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Deep Learning
Learns multiple levels of representations of data 
Significantly improve many applications on multiple domains

“deep learning” trend in the past 10 years

image understanding speech recognition natural language processing

…



Image classification

Layer 1 Layer 2 Output

multilevel feature extractions from raw pixels 
to semantic meanings
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explore spatial information with convolution layers



Image Classification

✦ Hard to define the network 
❖ the definition of the inception network has >1k lines of codes in Caffe 

✦ A single image requires billions floating-point operations 
❖            Intel i7 ~500 GFLOPS  
❖            Nvidia Titan X: ~5 TFLOPS 

✦ Memory consumption is linear with number of layers
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State-of-the-art networks have tens to hundreds layers



Language Modeling

✦ Variable length of input and output sequences 
✦ State-of-the-art networks have many layers 
❖ Billions of floating-point operations per sentence 
❖ Memory consumption is linear with both sequence length and 

number of layers

<go> hello

hello world

input

output

state
world

!

recurrent  
neural networks:
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Deep Learning Workflow
Computational Graph 

of the Deep Architecture

input

fullc

fullc

sigmoid

softmax

loss

∂ softmax

∂ fullc

∂ sigmoid

∂ fullc

∂ input

label

forward backword ✦ Parameter update 
✦ Beam search 
✦ Feature extraction …

Updates and Interactions 
with the graph 

w = w - η ∂f(w)

✦ Involves high dimensional array(tensor) 
operations in both direction 

✦ How to program a typical DL application?



Imperative Programs

✦ Execute operations step by step. 
✦ c = b ⨉ a invokes a kernel operation  
✦ Numpy programs are imperative

import	numpy	as	np	
a	=	np.ones(10)	
b	=	np.ones(10)	*	2	
c	=	b	*	a	
d	=	c	+	1	



Declarative Programs

✦ Declares the computation 
✦ Compiles into a function 
✦ C = B ⨉ A  only specifies the 

requirement 
✦ SQL is declarative

A	=	Variable('A') 
B	=	Variable('B') 
C	=	B	*	A 
D	=	C	+	1 
f	=	compile(D) 
d	=	f(A=np.ones(10),	B=np.ones(10)*2)	

A B

1

+

⨉



Imperative vs. Declarative Programs

✦ Imperative programs are straightforward and flexible. 
✦ Take advantage of language native features (loop, condition)

import	numpy	as	np	
a	=	np.ones(10)	
b	=	np.ones(10)	*	2	
c	=	b	*	a	
print(c)	
d	=	c	+	1	

A	=	Variable('A') 
B	=	Variable('B') 
C	=	B	*	A 
D	=	C	+	1 
f	=	compile(D) 
d	=	f(A=np.ones(10),	B=np.ones(10)*2)	

A B

1

+

⨉

Easy to tweak  
with python 

codes



Imperative vs. Declarative Programs
✦ Declarative programs see the entire graph 
✦ More chances for optimization 
✦ Easy to save and load the computation structure

import	numpy	as	np	
a	=	np.ones(10)	
b	=	np.ones(10)	*	2	
c	=	b	*	a	
d	=	c	+	1	

A	=	Variable('A') 
B	=	Variable('B') 
C	=	B	*	A 
D	=	C	+	1 
f	=	compile(D) 
d	=	f(A=np.ones(10),	B=np.ones(10)*2)	

A B

1

+

⨉

Which program uses less memory to obtain d?

c cannot share memory with d, 
because it could be used in future C can share memory with D, 

because C cannot be seen by user



Imperative vs. Declarative for Deep Learning
Computational Graph 

of the Deep Architecture
forward backword

Needs heavy optimization,  
 fits declarative programs 

Needs mutation and more 
language native features, good for 

imperative programs 

Updates and Interactions 
with the graph 

✦ Parameter update 
✦ Beam search 
✦ Feature extraction …

w = w - η ∂f(w)



MXNet: Mix the Flavors Together

Imperative  
NDArray API 

Declarative  
Symbolic Executor 

>>>	import	mxnet	as	mx 
>>>	a	=	mx.nd.zeros((100,	50)) 
>>>	a.shape 
(100L,	50L) 
>>>	b	=	mx.nd.ones((100,	50)) 
>>>	c	=	a	+	b 
>>>	b	+=	c	

