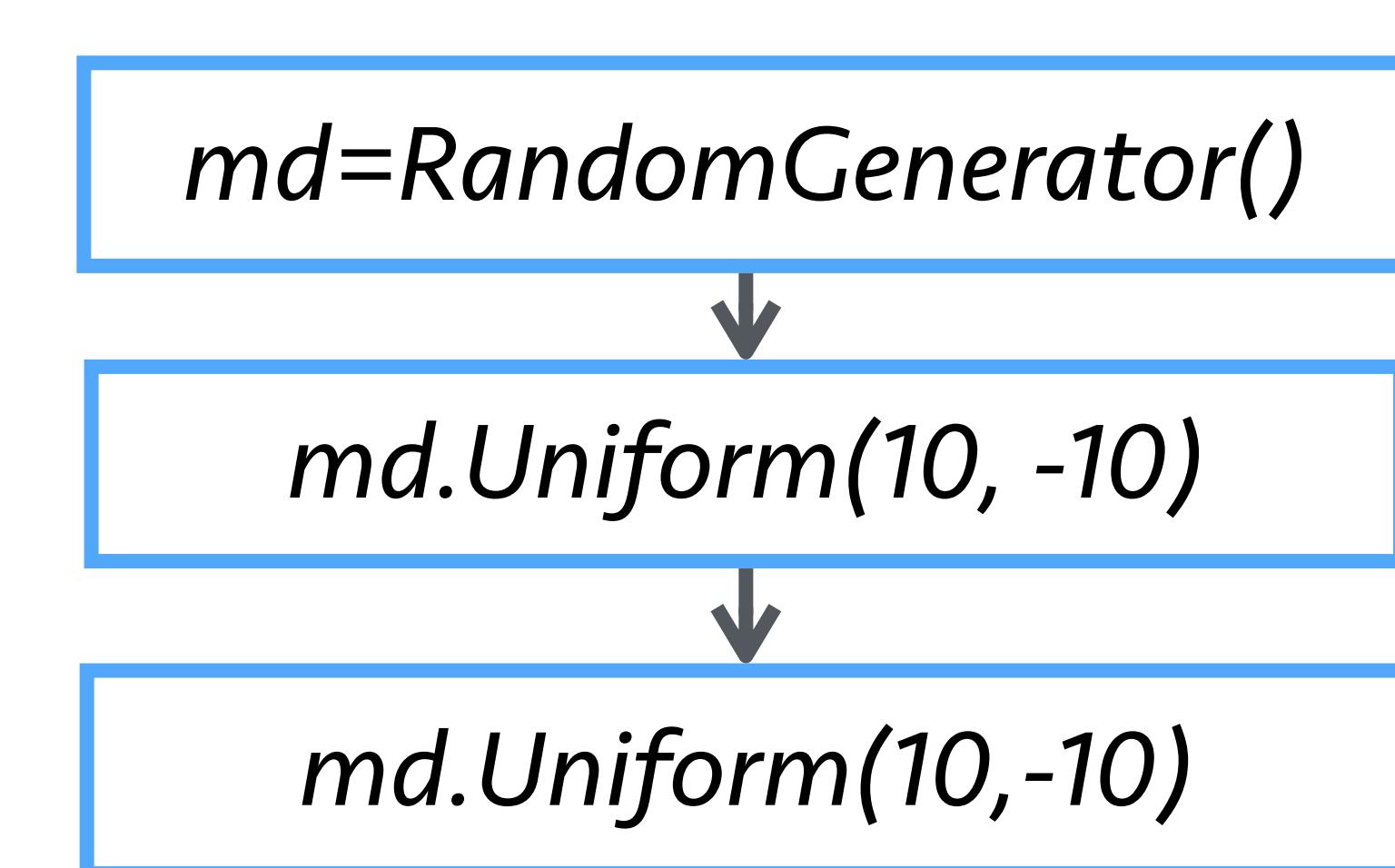
Auto Parallelization for Mixed Programs

- ◆ Schedules any resources includes array, random number generator

```
>>> import mxnet as mx
>>> A = mx.nd.ones((2,2)) *2
>>> C = A + 2
>>> B = A + 1
>>> del A
```



```
>>> import mxnet as mx
>>> A = mx.nd.uniform(shape, 10, -10)
>>> B = mx.nd.uniform(shape, 10, -10)
```



MXNet Highlights

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

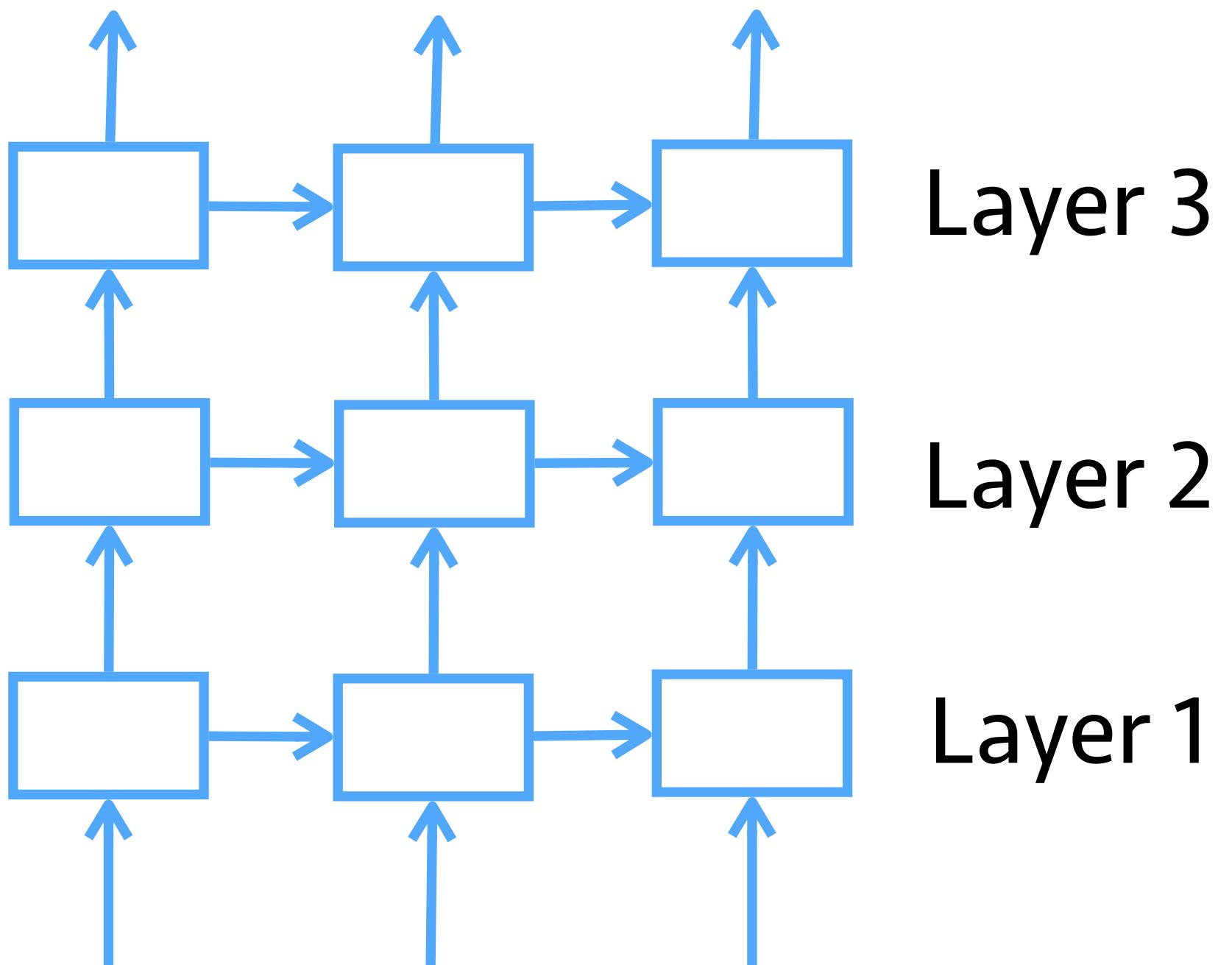
Distributed Computing

Language Supports

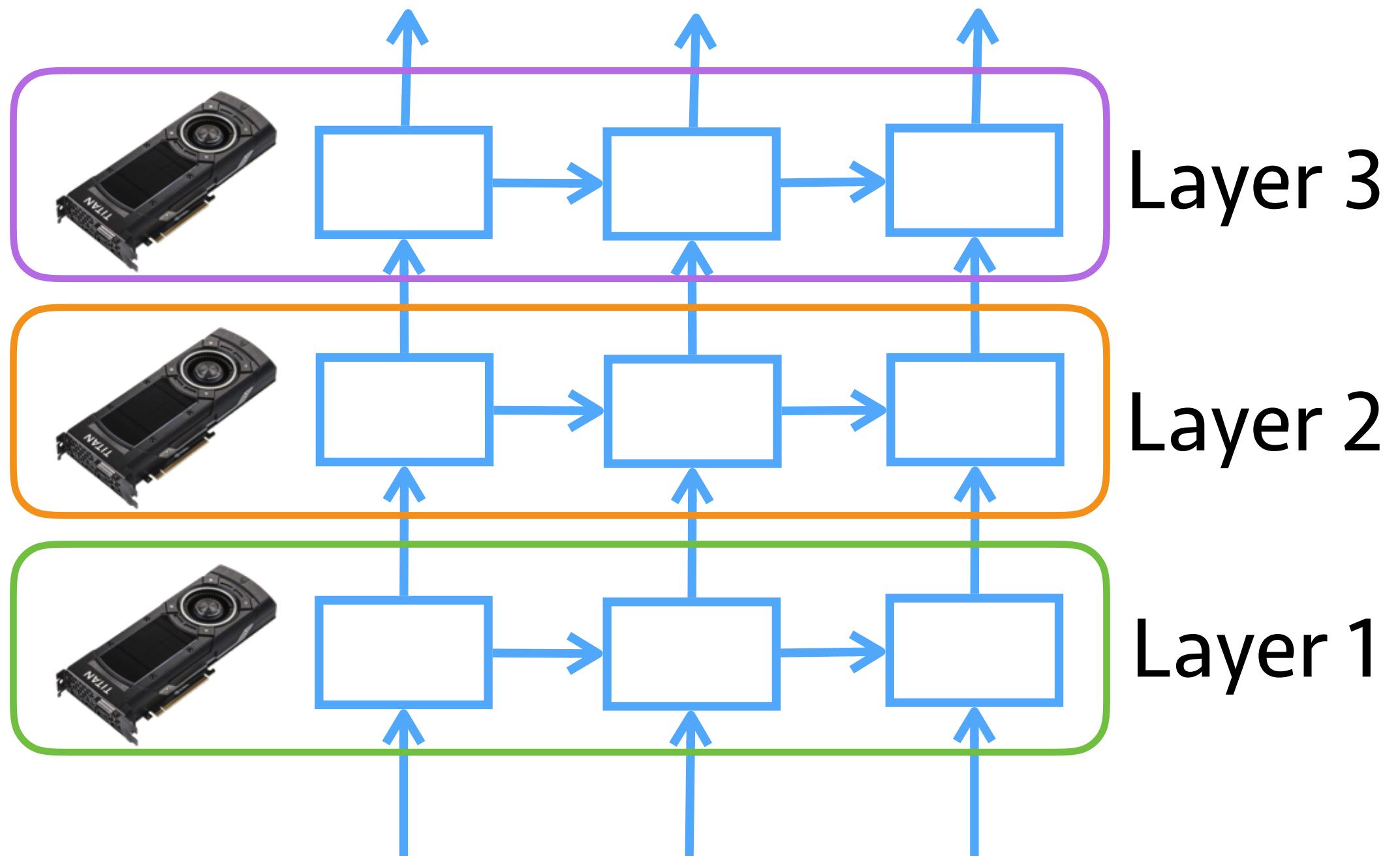
Memory Optimization

Runs Everywhere

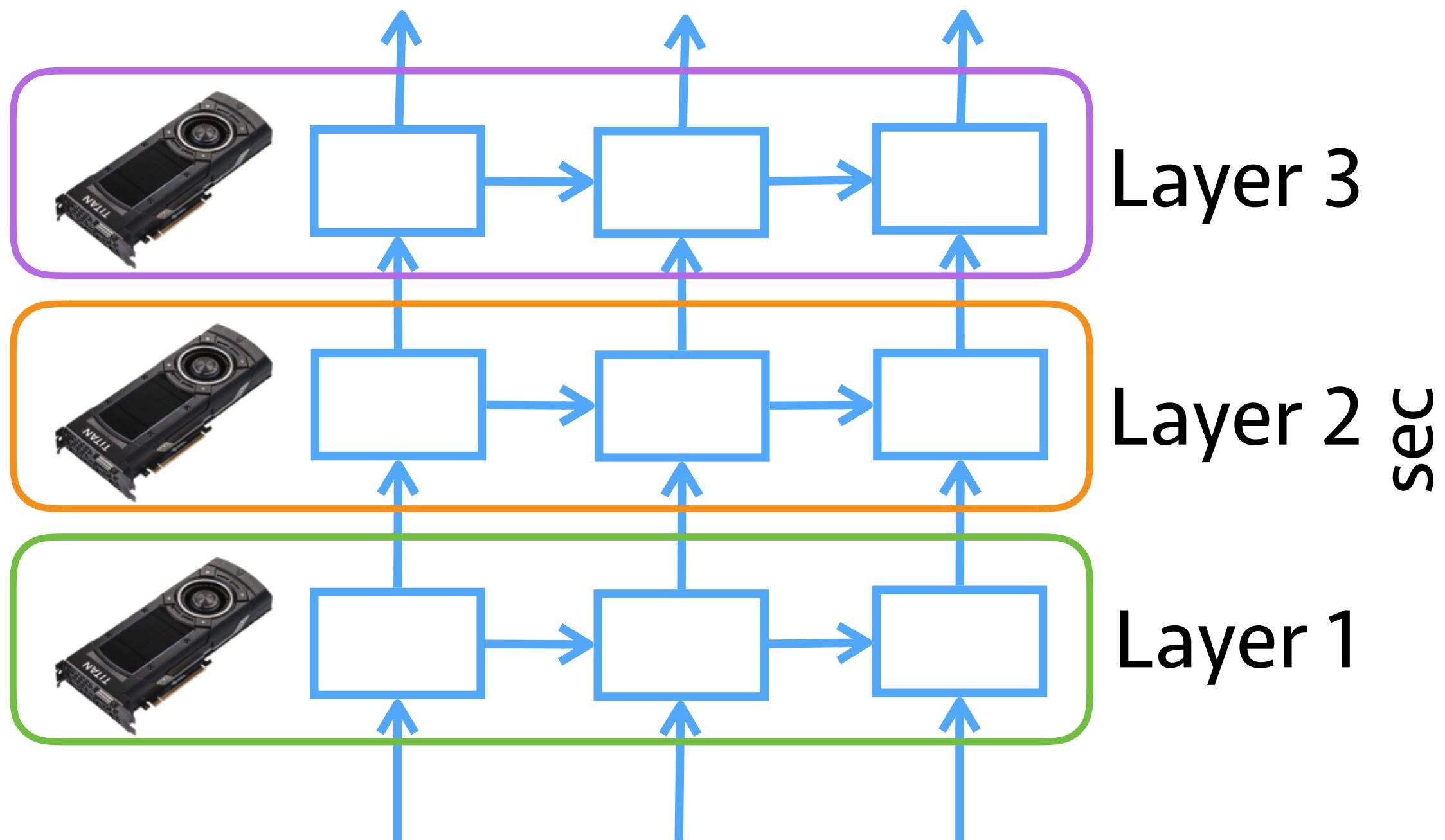
Model Parallelism



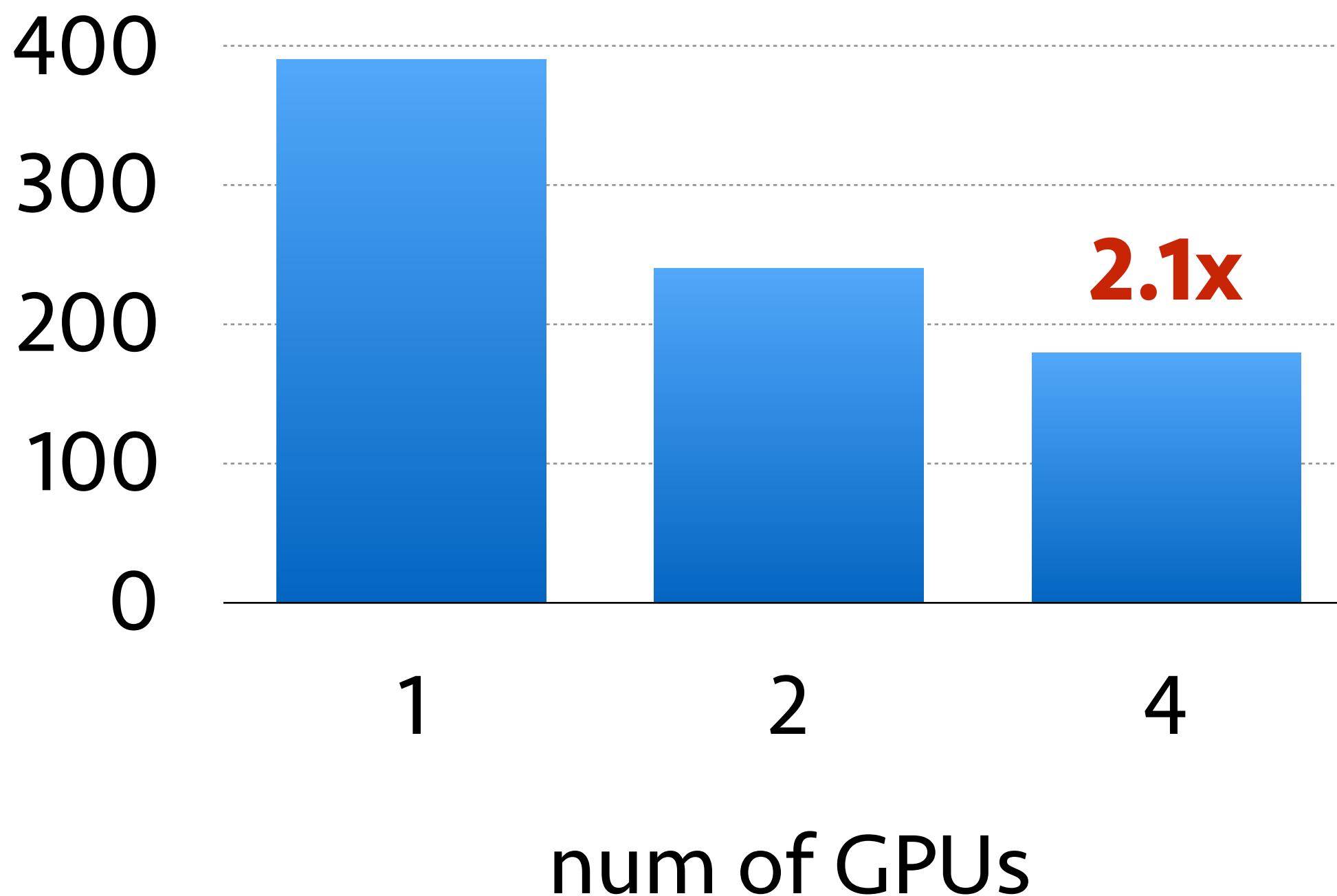
Model Parallelism



Model Parallelism



Time for one epoch on PTB:

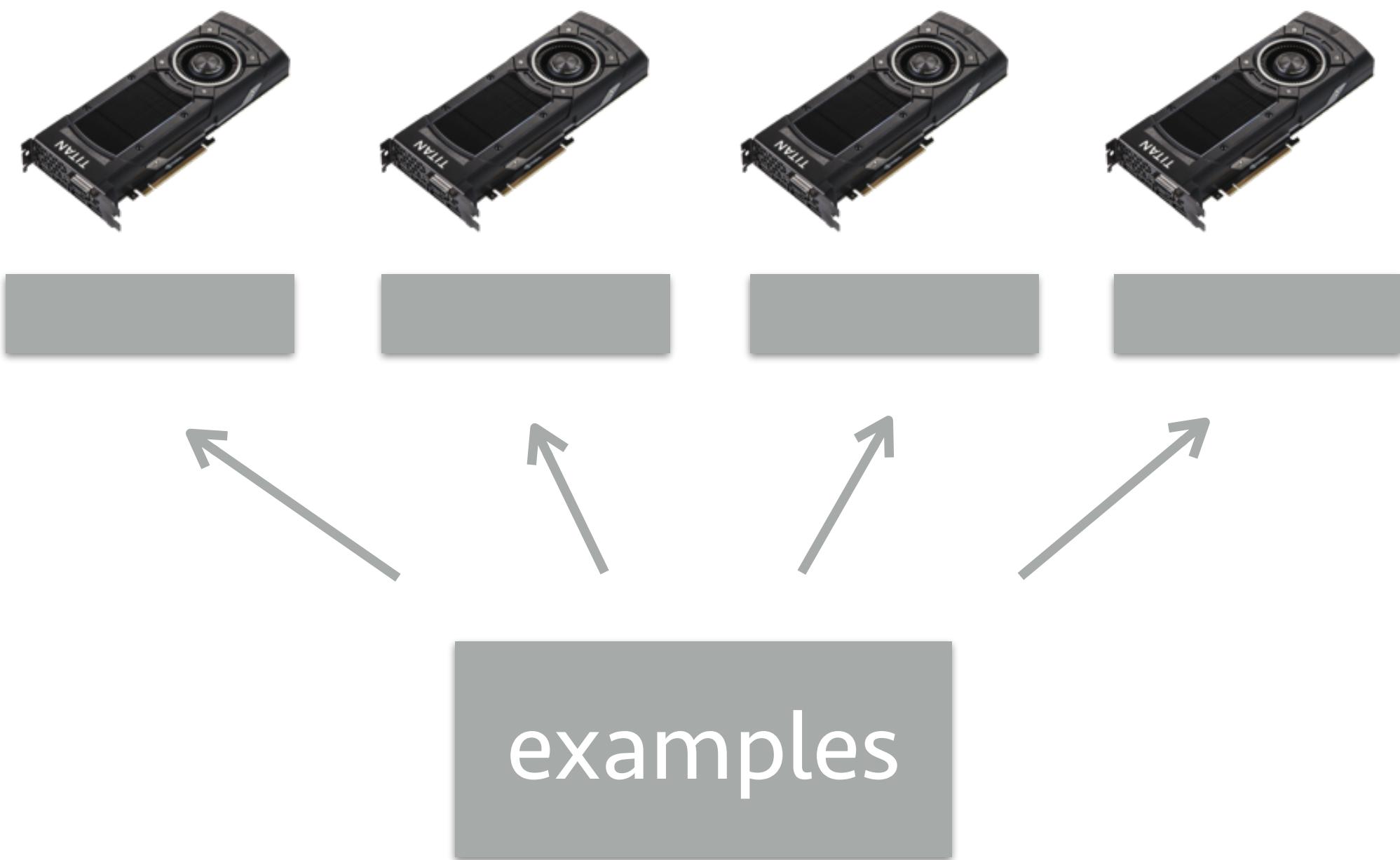


Data Parallelism

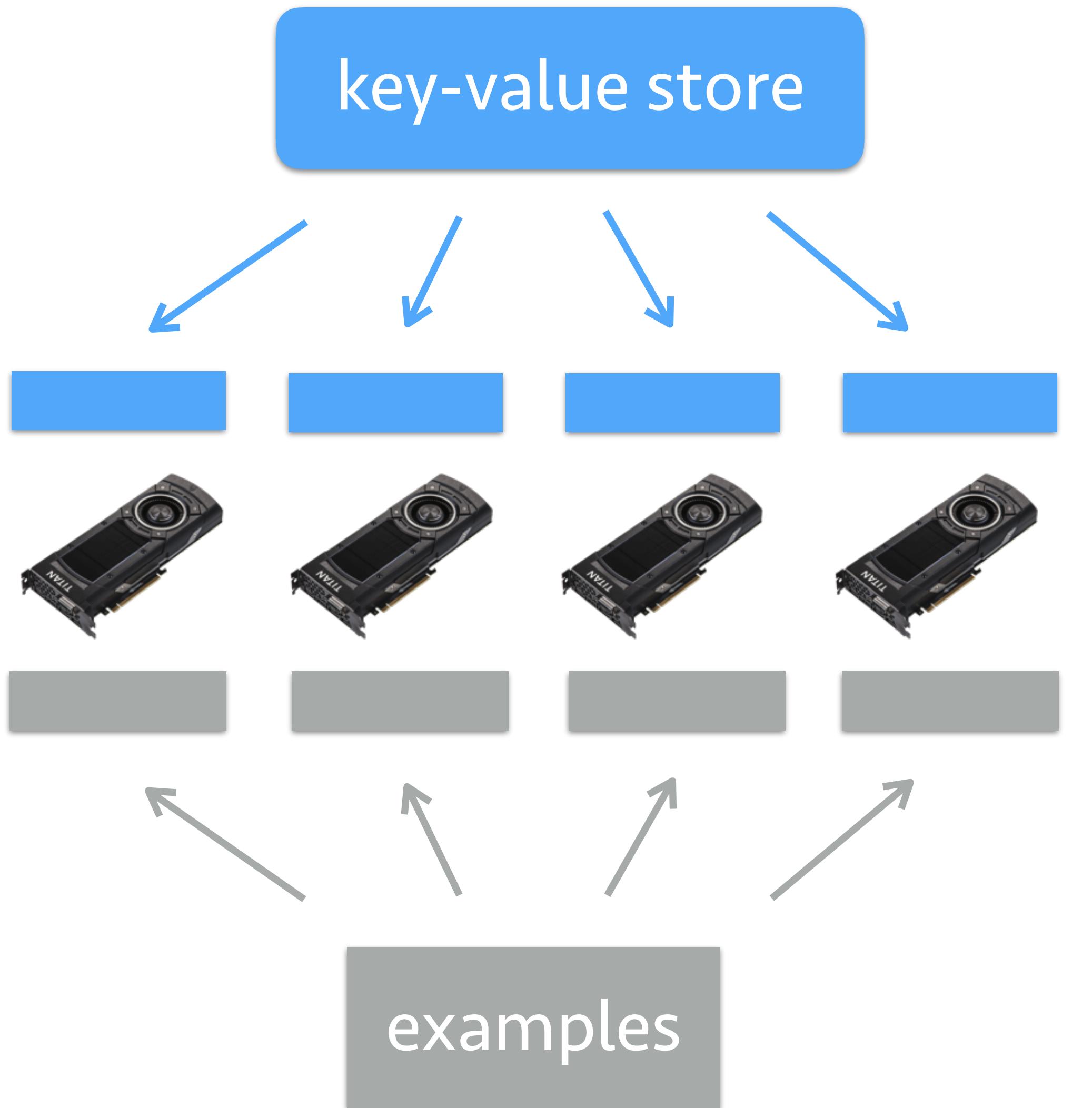
examples

Data Parallelism

1. Read a data partition

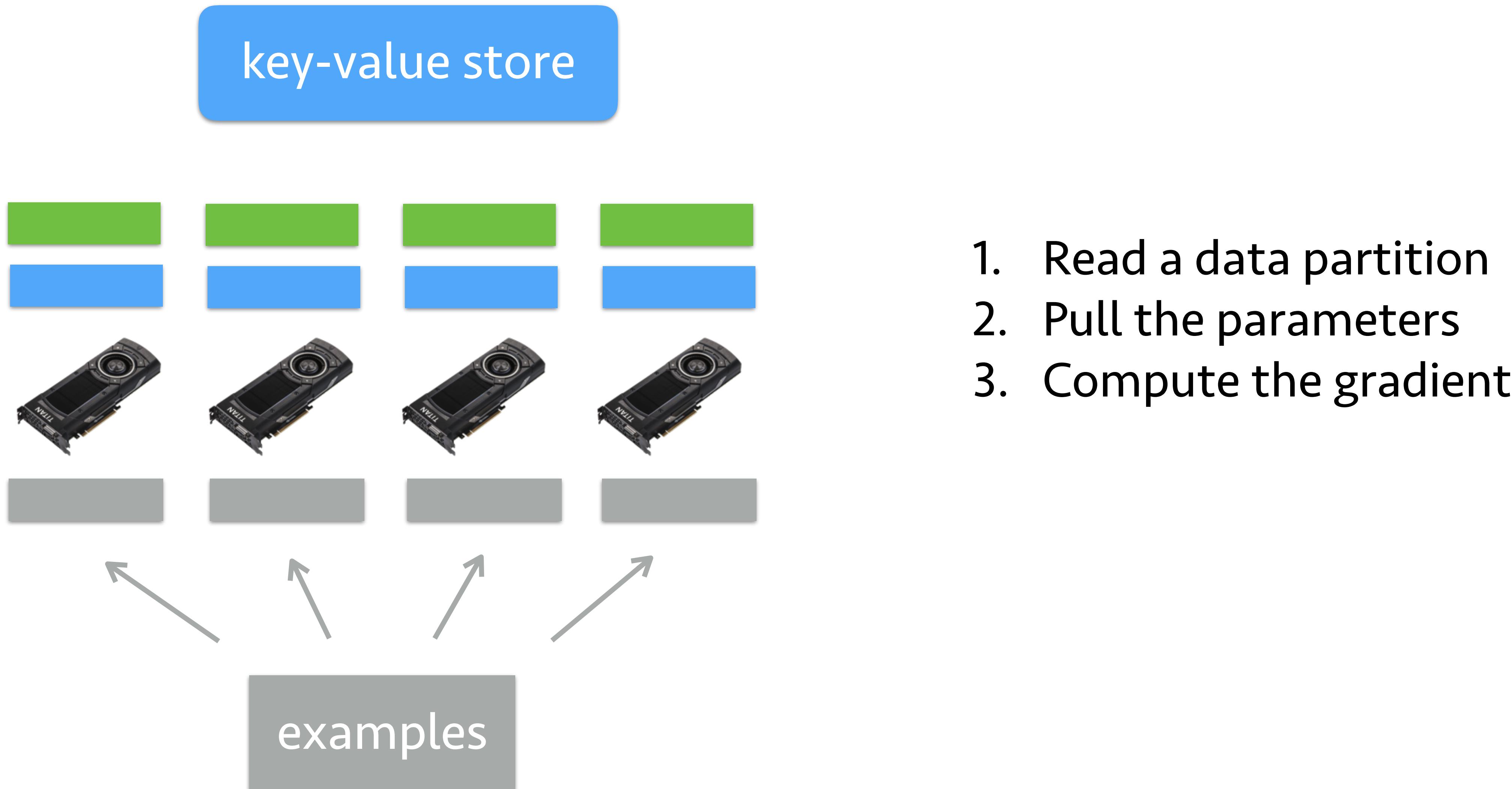


Data Parallelism

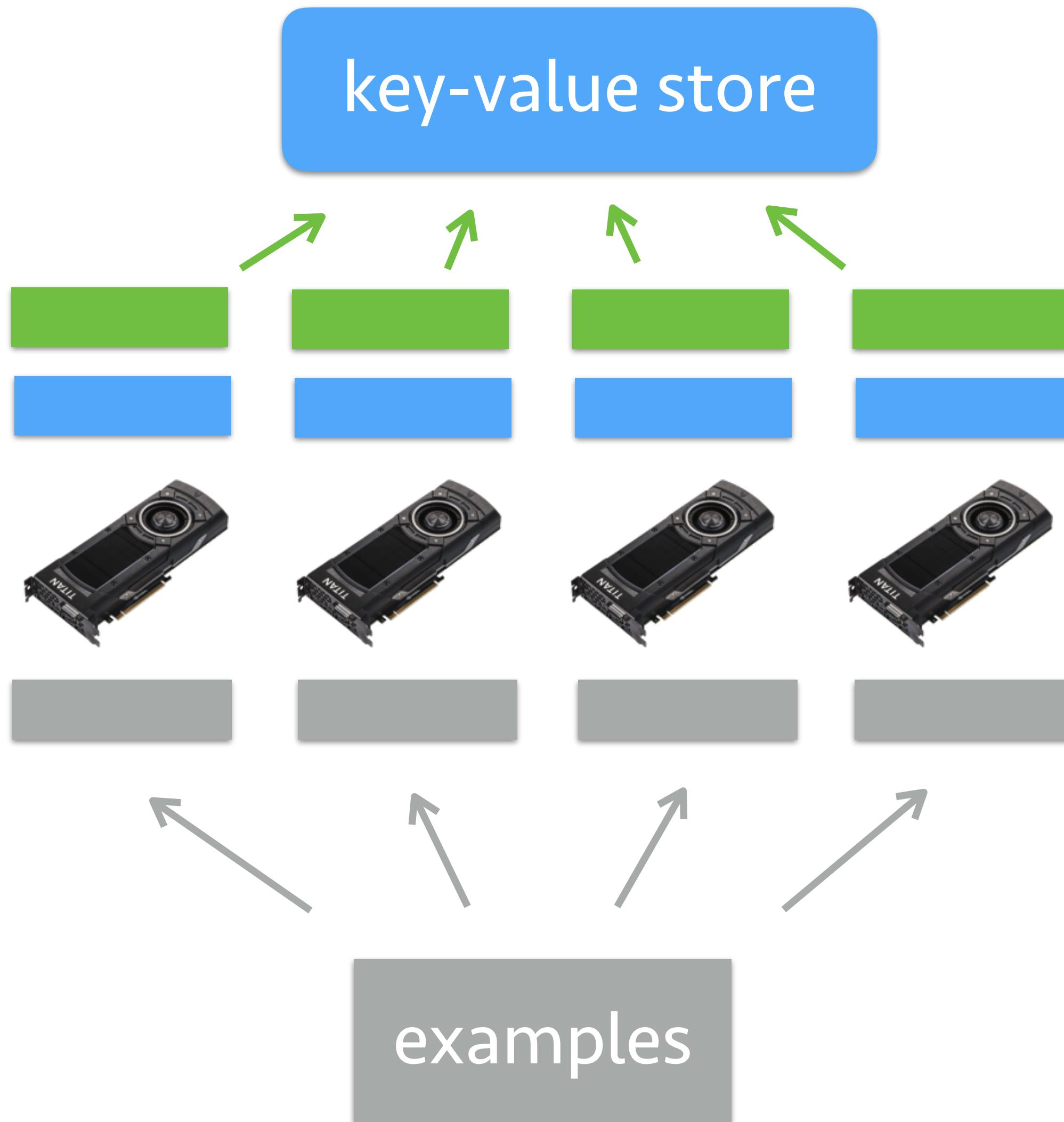


1. Read a data partition
2. Pull the parameters

Data Parallelism

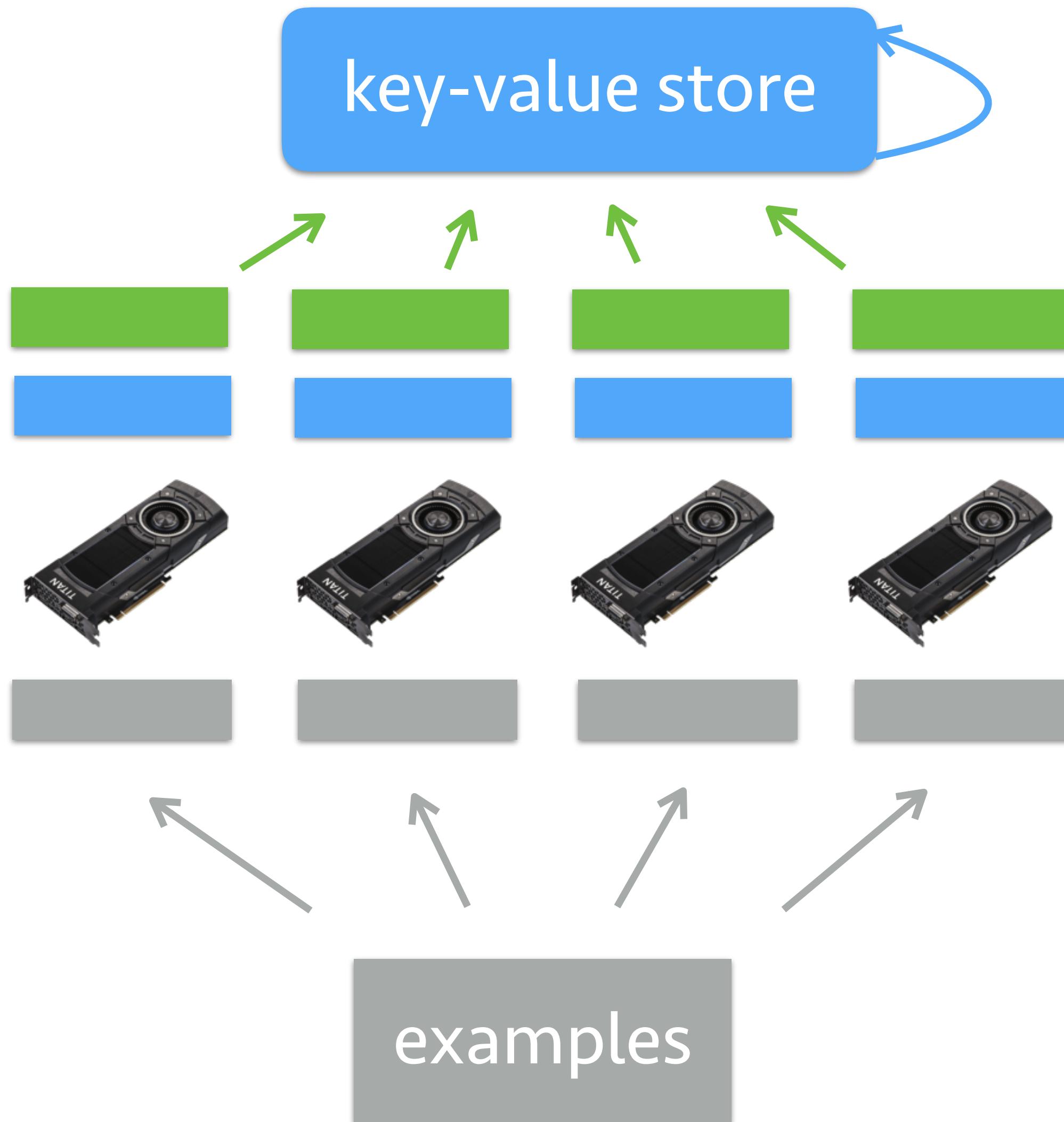


Data Parallelism



1. Read a data partition
2. Pull the parameters
3. Compute the gradient
4. Push the gradient

Data Parallelism



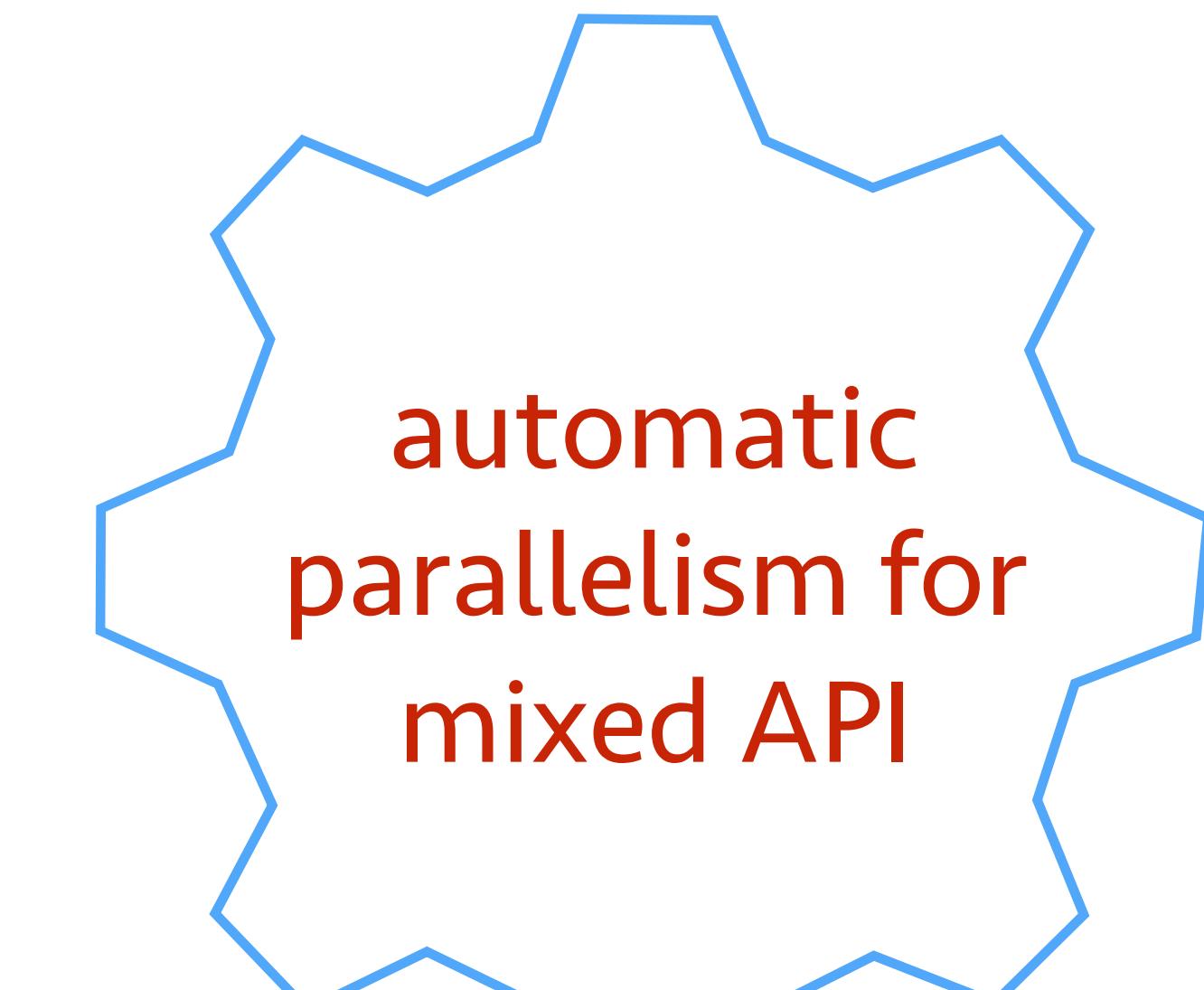
1. Read a data partition
2. Pull the parameters
3. Compute the gradient
4. Push the gradient
5. Update the weight

Implementation

```
% create executor for each GPU
execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu)]
% w -= learning_rate * grad
kvstore.set_updater(...)
% iterating on data
for dbatch in train_iter:
    % iterating on GPUs
    for i in range(ngpu):
        % read a data partition
        copy_data_slice(dbatch, execs[i])
        % pull the parameters
        for key in update_keys:
            kvstore.pull(key, execs[i].weight_array[key])
        % compute the gradient
        execs[i].forward(is_train=True)
        execs[i].backward()
        % push the gradient