>>>	import	mxnet	as	mx	
>>>	net	=	mx.symbol.Variable('data') 
>>>	net	=	mx.symbol.FullyConnected(data=net,	num_hidden=128)	
>>>	net	=	mx.symbol.SoftmaxOutput(data=net) 
>>>	type(net) 
<class	‘mxnet.symbol.Symbol’>	
>>>	texec	=	net.simple_bind(data=data_shape)



Mixed Style Training Loop in MXNet

executor	=	declarative_symbol.bind()	
for	i	in	range(3):	
				train_iter.reset()			 
				for	dbatch	in	train_iter: 
								args["data"][:]	=	dbatch.data[0] 
								args["softmax_label"][:]	=	dbatch.label[0]	
								executor.forward(is_train=True)	
								executor.backward()									
				for	key	in	update_keys:	
								args[key]	-=	learning_rate	*	grads[key]	

Imperative NDArray can be set as  
input nodes to the graph

Executor is binded from declarative 
program that describes the network  

Imperative parameter update on GPU



Mixed API for Quick Extensions

✦ Runtime switching between different graphs depending on input 
✦ Useful for sequence modeling and image size reshaping

Bucketing

Make use of imperative code in python, 10 lines of additional python code

Various length examples



3D Image Construction

Dee3D

100 lines of Python codes



3D Image Construction

Dee3D

100 lines of Python codes



MXNet Highlights

Mixed Programming API 

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports



Need for Parallelization

✦ Parallelize workload on multiple GPUs 
✦ Fine grained parallelization of small kernels 
✦ Overlap of memory copy with computation

Fully concurrent

Serial👎

👍



Writing Parallel Programs is Painful
Hard to overlap computation with communication due to dependencies

data = next_batch()data[gpu0].copyfrom(data[0:50])

_, fc1_wgrad[gpu0] =  
FullcBackward(fc1_ograd[gpu0] , fc1_weight[gpu0]) 

fc1_ograd[gpu0], fc2_wgrad[gpu0] = 
FullcBackward(fc2_ograd[gpu0] , fc2_weight[gpu0]) 

fc2_ograd[gpu0] = LossGrad(fc2[gpu0], label[0:50]) 

fc2[gpu0] = FullcForward(fc1[gpu0], fc2_weight[gpu0]) 

fc1[gpu0] = FullcForward(data[gpu0], fc1_weight[gpu0]) 
fc2_wgrad[cpu]  =  

  fc2_wgrad[gpu0] + fc2_wgrad[gpu1] 

fc2_weight[cpu].copyto( 
   fc2_weight[gpu0] , fc2_weight[gpu1]) 

fc2_weight[cpu] -= lr*fc12_wgrad[gpu0]  

fc1_weight[cpu] -= lr *  fc1_wgrad[gpu0]  

fc1_wgrad[cpu]  =  
  fc1_wgrad[gpu0] + fc1_wgrad[gpu1] 

fc1_weight[cpu].copyto( 
    fc1_weight[gpu0] , fc1_weight[gpu1]) 

data[gpu0].copyfrom(data[51:100])

_, fc1_wgrad[gpu1] =  
FullcBackward(fc1_ograd[gpu1] , fc1_weight[gpu1]) 

fc1_ograd[gpu1], fc2_wgrad[gpu1] = 
FullcBackward(fc2_ograd[gpu1] , fc2_weight[gpu1]) 

fc2_ograd[gpu1] = LossGrad(fc2[gpu1], label[51:100]) 

fc2[gpu1] = FullcForward(fc1[gpu1], fc2_weight[gpu1]) 

fc1[gpu1] = FullcForward(data[gpu1], fc1_weight[gpu1]) 



Auto Parallelization for Mixed Programs

Write serial programs Run in parallel

>>>	import	mxnet	as	mx 
>>>	A	=	mx.nd.ones((2,2))	*2 
>>>	C	=	A	+	2 
>>>	B	=	A	+	1	 
>>>	D	=	B	*	C	

A = 2

C = A + 2 B = A + 1

D = B ⨉ C



Auto Parallelization for Mixed Programs

>>>	import	mxnet	as	mx 
>>>	A	=	mx.nd.ones((2,2))	*2 
>>>	C	=	A	+	2 
>>>	B	=	A	+	1	 
>>>	del	A	