        for key in update_keys:
            kvstore.push(key, execs[i].grad_array[key])
```

Implementation

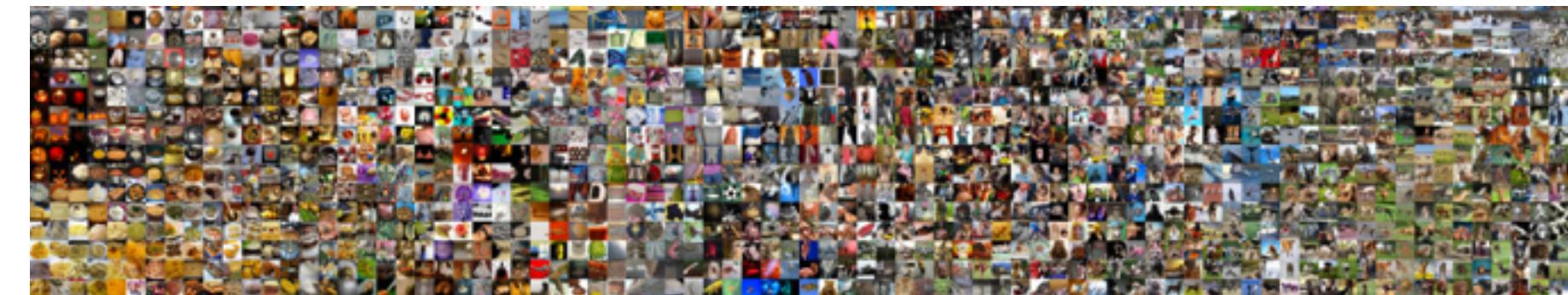
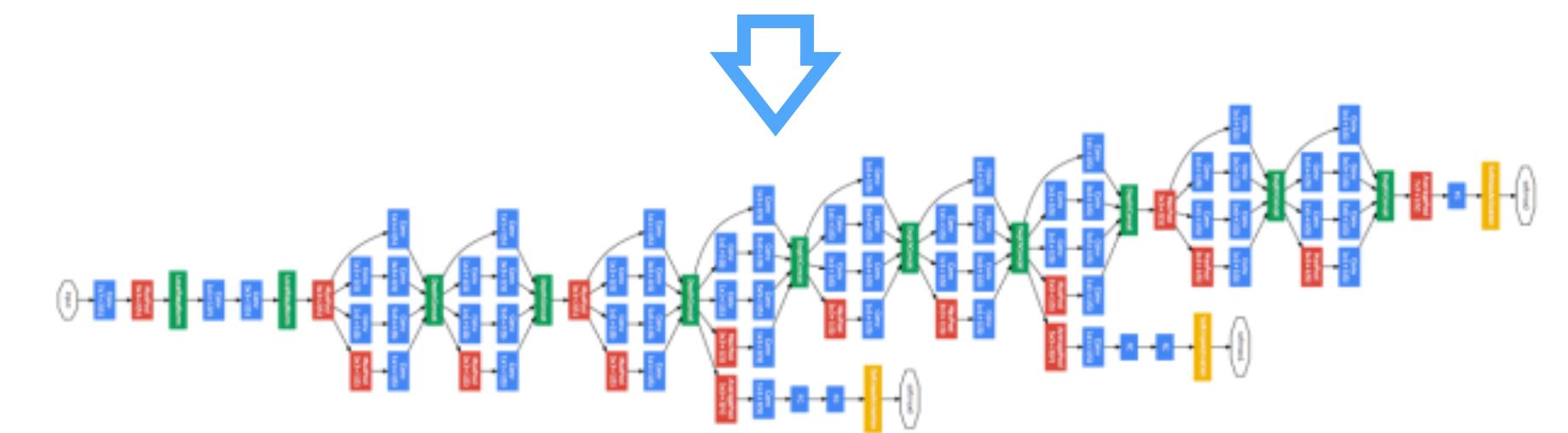
```
% create executor for each GPU
execs = [symbol.bind(mx.gpu(i)) for i in range(ngpu)]
% w -= learning_rate * grad
kvstore.set_updater(...)
% iterating on data
for dbatch in train_iter:
    % iterating on GPUs
    for i in range(ngpu):
        % read a data partition
        copy_data_slice(dbatch, execs[i])
        % pull the parameters
        for key in update_keys:
            kvstore.pull(key, execs[i].weight_array[key])
        % compute the gradient
        execs[i].forward(is_train=True)
        execs[i].backward()
        % push the gradient
        for key in update_keys:
            kvstore.push(key, execs[i].grad_array[key])
```



automatic
parallelism for
mixed API

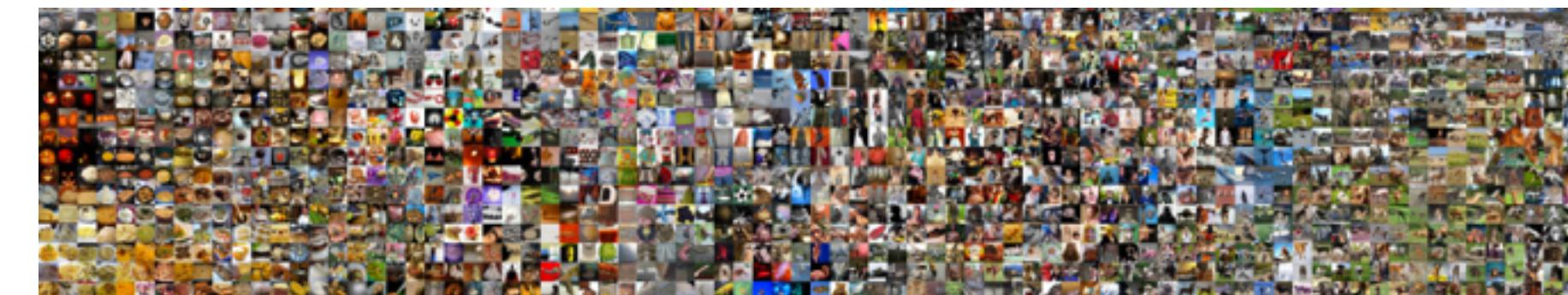
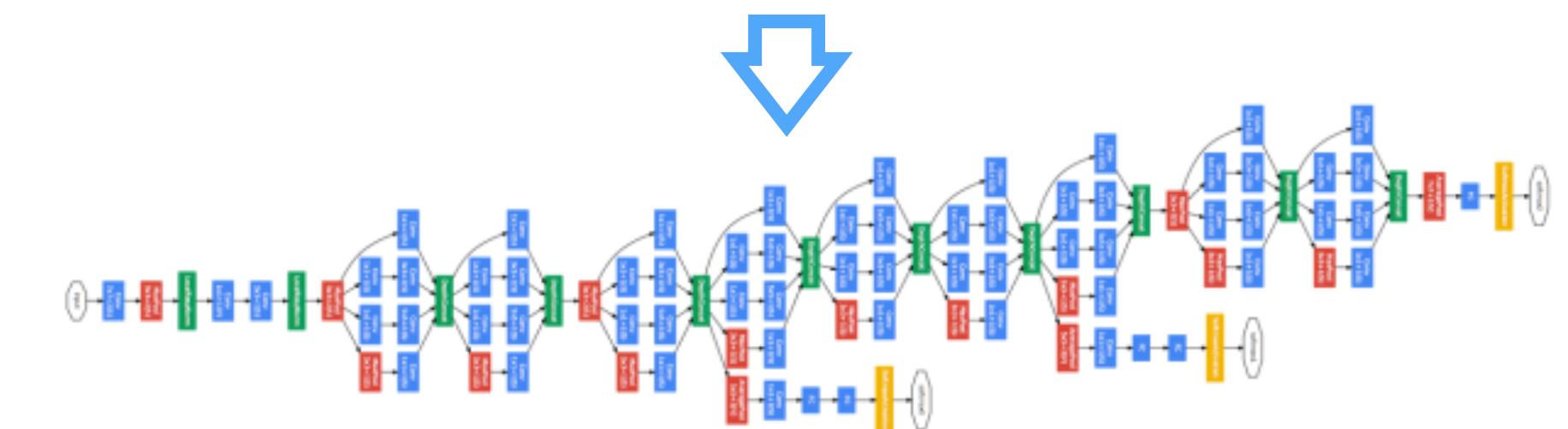
Results

- ◆ IMAGENET with 1.2m images and 1,000 classes
- ◆ 4 x Nvidia GTX 980
- ◆ Google Inception Network

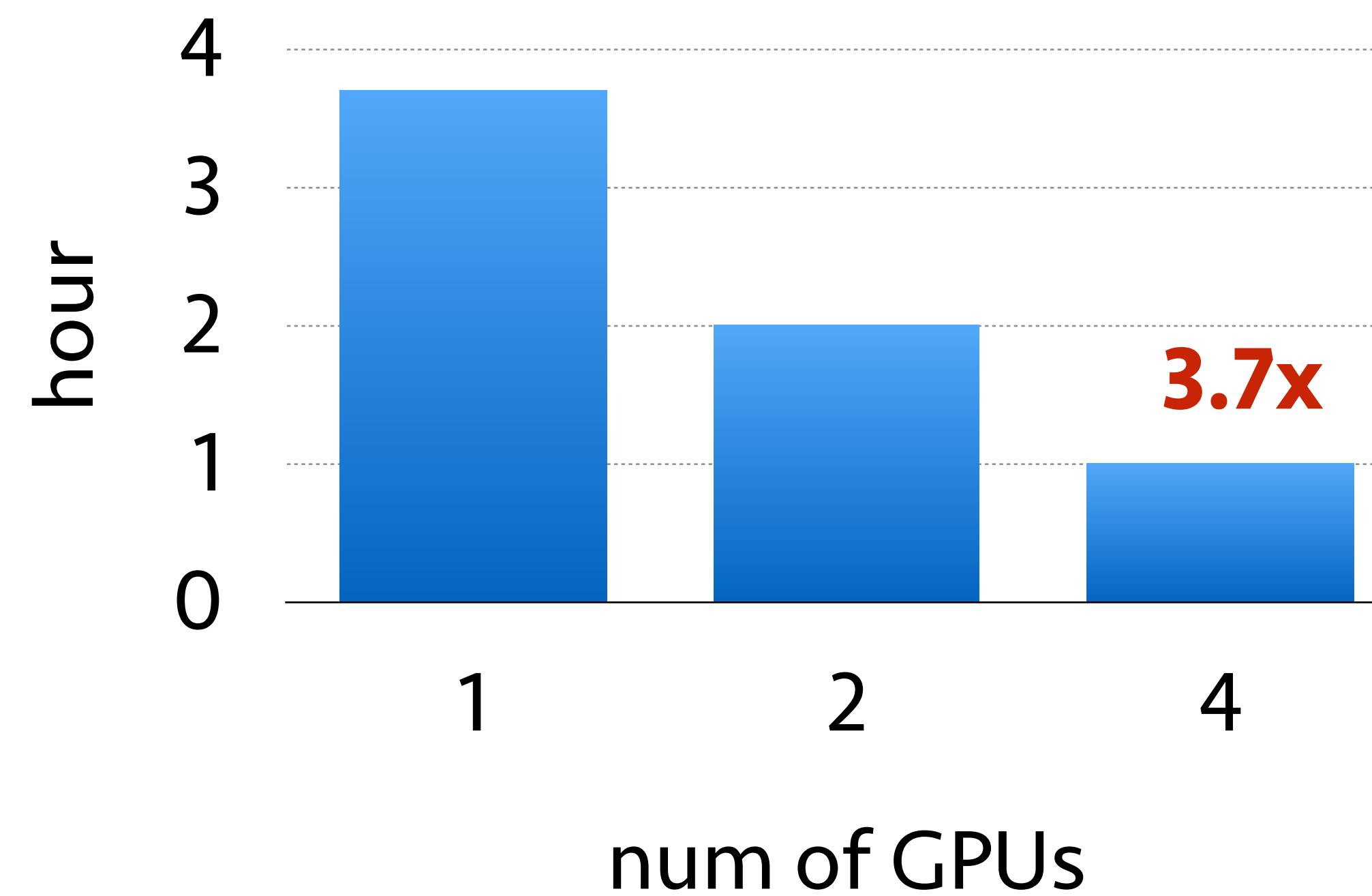


Results

- ◆ IMAGENET with 1.2m images and 1,000 classes
- ◆ 4 x Nvidia GTX 980
- ◆ Google Inception Network



Time for one epoch:



Distributed Computing

key-value store

examples

Distributed Computing

key-value store

Store data in
a distributed filesystem

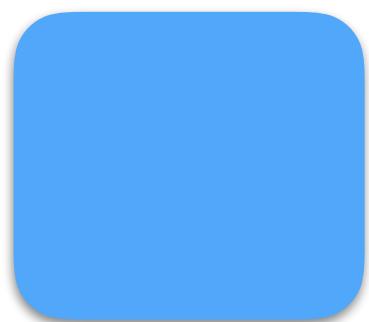
Distributed Computing

key-value store

multiple
worker machines

Store data in
a distributed filesystem

Distributed Computing

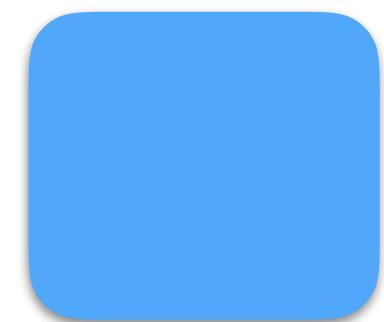
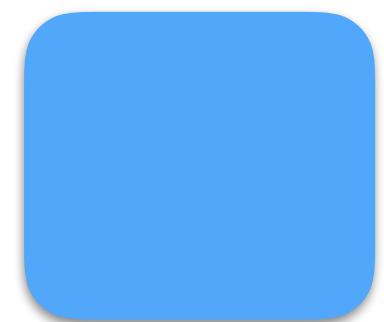
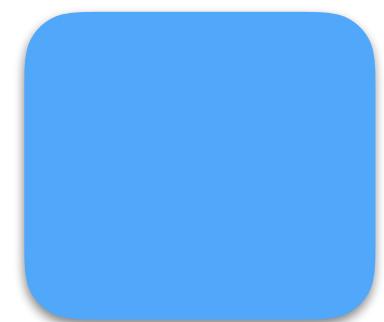


multiple
server machines

multiple
worker machines

Store data in
a distributed filesystem

Distributed Computing



multiple
server machines

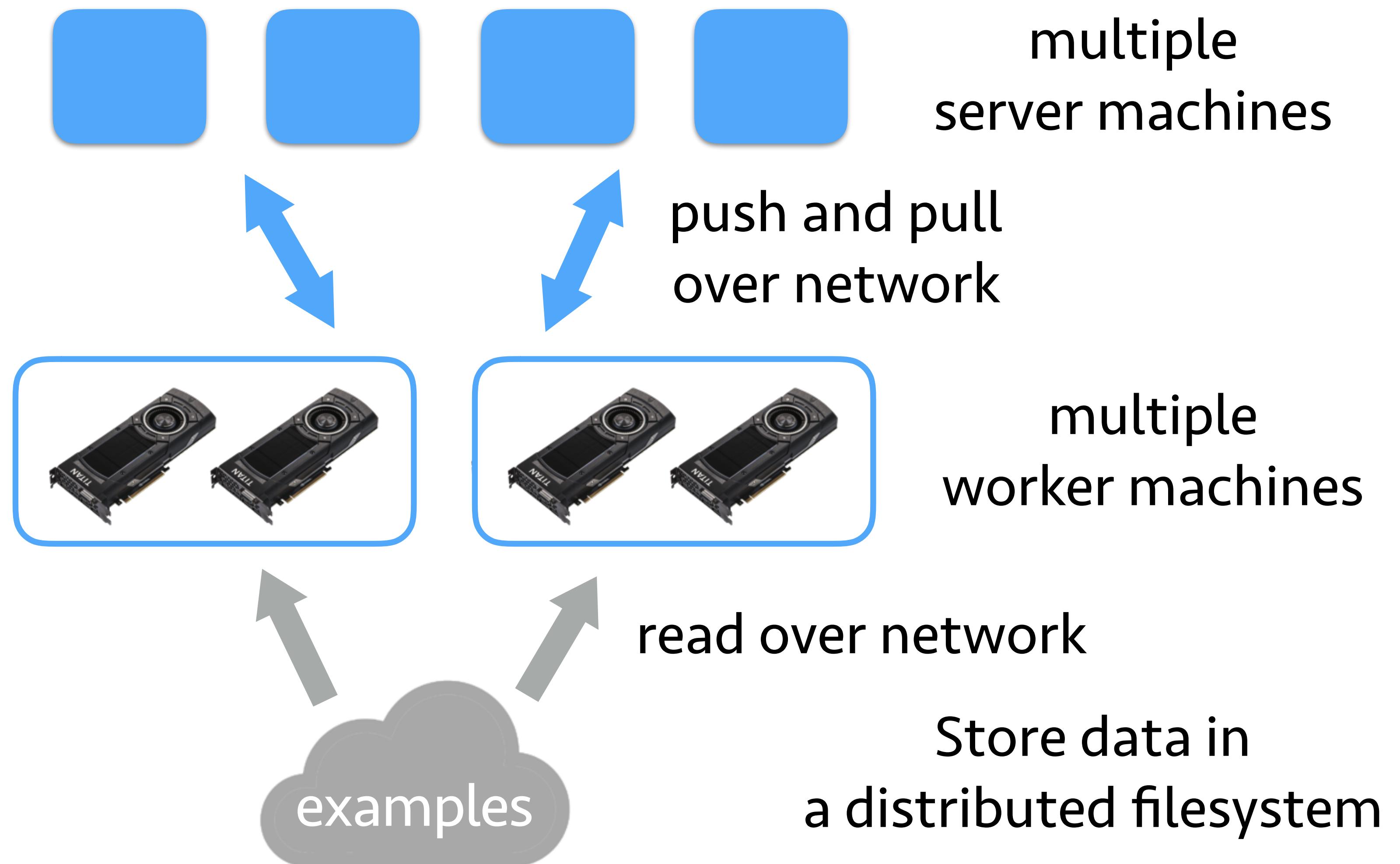
multiple
worker machines

examples

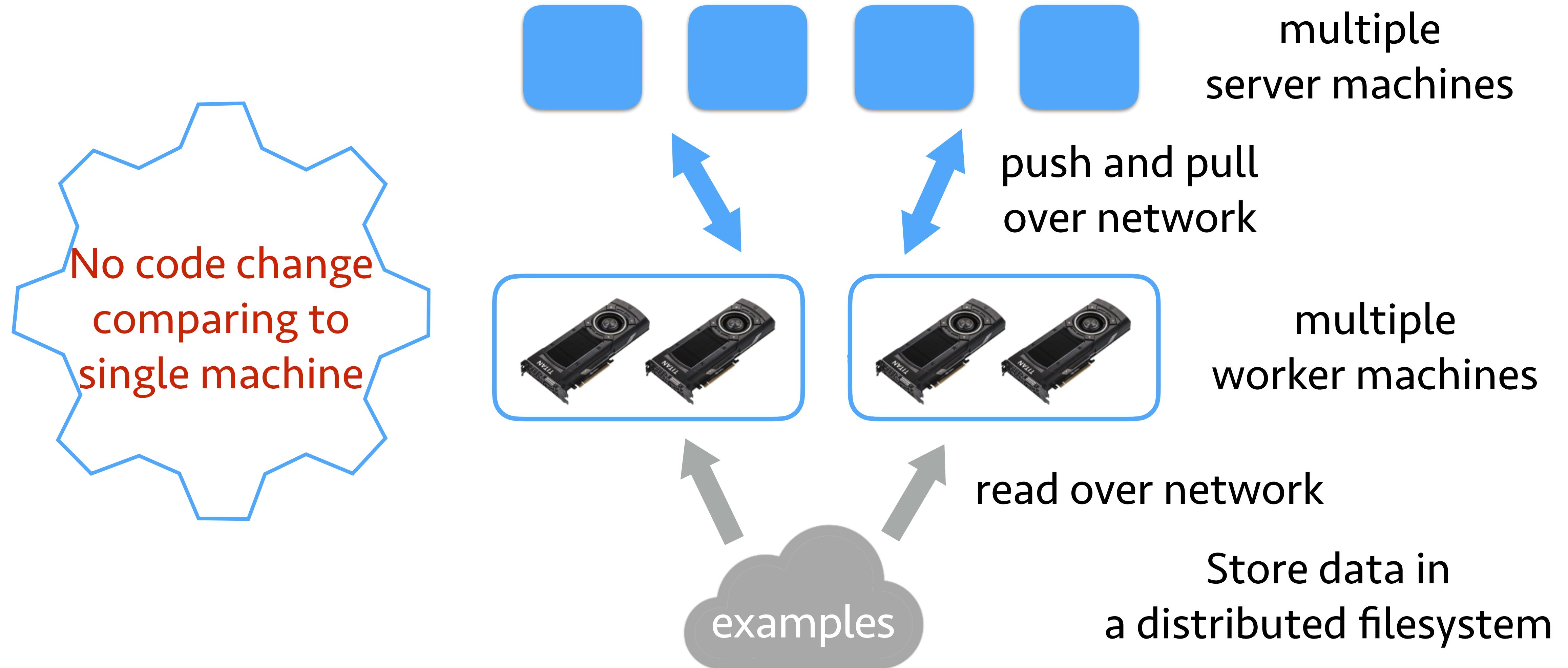
read over network

Store data in
a distributed filesystem

Distributed Computing

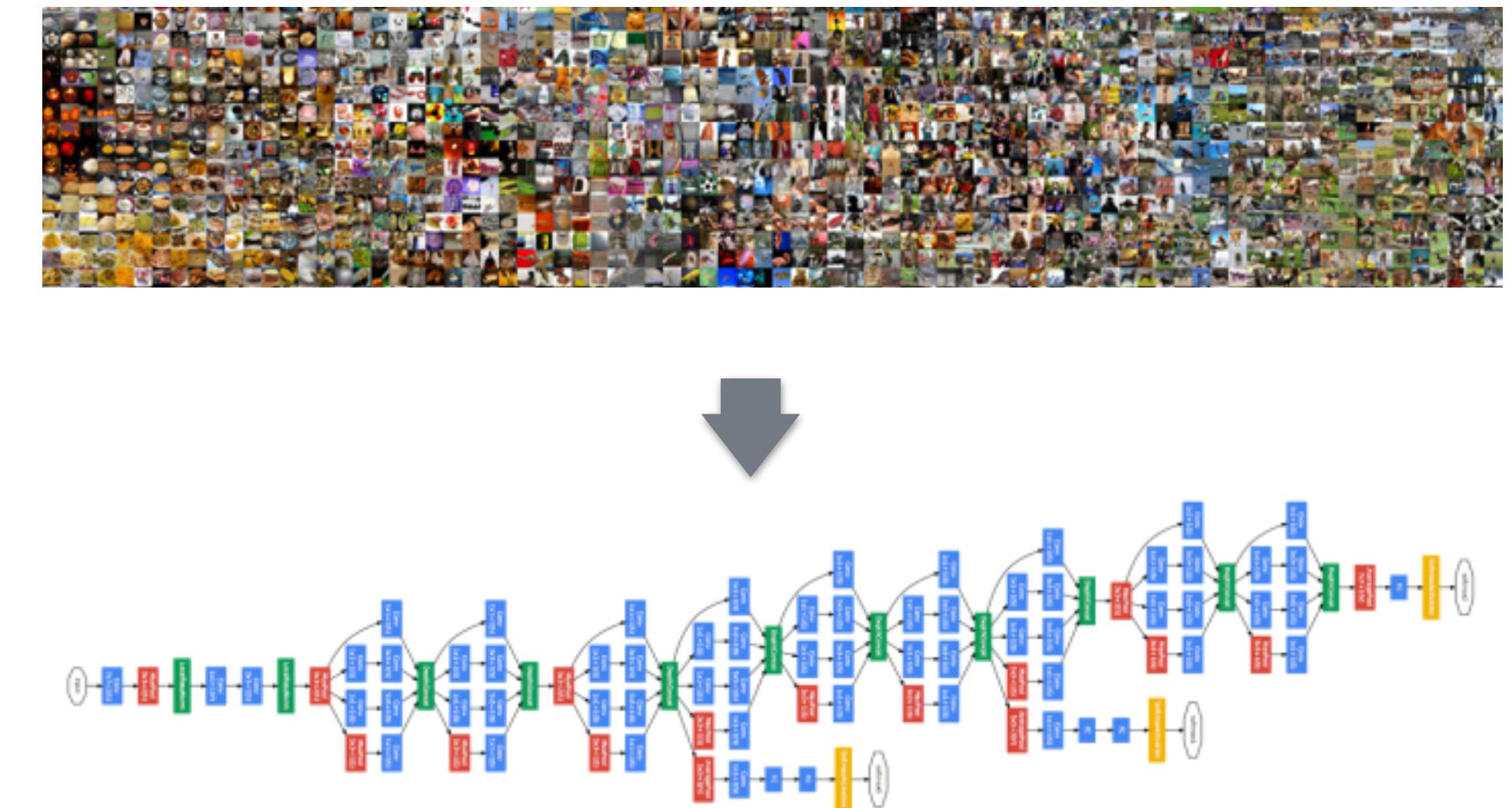


Distributed Computing



Distributed Experiments

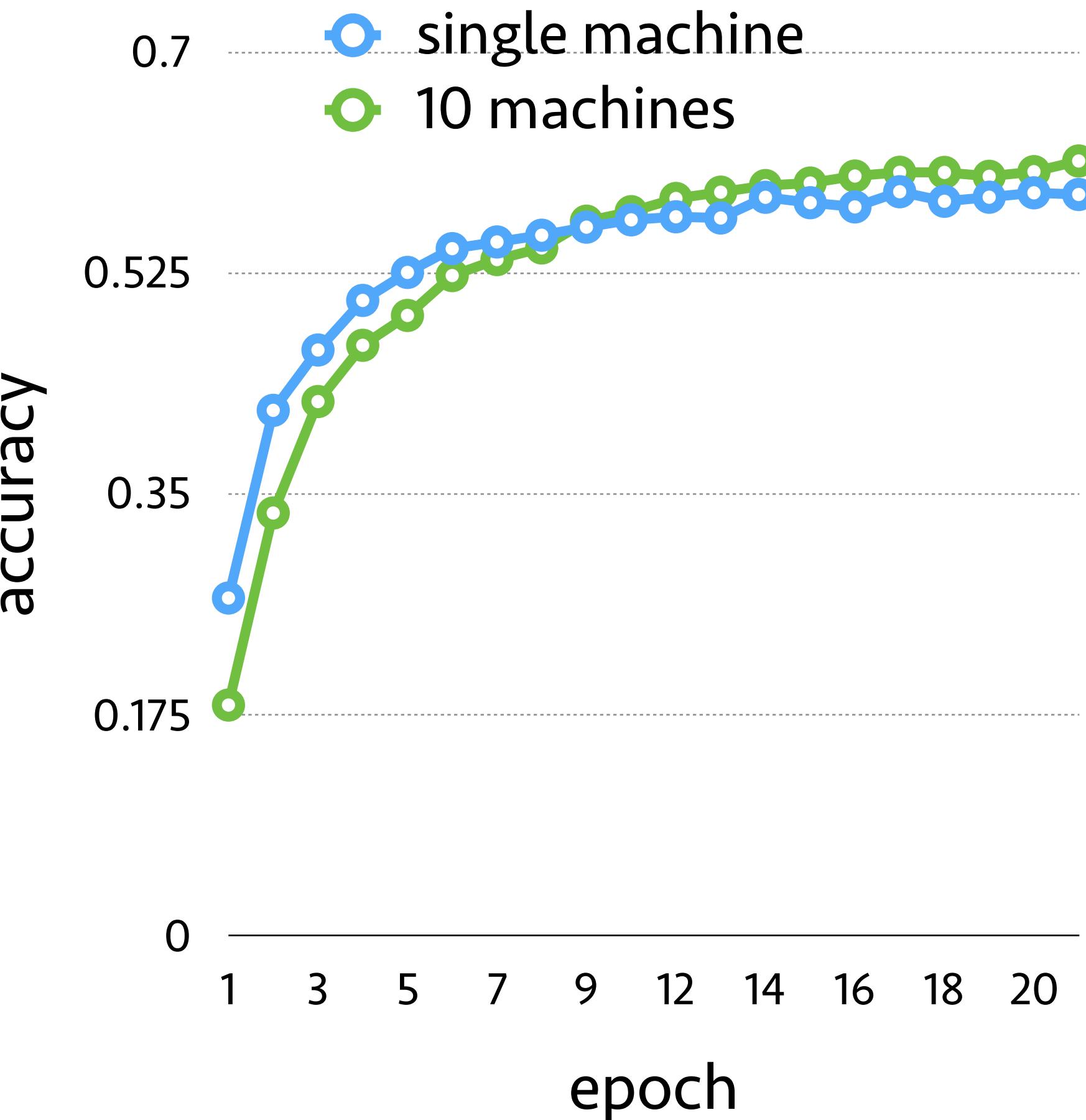
- ◆ ImageNet with 1.2m images and 1,000 classes
- ◆ AWS EC2 GPU instance, 4 GPUs per machine
- ◆ Google Inception Network



Distributed Experiments

- ◆ ImageNet with 1.2m images and 1,000 classes
- ◆ AWS EC2 GPU instance, 4 GPUs per machine
- ◆ Google Inception Network