A = 2

C = A + 2 B = A + 1

A.__del__()

>>>	import	mxnet	as	mx 
>>>	A	=	mx.nd.uniform(shape,	10,	-10)	
>>>	B	=	mx.nd.uniform(shape,	10,	-10)

md=RandomGenerator()

md.Uniform(10, -10)

md.Uniform(10,-10)

✦ Schedules any resources includes array, random number generator
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Model Parallelism 
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Layer 3
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Model Parallelism 

se
c

0
100
200
300
400

num of GPUs

1 2 4

2.1x

Time for one epoch on PTB:

Layer 1

Layer 2

Layer 3



Data Parallelism

examples



Data Parallelism

examples

1. Read a data partition



Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters



Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters
3. Compute the gradient



Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters
3. Compute the gradient
4. Push the gradient



Data Parallelism

key-value store

examples

1. Read a data partition
2. Pull the parameters
3. Compute the gradient
4. Push the gradient
5. Update the weight



Implementation 
%	create	executor	for	each	GPU	
execs	=	[symbol.bind(mx.gpu(i))	for	i	in	range(ngpu)]	
%	w	-=	learning_rate	*	grad	
kvstore.set_updater(…)	
%	iterating	on	data		
for	dbatch	in	train_iter:	
				%	iterating	on	GPUs	
				for	i	in	range(ngpu):	
								%	read	a	data	partition	
								copy_data_slice(dbatch,	execs[i])	
								%	pull	the	parameters 
								for	key	in	update_keys:	
												kvstore.pull(key,	execs[i].weight_array[key])	
								%	compute	the	gradient	
								execs[i].forward(is_train=True)	
								execs[i].backward()									
								%	push	the	gradient	
								for	key	in	update_keys:	
												kvstore.push(key,	execs[i].grad_array[key])	
			



Implementation 
%	create	executor	for	each	GPU	
execs	=	[symbol.bind(mx.gpu(i))	for	i	in	range(ngpu)]	
%	w	-=	learning_rate	*	grad	
kvstore.set_updater(…)	
%	iterating	on	data		
for	dbatch	in	train_iter:	
				%	iterating	on	GPUs	
				for	i	in	range(ngpu):	
								%	read	a	data	partition	
								copy_data_slice(dbatch,	execs[i])	
								%	pull	the	parameters 
								for	key	in	update_keys:	
												kvstore.pull(key,	execs[i].weight_array[key])	
								%	compute	the	gradient	
								execs[i].forward(is_train=True)	
								execs[i].backward()									
								%	push	the	gradient	
								for	key	in	update_keys:	
												kvstore.push(key,	execs[i].grad_array[key])	
			

automatic 
parallelism for 

mixed API



Results
✦                             with 1.2m images and 

1,000 classes 
✦ 4 x Nvidia GTX 980 
✦ Google Inception Network



Results
✦                             with 1.2m images and 

1,000 classes 
✦ 4 x Nvidia GTX 980 
✦ Google Inception Network
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Distributed Computing

key-value store

examples
Store data in  

a distributed filesystem
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examples

Distributed Computing

multiple  
worker machines

examples
Store data in  

a distributed filesystem

multiple  
server machines

push and pull  
over network

read over network

No code change 
comparing to 

single machine



Distributed Experiments
✦ ImageNet with 1.2m images and 

1,000 classes 
✦ AWS EC2 GPU instance, 4 GPUs per 

machine 
✦ Google Inception Network
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✦ AWS EC2 GPU instance, 4 GPUs per 
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✦ Google Inception Network
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Multiple Languages



Multiple Languages

frontend

backend



Multiple Languages

single implementation 
of backend system and 

common operators

performance guarantee 
regardless which frontend 

language is used

frontend

backend



Minpy: MXNet Numpy Package
is the de facto scientific computing package in Python
Great flexibility (500+ operators) but CPU-only
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Minpy: MXNet Numpy Package
is the de facto scientific computing package in Python

>>>	import	minpy	as	np >>>	import	numpy	as	np 

✦ Native Numpy Integration

>>>	x	=	np.zeros((10,	20))	#	call	GPU	function	
>>>	y	=	np.sort(x)									#	call	CPU	function;	copy	GPU->CPU	
>>>	z	=	np.log(y)										#	call	GPU	function;	copy	CPU->GPU