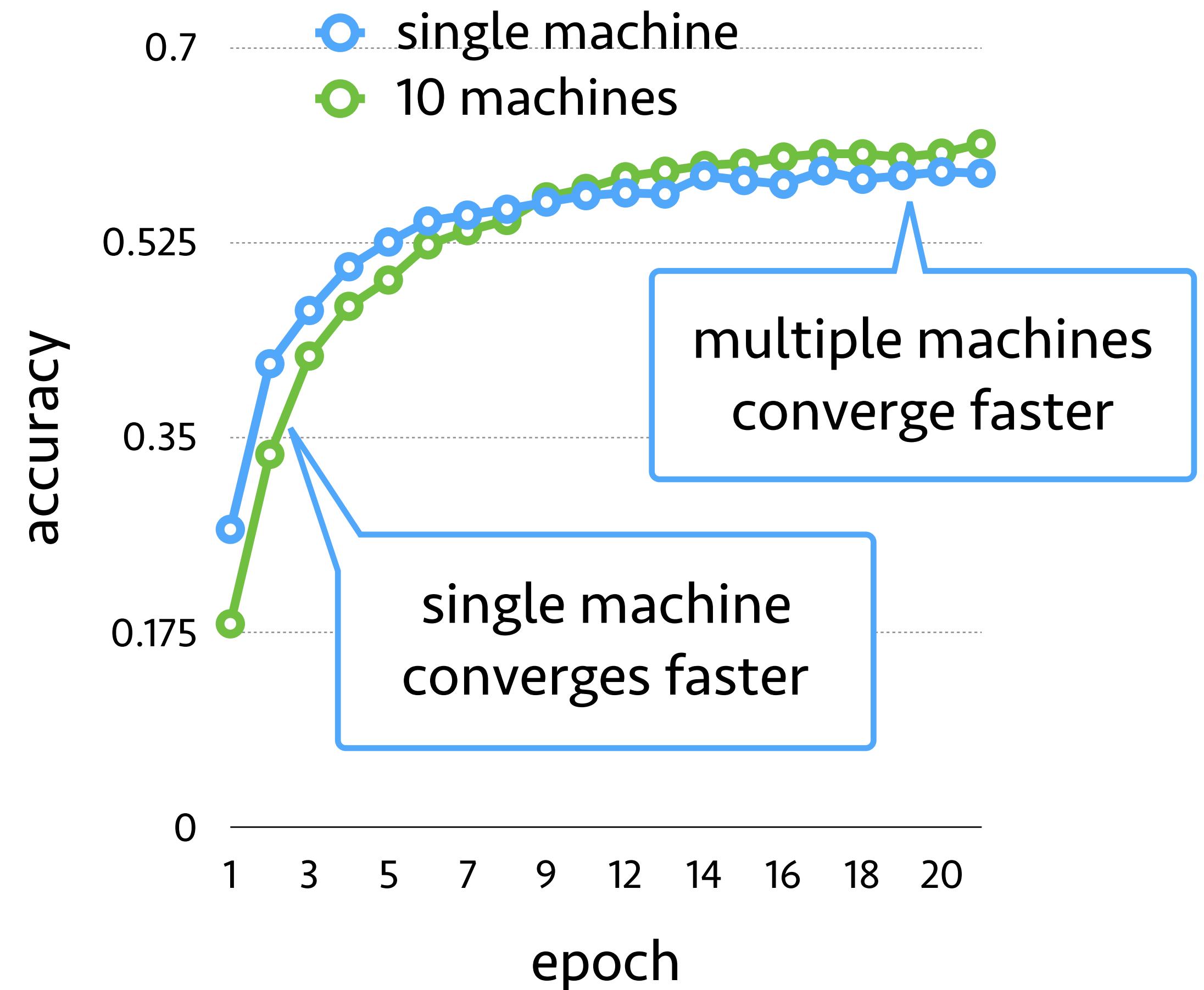
validation accuracy versus epoch



Distributed Experiments

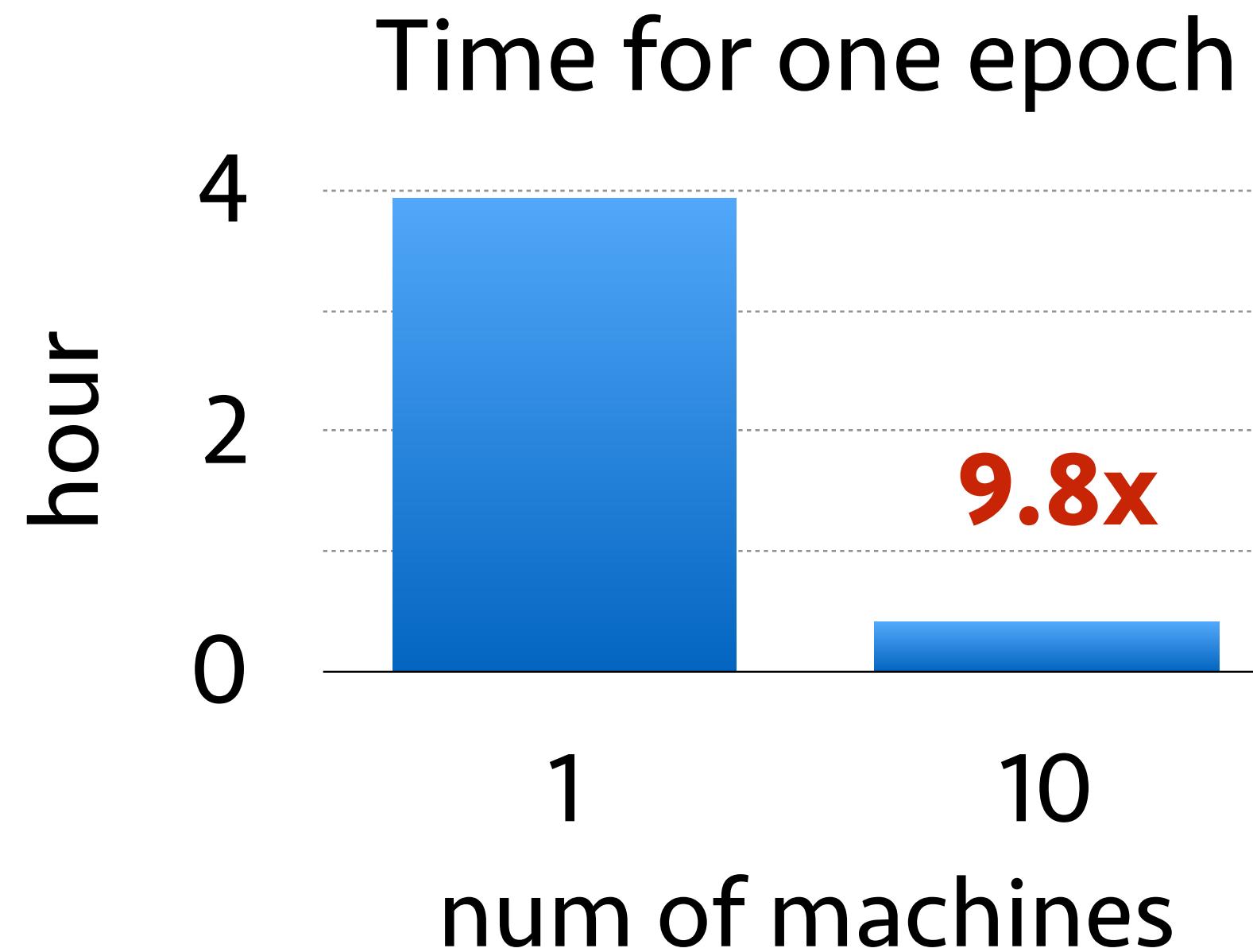
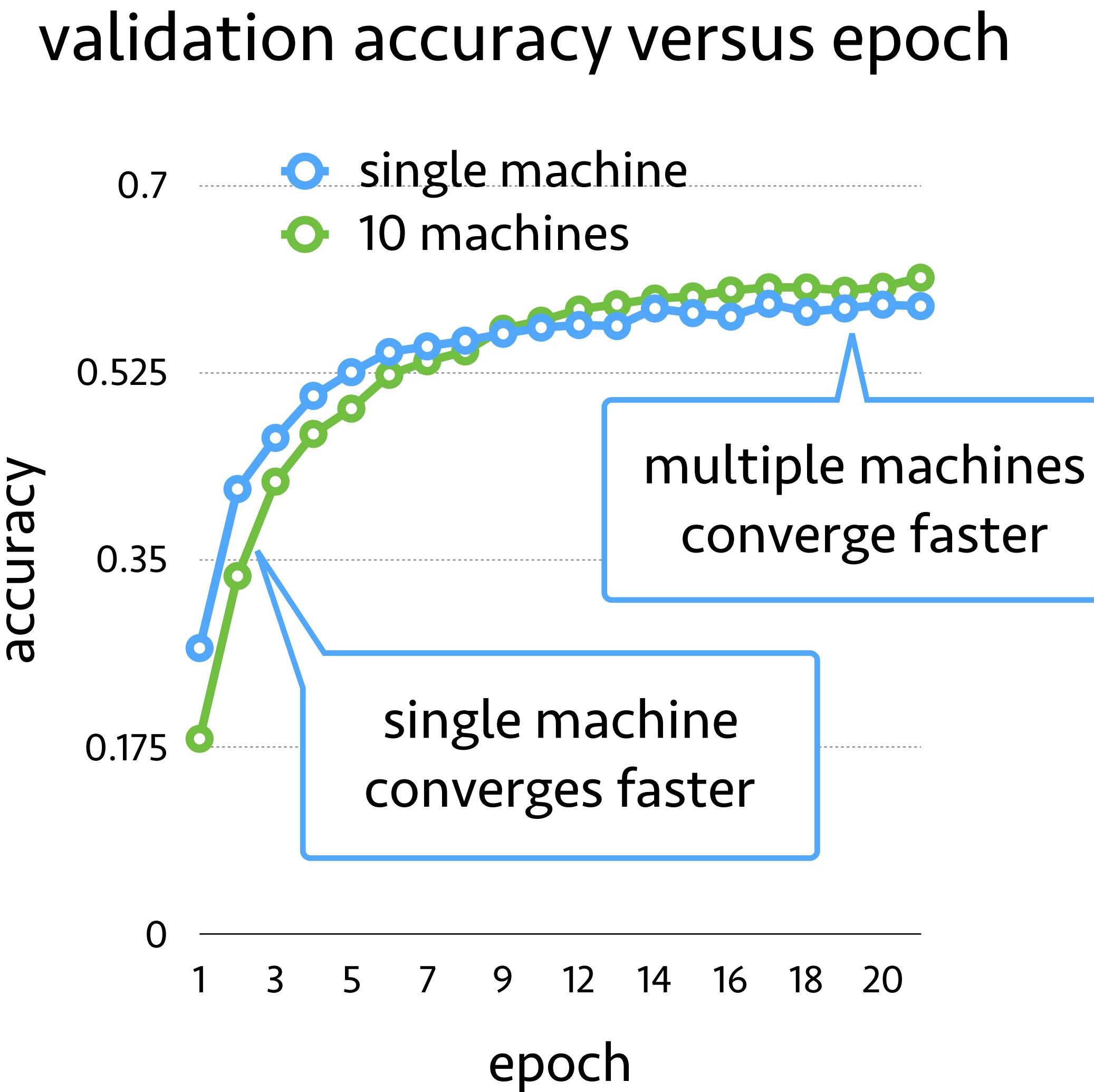
- ◆ ImageNet with 1.2m images and 1,000 classes
- ◆ AWS EC2 GPU instance, 4 GPUs per machine
- ◆ Google Inception Network

validation accuracy versus epoch



Distributed Experiments

- ◆ ImageNet with 1.2m images and 1,000 classes
- ◆ AWS EC2 GPU instance, 4 GPUs per machine
- ◆ Google Inception Network



MXNet Highlights

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

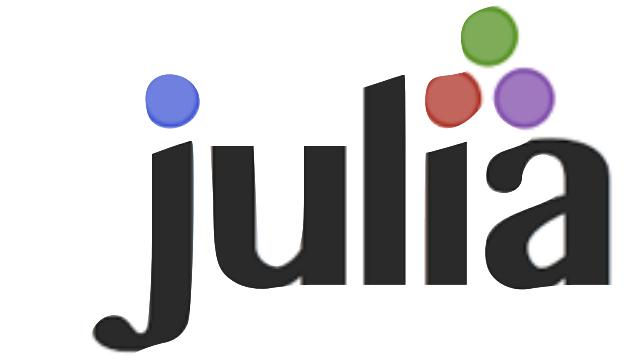
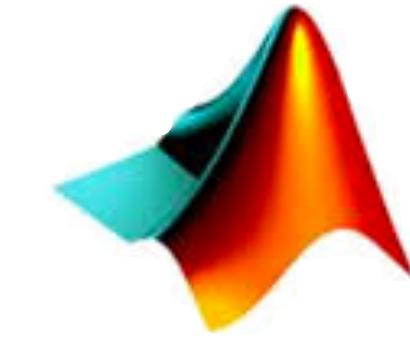
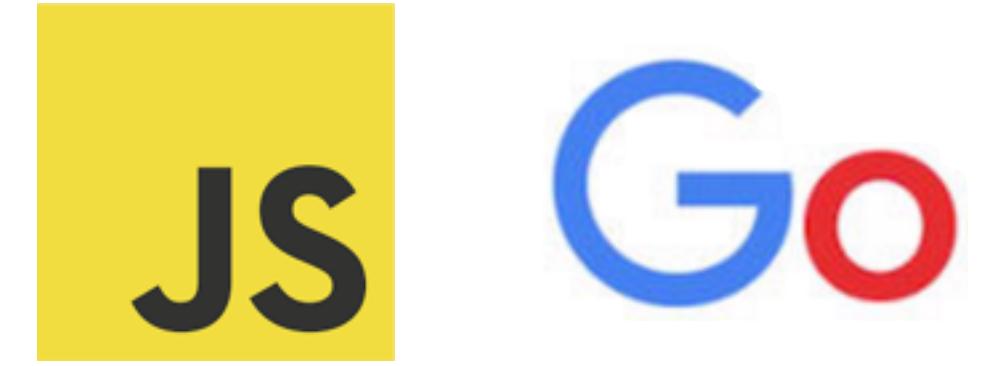
Distributed Computing

Language Supports

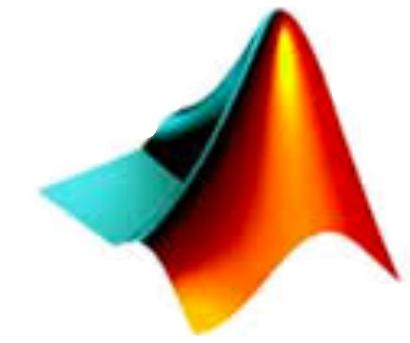
Memory Optimization

Runs Everywhere

Multiple Languages

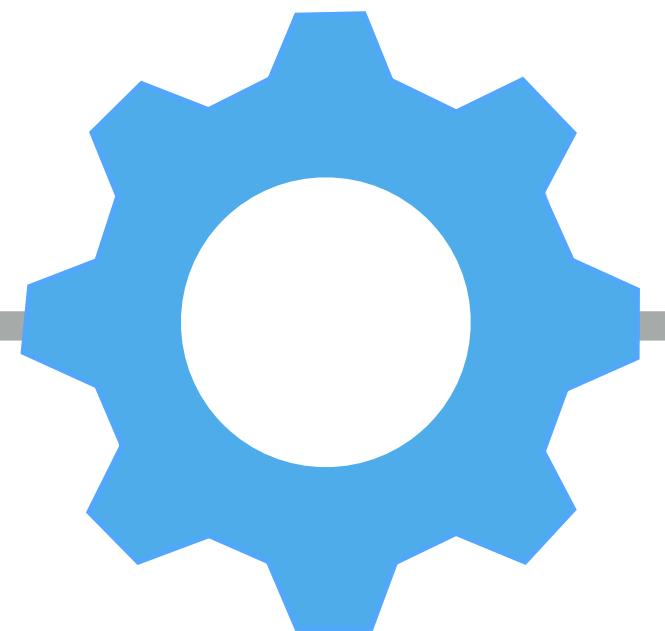


Multiple Languages

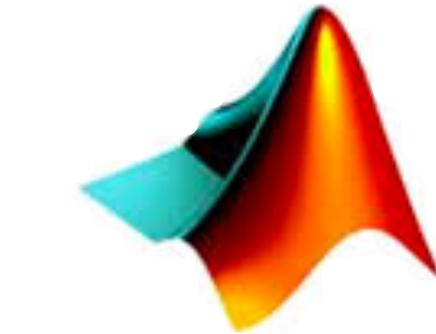
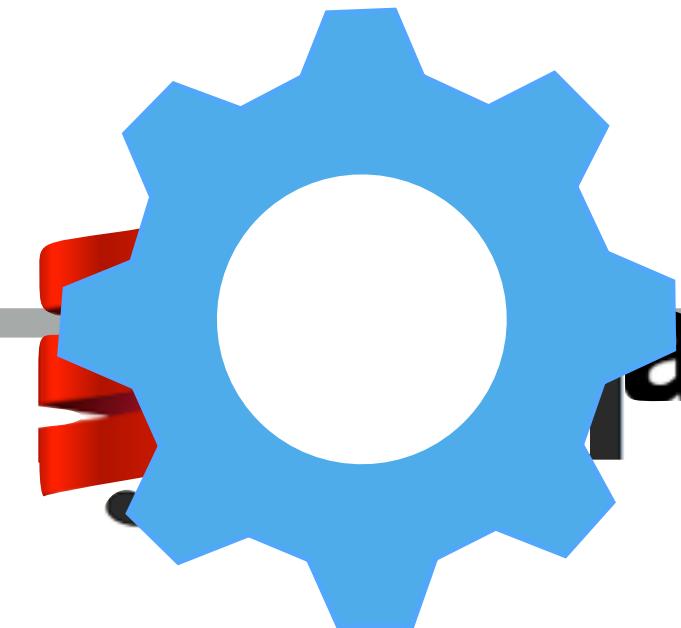


frontend

backend



Multiple Languages



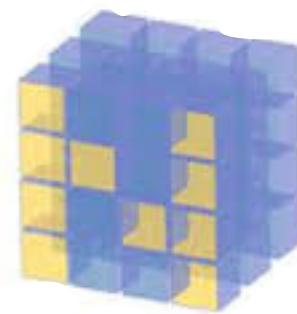
frontend

backend

single implementation
of backend system and
common operators

performance guarantee
regardless which frontend
language is used

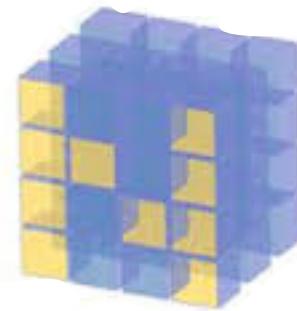
Minpy: MXNet Numpy Package



NumPy is the de facto scientific computing package in Python

Great flexibility (500+ operators) but CPU-only

Minpy: MXNet Numpy Package



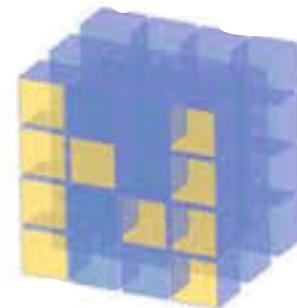
NumPy is the de facto scientific computing package in Python

Great flexibility (500+ operators) but CPU-only

- ♦ Native Numpy Integration

```
>>> import numpy as np  ➡  >>> import minpy as np
```

Minpy: MXNet Numpy Package



NumPy is the de facto scientific computing package in Python

Great flexibility (500+ operators) but CPU-only

- ♦ Native Numpy Integration

```
>>> import numpy as np  ➔  >>> import minpy as np
```

- ♦ Transparent CPU and GPU co-execution

```
>>> x = np.zeros((10, 20)) # call GPU function
>>> y = np.sort(x)          # call CPU function; copy GPU->CPU
>>> z = np.log(y)           # call GPU function; copy CPU->GPU
```

Minpy: MXNet Numpy Package

- ◆ Small operators (Numpy) + Big operators (MXNet)

```
>>> symbol = mx.symbol.FullyConnected(...)  
>>> bigop = minpy.core.function(sigmoid, ...)  
>>> def training_loss(w, x, y):  
...     pred = bigop(input=x, fc_weight=w)  
...     prob = pred * y + (1 - pred) * (1 - y)  
...     return -np.sum(np.log(prob))
```

Minpy: MXNet Numpy Package

- ◆ Small operators (Numpy) + Big operators (MXNet)

```
>>> symbol = mx.symbol.FullyConnected(...)  
>>> bigop = minpy.core.function(sigmoid, ...)  
>>> def training_loss(w, x, y):  
...     pred = bigop(input=x, fc_weight=w)  
...     prob = pred * y + (1 - pred) * (1 - y)  
...     return -np.sum(np.log(prob))
```

- ◆ Imperative style auto-differentiation

```
>>> grad_func = minpy.core.grad_and_loss(train_loss)  
>>> dw = grad_fn(w, x, y)
```

Bring Torch to MXNet



Torch is a popular Lua framework for both scientific computing and deep learning

Bring Torch to MXNet

Torch is a popular Lua framework for both scientific computing and deep learning

◆ Tensor Computation

```
>>> import mxnet as mx
>>> x = mx.th.randn(2, 2, ctx=mx.gpu(0))
>>> y = mx.th.abs(x)
>>> print y.asnumpy()
```

◆ Modules (Layers)

MXNet Highlights

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

Language Supports

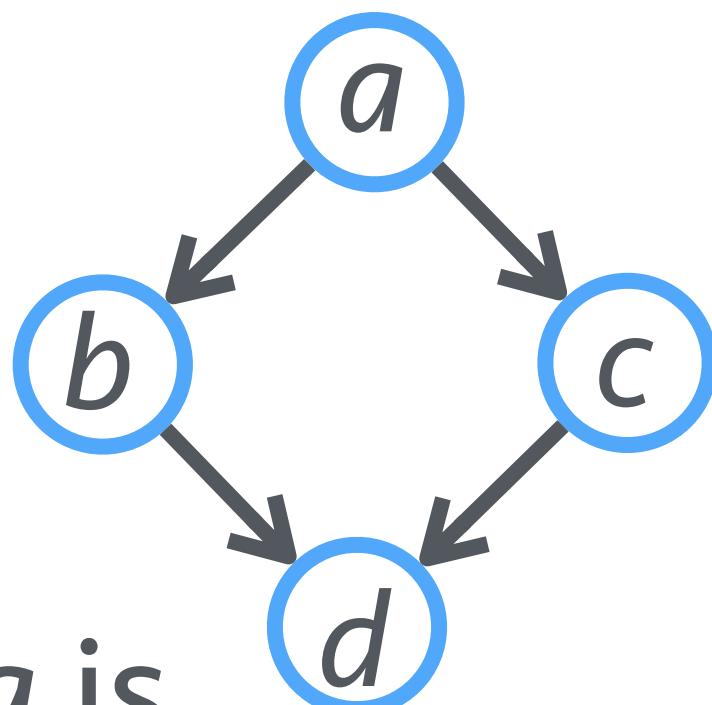
Memory Optimization

Runs Everywhere

Memory Optimization

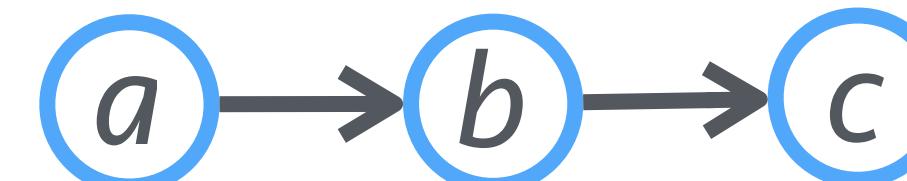
Traverse the computation graph to reduce the memory footprint with linear time complexity

aliveness analysis



now *a* is
deletable

shared space between
variables

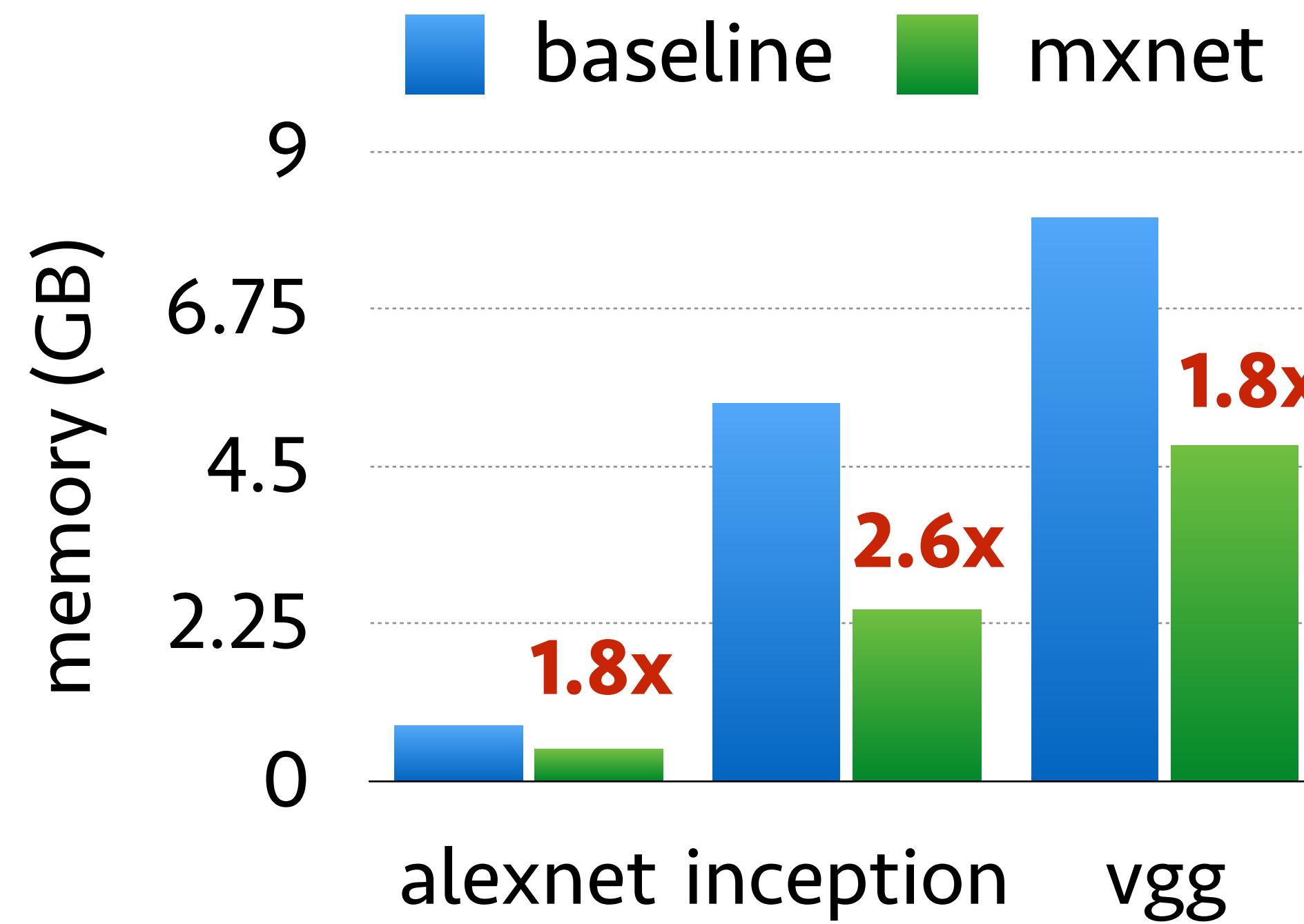


share *a* and *b*

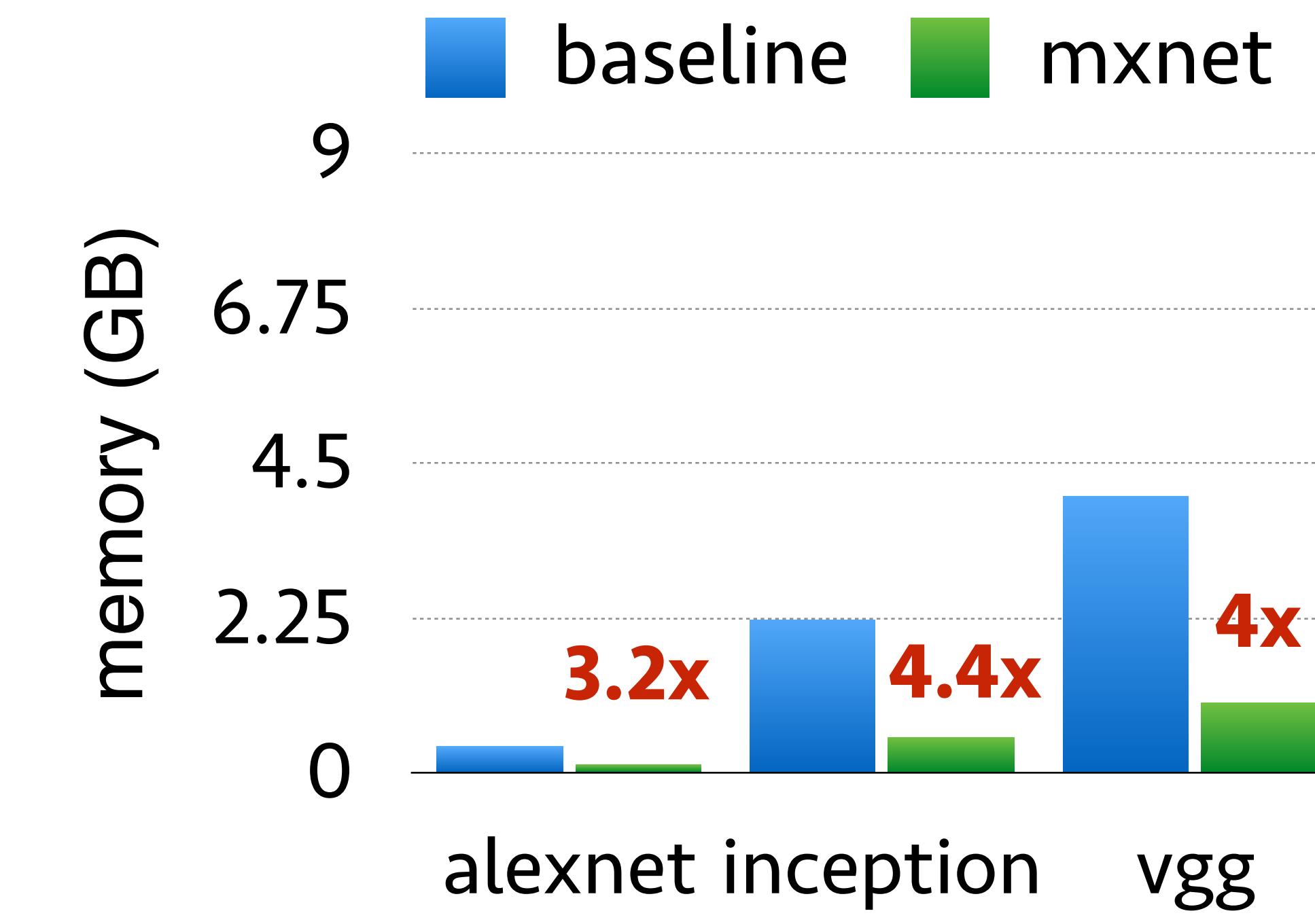
Results for Deep CNNs

IMAGENET winner neural networks

Training



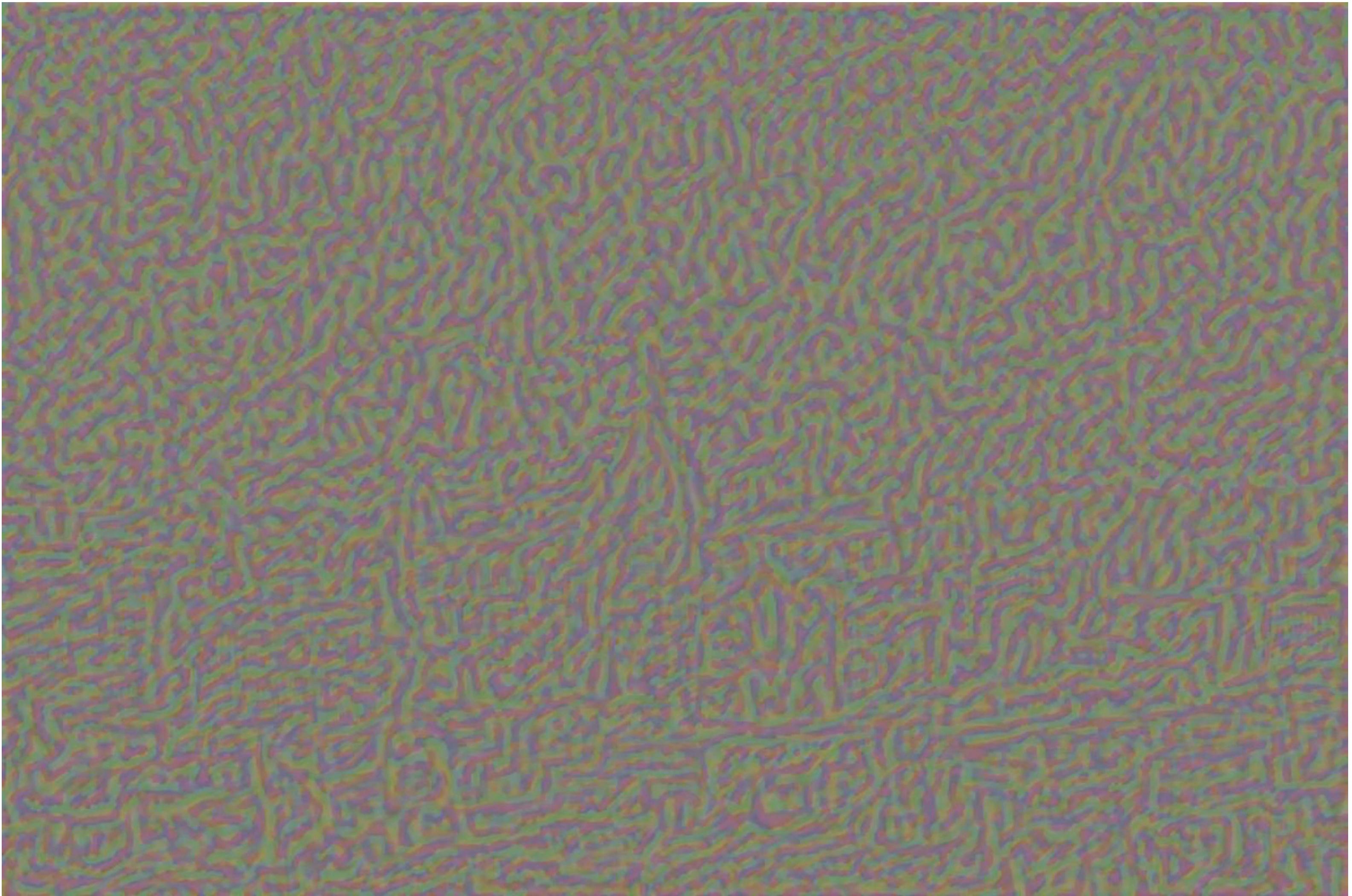
Prediction



Neural Art

Neural Art

1M pixels
GTX 980 TI 6G
in 20x speed



MXNet Highlights

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

Language Supports

Memory Optimization

Runs Everywhere

Train on the Cloud

Consume data from
distributed filesystems

HDFS

S3

Blob

⋮

multithreaded read/write
to hide network latency

Train on the Cloud

Consume data from
distributed filesystems

HDFS

S3

Blob

⋮

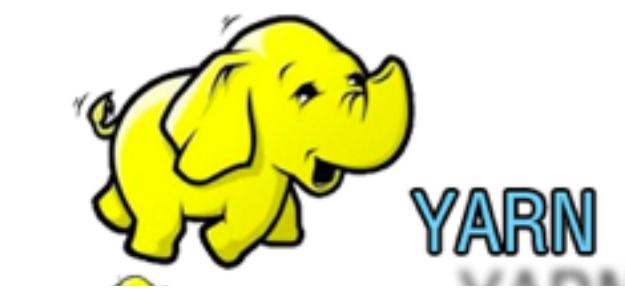
multithreaded read/write
to hide network latency

Launch distributed jobs

SSH

MPI

qsub



Yarn

⋮

easily extend to other cluster
resource management software

Deploy Everywhere

Beyond

Deploy Everywhere

Beyond

Amalgamation

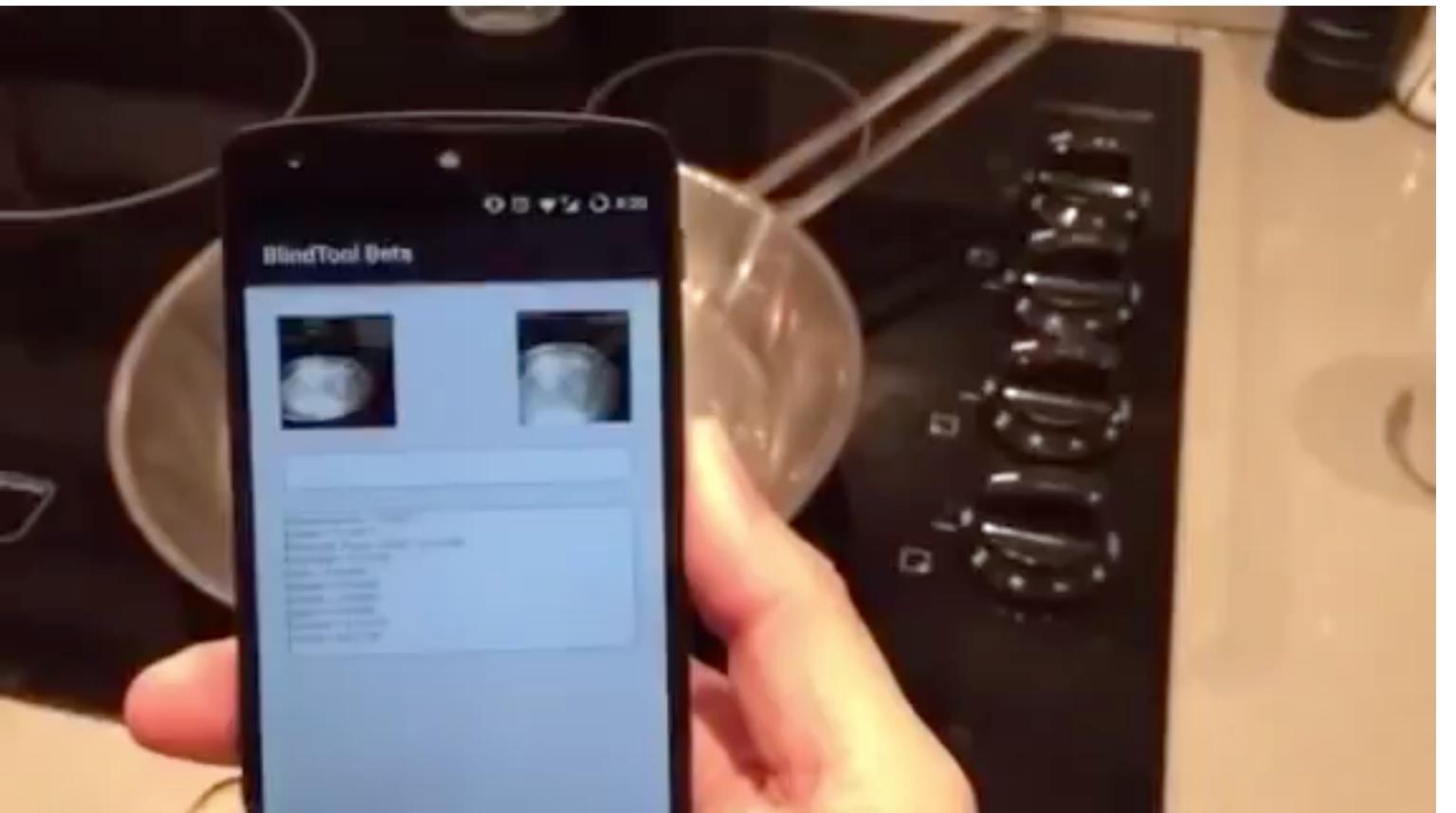
- ◆ Fit the core library with all dependencies into a single C++ source file
- ◆ Easy to compile on ...