Great flexibility (500+ operators) but CPU-only

✦ Transparent CPU and GPU co-execution



Minpy: MXNet Numpy Package

✦ Small operators (Numpy) + Big operators (MXNet)

>>>	symbol	=	mx.symbol.FullyConnected(…)	
>>>	bigop	=	minpy.core.function(sigmoid,	…)	
>>>	def	training_loss(w,	x,	y):	
...					pred	=	bigop(input=x,	fc_weight=w)	
...					prob	=	pred	*	y	+	(1	–	pred)	*	(1	–	y)	
...					return	–np.sum(np.log(prob))	



Minpy: MXNet Numpy Package

>>>	grad_func	=	minpy.core.grad_and_loss(train_loss) 
>>>	dw	=	grad_fn(w,	x,	y)

✦ Imperative style auto-differentiation

✦ Small operators (Numpy) + Big operators (MXNet)

>>>	symbol	=	mx.symbol.FullyConnected(…)	
>>>	bigop	=	minpy.core.function(sigmoid,	…)	
>>>	def	training_loss(w,	x,	y):	
...					pred	=	bigop(input=x,	fc_weight=w)	
...					prob	=	pred	*	y	+	(1	–	pred)	*	(1	–	y)	
...					return	–np.sum(np.log(prob))	



Bring Torch to MXNet
Torch is a popular Lua framework for 

 both scientific computing  and deep learning



✦ Tensor Computation

Bring Torch to MXNet
Torch is a popular Lua framework for 

 both scientific computing  and deep learning

>>>	import	mxnet	as	mx	
>>>	x	=	mx.th.randn(2,	2,	ctx=mx.gpu(0))	
>>>	y	=	mx.th.abs(x)	
>>>	print	y.asnumpy() 

>>>	import	mxnet	as	mx	
>>>	data	=	mx.symbol.Variable(‘data’)	
>>>	fc			=	mx.symbol.TorchModule(data_0=data,		
...																														lua_string=‘nn.Linear(784,	128)’,…		
>>>	mlp		=	mx.symbol.TorchModule(data_0=fc,		
...																														lua_string=‘nn.LogSoftMax()’,… 

✦ Modules (Layers)



MXNet Highlights

Mixed Programming API 

Flexibility Efficiency Portability

Auto Parallel Scheduling

Distributed Computing

Memory Optimization

Runs Everywhere

Language Supports



Memory Optimization

a

b c

dnow a is  
deletable

aliveness analysis

b ca

shared space between 
variables

share a and b

Traverse the computation graph to reduce the memory footprint  
with linear time complexity
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winner neural networks



Neural Art



Neural Art

1M pixels 
 GTX 980 TI 6G

in 20x speed
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Train on the Cloud
Consume data from  

distributed filesystems
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to hide network latency 

HDFS

S3
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Train on the Cloud
Consume data from  

distributed filesystems

multithreaded read/write  
to hide network latency 

HDFS

S3

Blob

…

Launch distributed jobs

easily extend to other cluster 
resource management software

MPI

SSH

Yarn

qsub

…



Deploy Everywhere
Beyond



Deploy Everywhere
Beyond

✦ Fit the core library with all 
dependencies into a single C++ 
source file 

✦ Easy to compile on                     … 

Amalgamation



Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all 
dependencies into a single C++ 
source file 

✦ Easy to compile on                     … 

Amalgamation



Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all 
dependencies into a single C++ 
source file 

✦ Easy to compile on                     … 

Amalgamation Runs in browser  
with Javascript



Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all 
dependencies into a single C++ 
source file 
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Deploy Everywhere
Beyond

BlindTool by Joseph Paul Cohen, demo on Nexus 4

✦ Fit the core library with all 
dependencies into a single C++ 
source file 

✦ Easy to compile on                     … 

Amalgamation Runs in browser  
with Javascript

The first image for 
search “dog” at 

images.google.com 

Outputs “beagle” 
with prob = 73% 

within 1 sec

http://images.google.com
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TX1 on Flying Drone

TX1 with customized board

Drone

Realtime detection and tracking on TX1 
~10 frame/sec with 640x480 resolution
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Go mxnet.dmlc.ml to Get Started