Deploy Everywhere

Beyond

Amalgamation

- ◆ Fit the core library with all dependencies into a single C++ source file
- ◆ Easy to compile on ...

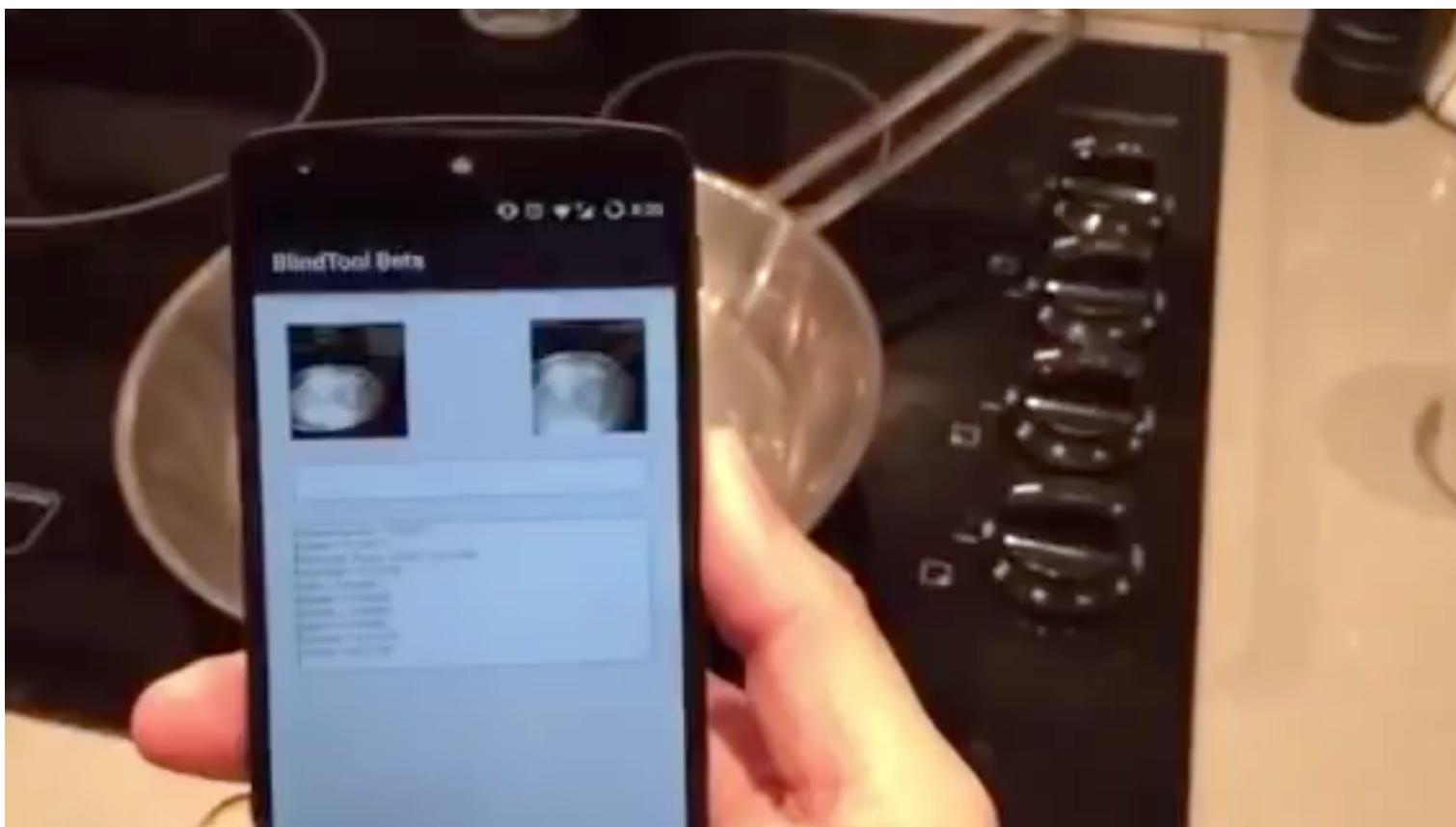


BlindTool by Joseph Paul Cohen, demo on Nexus 4

Deploy Everywhere

Amalgamation

- ♦ Fit the core library with all dependencies into a single C++ source file
- ♦ Easy to compile on ...



BlindTool by Joseph Paul Cohen, demo on Nexus 4

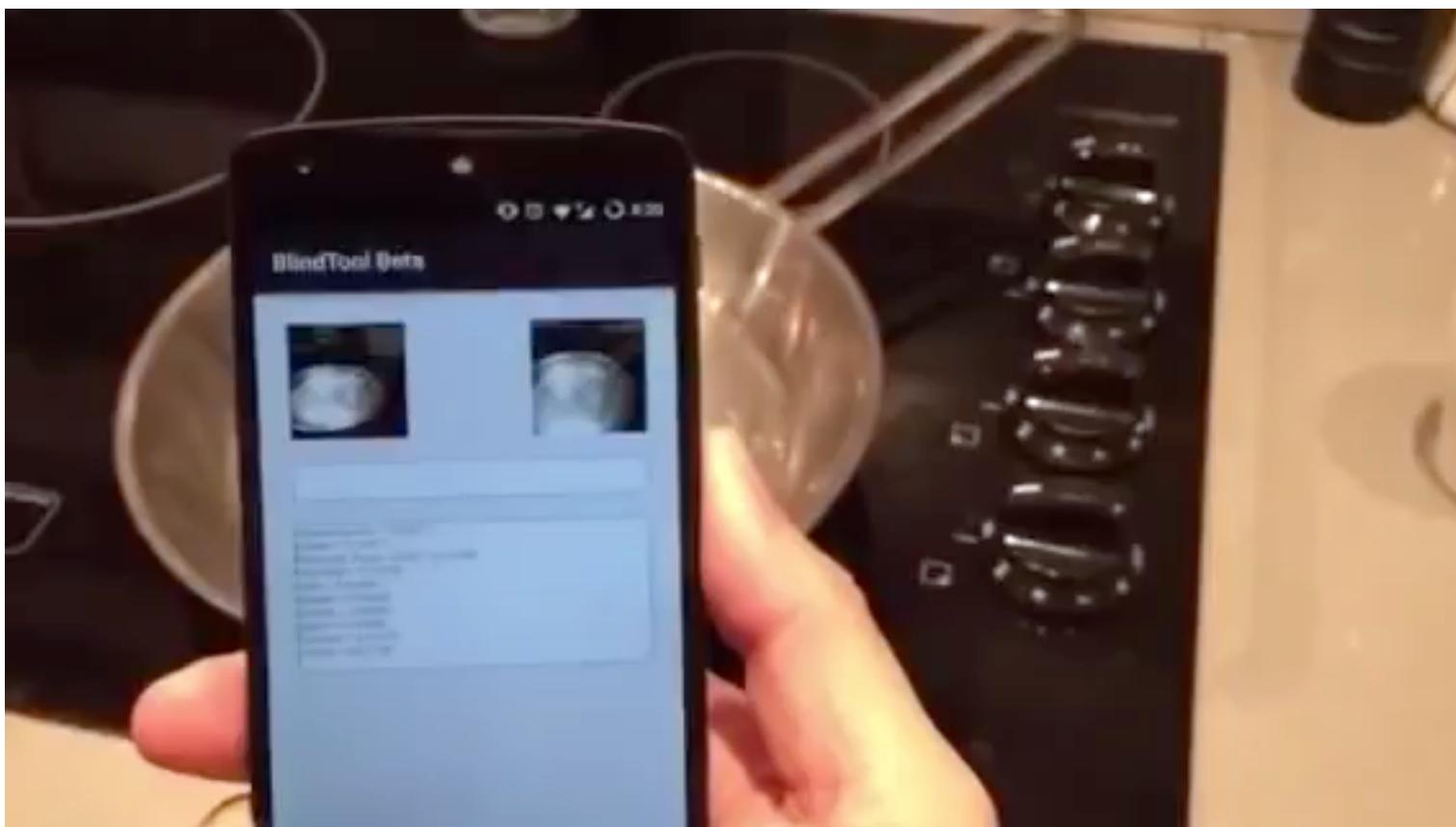
Beyond

Runs in browser
with Javascript

Deploy Everywhere

Amalgamation

- ♦ Fit the core library with all dependencies into a single C++ source file
- ♦ Easy to compile on ...

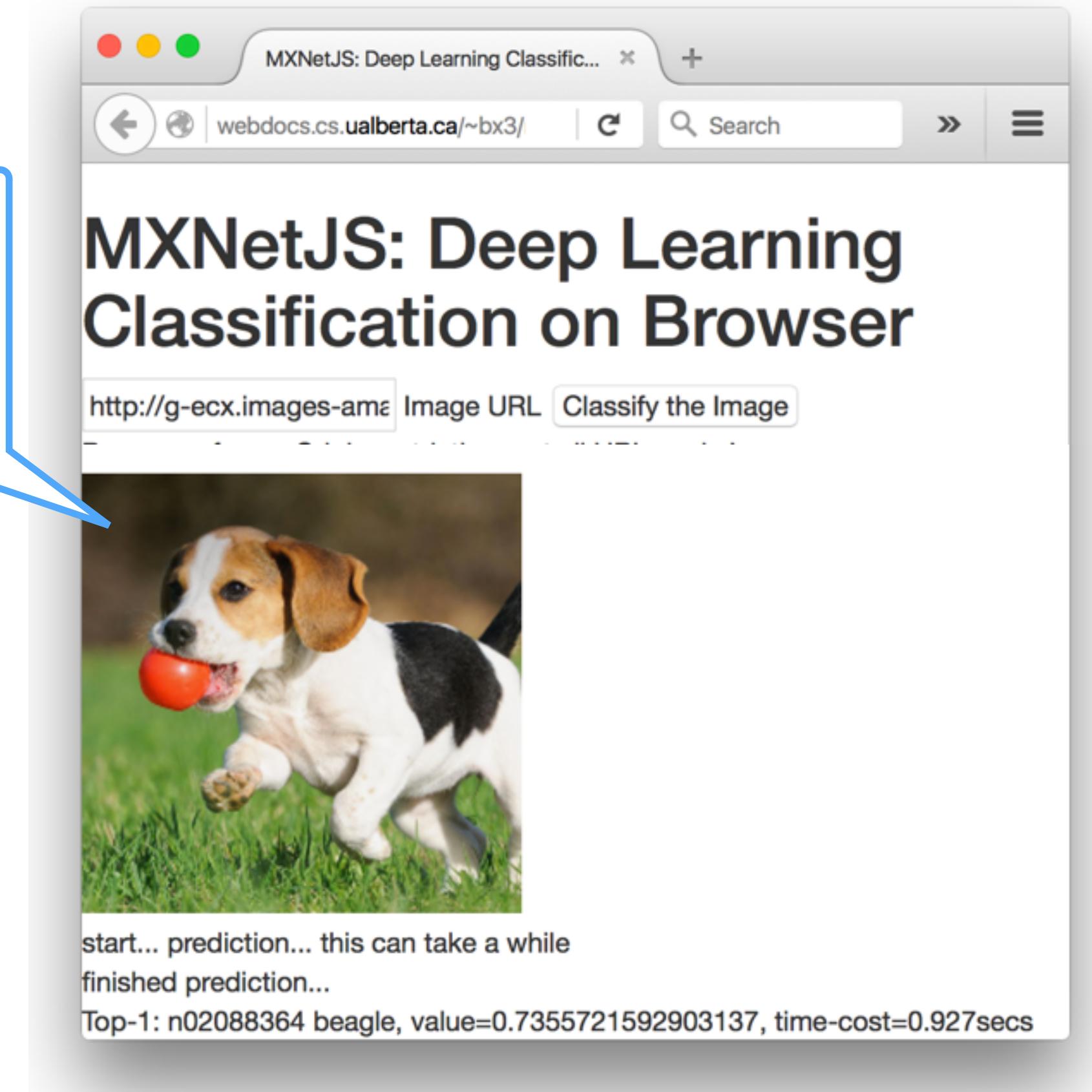


BlindTool by Joseph Paul Cohen, demo on Nexus 4

Beyond

Runs in browser
with Javascript

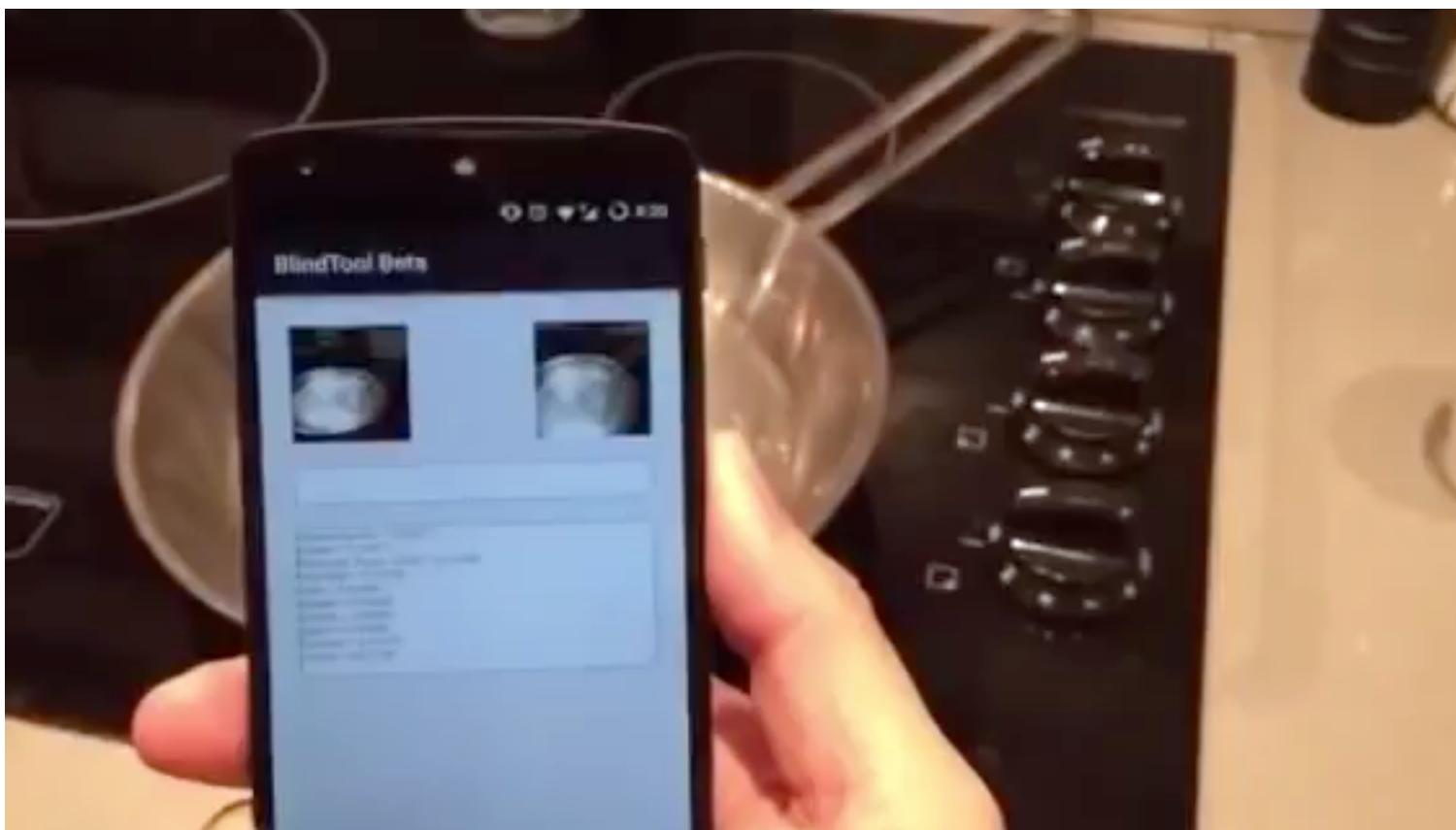
The first image for
search "dog" at
images.google.com



Deploy Everywhere

Amalgamation

- ♦ Fit the core library with all dependencies into a single C++ source file
- ♦ Easy to compile on ...



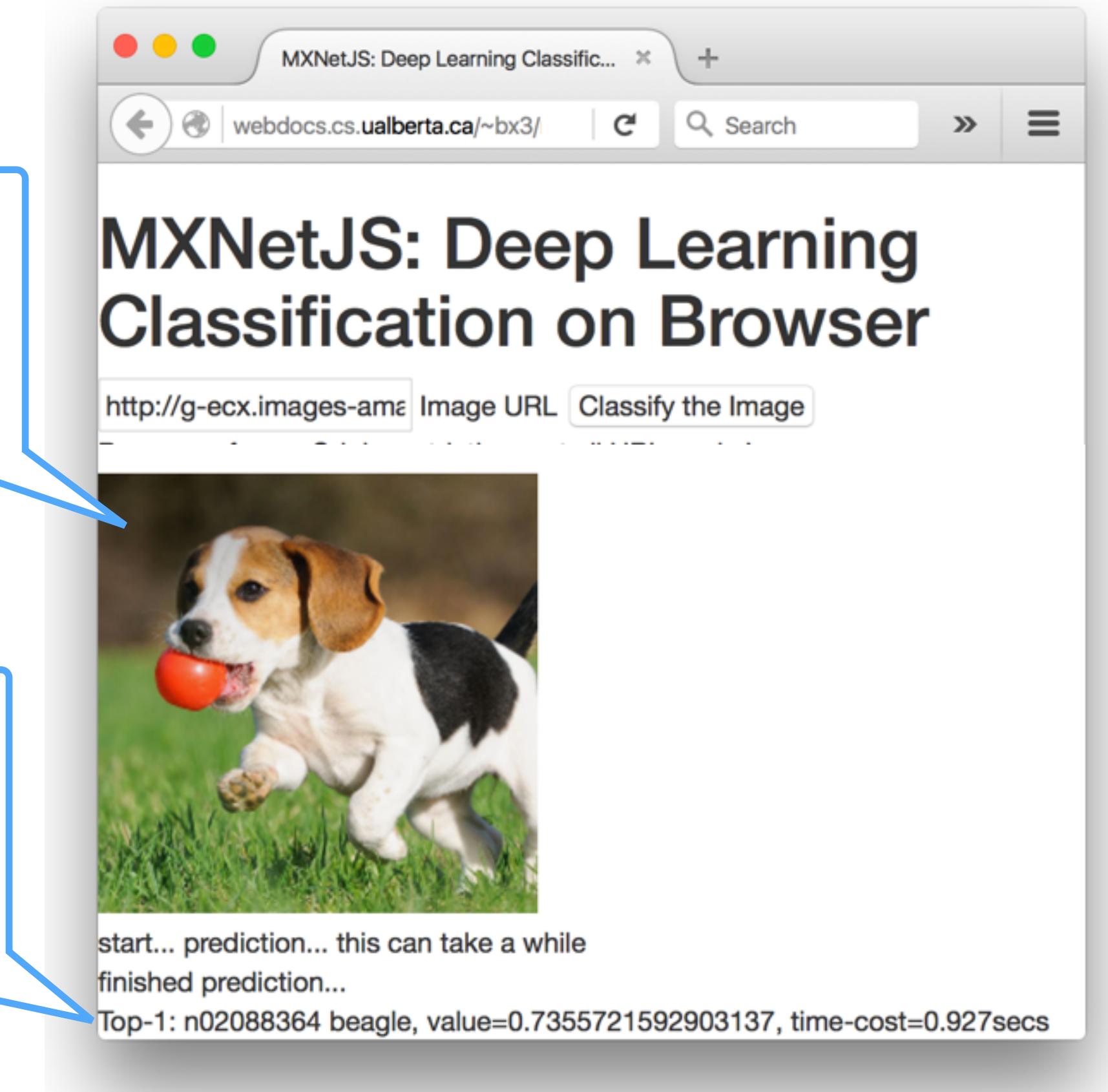
BlindTool by Joseph Paul Cohen, demo on Nexus 4

Beyond

Runs in browser
with Javascript

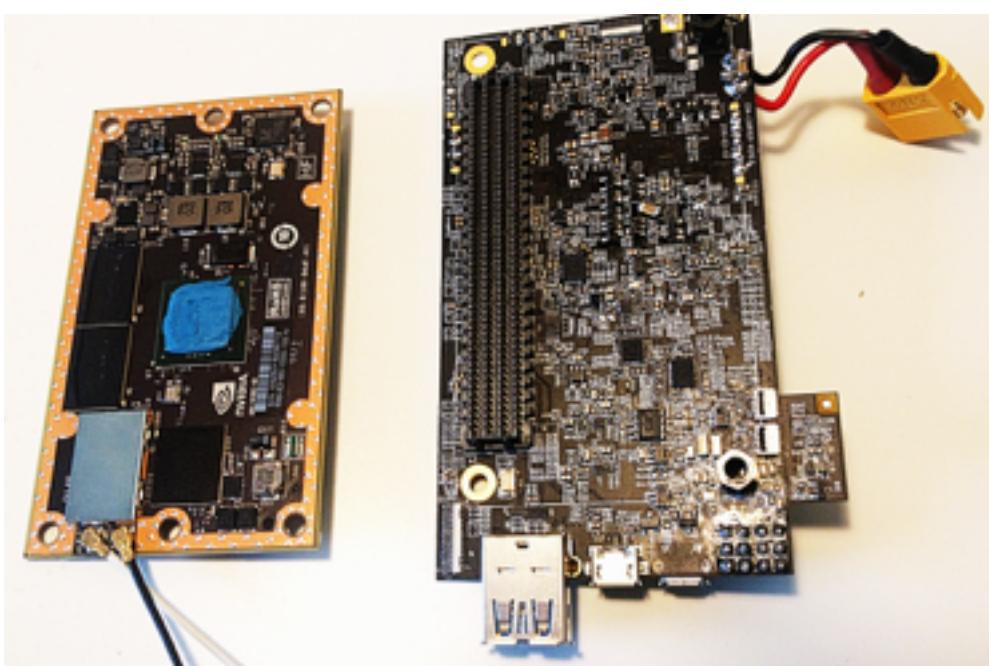
The first image for
search "dog" at
images.google.com

Outputs "beagle"
with prob = 73%
within 1 sec

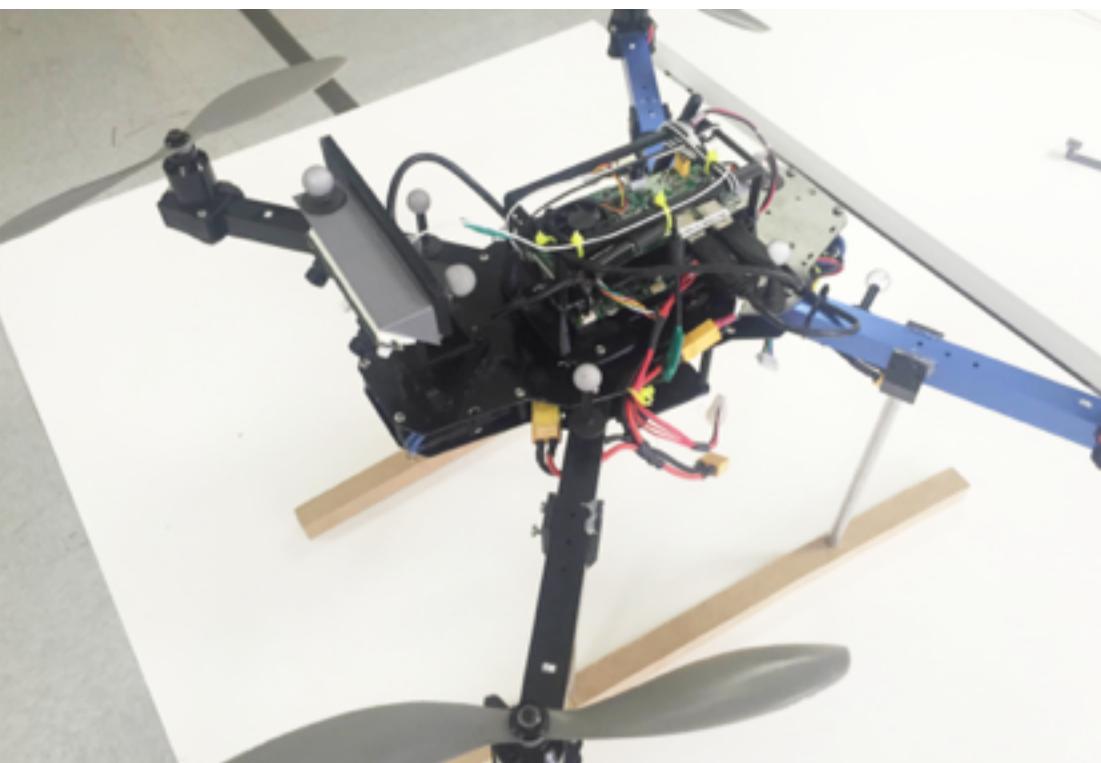


TX1 on Flying Drone

TX1 with customized board

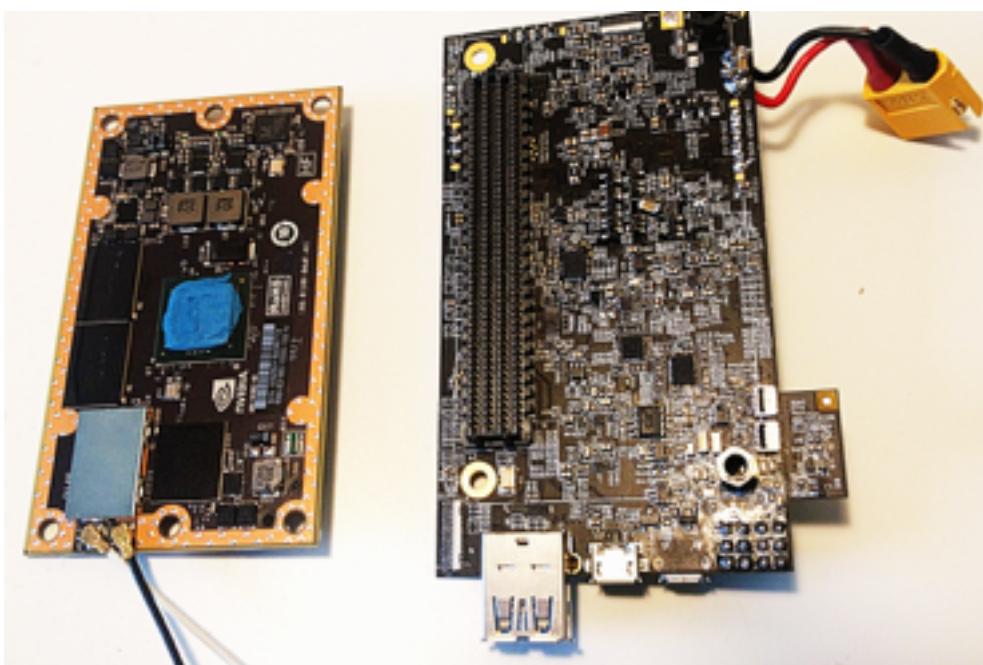


Drone

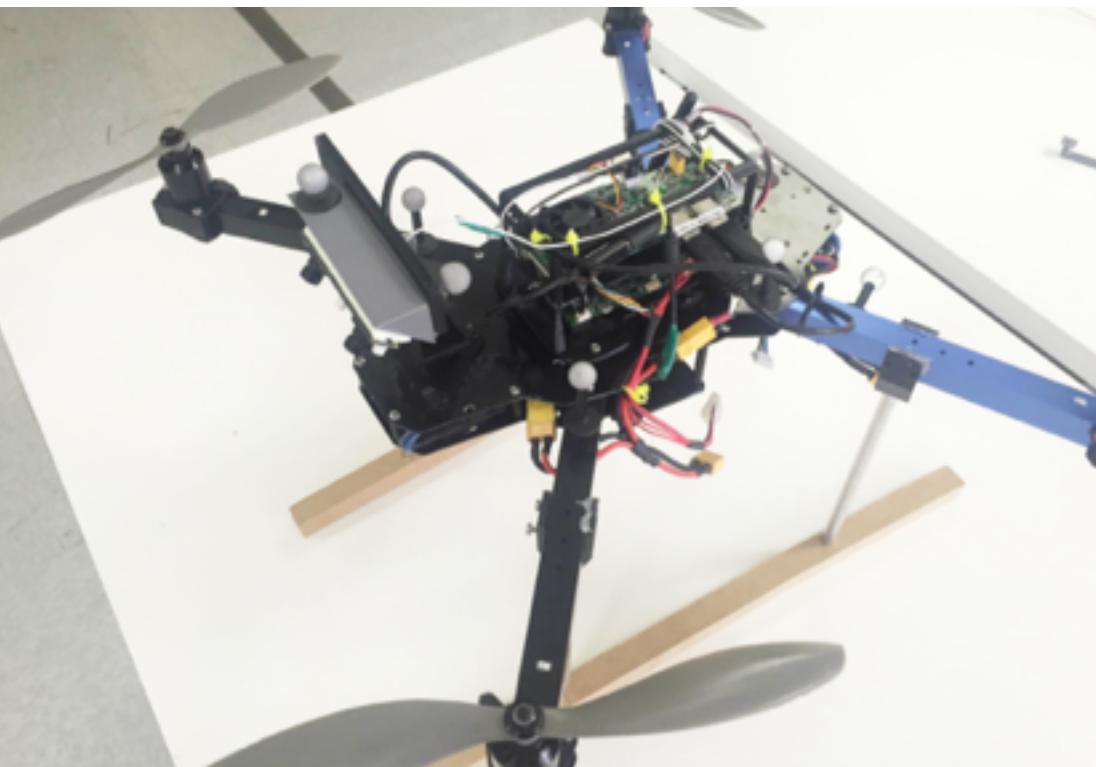


TX1 on Flying Drone

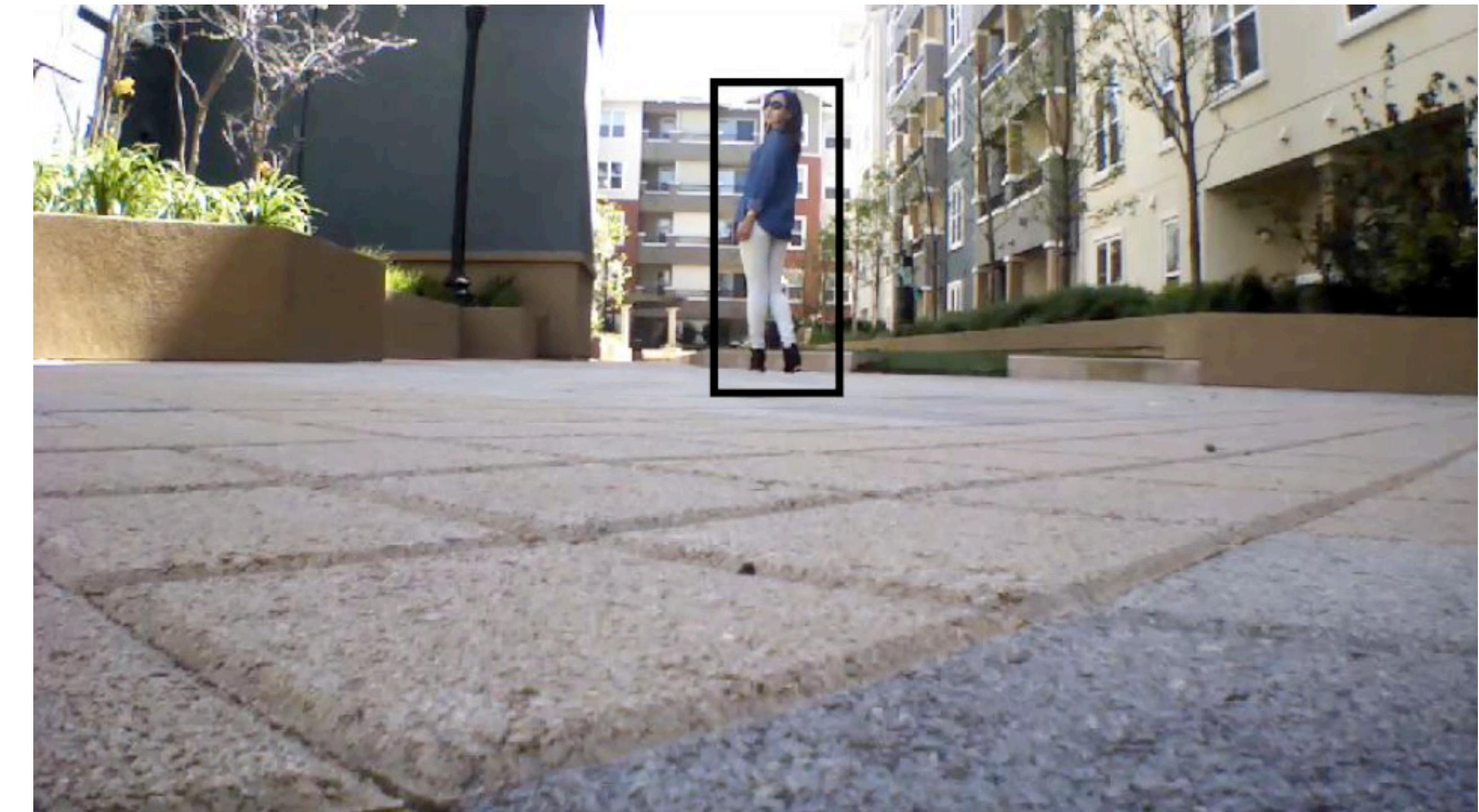
TX1 with customized board



Drone



Realtime detection and tracking on TX1
~10 frame/sec with 640x480 resolution



Conclusion

🚩 Flexibility

🚀 Efficiency

⚙️ Portability

Mixed Programming API

Auto Parallel Scheduling

Distributed Computing

Language Supports

Memory Optimization

Runs Everywhere

Acknowledgement

MXNet is developed by over 100 collaborators

Major Developers

Bing Xu Dato	Eric Xie U Washington	Chiyuan Zhang MIT	Minjie Wang NYU
Naiyan Wang TuSimple	Yizhi Liu MediaV	Tianjun Xiao Microsoft	Yutian Li Standford
Yuan Tang Uptake	Qian Kou Indiana University	Min Lin Qihoo360	Chutao Hong Microsoft
Tong He Simon Fraser University	Hu Shiwen Shanghai		

Advisors

Zheng Zhang NYU Shanghai	Alex Smola CMU	Carlos Guestrin U Washington
------------------------------------	--------------------------	--

Hardware and software supports

Go mxnet.dmlc.ml to Get Started

