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VISUAL TRACKING FOR MOVING MULTIPLE OBJECTS: AN
INTEGRATION OF VISION AND CONTROL

Metin Sitti, Isil Bozma, and Ahmet Denker

Abstract — This paper addresses the use of a vision sensor
in the feedback loop for tracking an object which is selected
from multiple objects that are unknown and randomly mov-
ing on a conveyor belt. For achieving such a tracking task,
a position-based visual tracking system is proposed. This
system has the visual processing part in which multiple ob-
jects are segmented. Here we address the segmentation
problem as a clustering problem. In its control part, PD
and self—tqning controllers are designed and compared with
respect to their tracking speed and noise immunity perfor-
. mances. As the tracking device a pan-tilt camera mount is
proposed at first and the performance of the proposed vi-
sual servoing syster.h is evaluated by the simulations. Then
the real-time applicability of the introduced vision system is
‘experimented on Manutec R15 robotic manipulator in pick-
ing parts on a conveyor belt and the results show that the
introduced system can be used as a real-time system.

1 INTRODUCTION!

We have built a system that tracks an unknown randomly
moving object which is selected from a group of objects on a
conveyor belt as shown in Fig. 1. There are no assumptions
regarding object shape, position in the conveyor plane, ori-
entation and velocity. The tracking algorithm underlying
this behavior relies on a continuous stream of object posi-
tion and velocity estimates delivered by a camera system.
Our visual servoing problem is to control the pose of a cam-
era -based on information obtained from processing visual
feedback- so that the camera tracks an object located on a
conveyor belt. By tracking, it is meant that the intersec-
tion of the optical axis of the camera with the image plane
corresponds to an a priori defined ”characterizing” point
of the object.

For the problem of visual servoing, some image features
should be selected for getting the object position and veloc-
ity information. First main approach in selecting the image
feature is using the image brightness values and comput-
ing motion from the optical flow. Papanikolopoulos et al.
[1] use the sum-of-squared differences optical flow for the
computation of the vector of discrete displacements within
multiple small windows and Luo et al. [2] do a modified
version of Horn-Schunk [3] algorithm. Allen et al. [4] use
stereo cameras for computing the the optical flow and from
these flow fields, a motion energy profile is obtained that is
utilized in recovering the 3-D position of a moving object.
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Fig. 1. Conveyor belt and robot setup.
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Fig. 2. Architecture of the visual tracking system.

The other approach is getting a characterizing feature of
objects that is unambiguous in each image frame and most
preferred feature is the centroid of the objects. Koivo et al.
[6] compute the centroid positions of a rectangular object
after preprocessing and get the object velocities. Hunt and
Sanderson [6] present algorithms for visual tracking based
on mathematical prediction of the object centroids.

As different from the previous works on tracking or grasp-
ing objects [1]-[6] where the image processing is simplified
by assuming a single object in the scene, a real-time vision
system with multiple objects in the scene is introduced.
This is accomplished by a modified version of agglomerative
hierarchical clustering algorithm that is used for segment-
ing the incoming image data. PD and self-tuning control
laws are compared with respect to their tracking speed and
noise irmunity in the tracking control of a pan-tilt camera
mount joints using the vision information.
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Fig. 3. Camera setup with coordinate frames.

l.i Solution Approach

We use a visual tracking system as shown in Fig. 2. The
visual data from the camera is processed in order to com-
pute the position xp(T*) € R? and velocity vp(T*) € R?
of a tar%et object in ‘the image frame coordinates where
T* =Y., Tiand T} € R is the visual processing time be-
tween (i—1)** and i'* frames. Assuming a priori knowledge
of approximate depth and using the inverse perspective
transformation, these values are mapped to the target fea-
ture positions Xp(T*) € R? and velocities. Vp(T*) € R3
Due to digitization and processing latency, the image mea-
surements generated by the visual processsing section are
results that are at least T* seconds old. It follows that
we ought to construct an estimator which operates on this
delayed data and the position values are predicted one-
step-ahead with the intervals of T, where T, € R is the
constant control sampling time. Assuming T¥ > T, rela-
tion holds everytime, the estimator provides the positions
of Xp(k’Tc) where k' = 1,...,m* mF = T¥/T., m* is an
integer, and estimating positions with the intervals of T,
enables the generation of a smooth trajectory for the joints.
For the simplicity of the notation k'T. will be denoted as
k' in the sequel. The estimated values are mapped to cam-
era mount joint angles utilizing the inverse kinematics of
the camera mount as ﬁ(k’) € R2. These angles corre-
spond to the subgoal positions Rd(k') for the trajectory
planner and the subgoal joint velocities Qd(lc') € R? are
computed using the first-order Taylor Series approximator.
A trajectory planner adjusts the required joint velocities
and implied joint acceleration within the limits of the joint
motors limits. A controller generates the necessary inputs
u(k’) € R? for tracking these reference values and these
inputs move the joints to a new position as R(T**+!) at
the end.

2 SETUP

A a pan-tilt camera mount shown in Fig. 3 is used. Con-
sider a target that moves in a plane with a feature, located
at point P, that we want to track. The projection of P
on the image plane is the point p € R2._ Consider also
a neighborhood Mm of P in the conveyor belt plane and
that A of p in the image plane. The problem of 2-D vi-
sual tracking of a single feature point is defined as: Find
the camera rotation vector R = (R, Rp) with respect to
the camera frame that keeps A stationary in.the area N'm
around the origin of the image frame. There is no need to
know the depth of the point P since a 2-D tracking task
is proposed. Taking the target feature at the point P as
its centroid point, P is assumed to have no height on the
motion plane hereafter. Furthermore, at the outset of the
tracking process, there is no condition of intersection of N;
with Mm. From the position of the point p at time T'%
xp(T"), the velocity vp(T") is computed using the first-
order Taylor Series approximation as
k k-1
v

Equation (1) will be used with the assumption that the -
motion of the object feature is smooth and continuous and
the vision sampling period T, can change from one frame
to another in our system.

vp

2.1 Perspective Transformation

The positions p(T*) = (z(T*) y(T*))T obtained from the
vision algorithm are in the camera image plane coordinates
and they are mapped to the motion plane coordinates as
P(T*) = (X(T*) Y(T*) z(T*))T, where Z(T*) = 0 is
taken using the perspective transformation which is given
as [7] ‘

2(T*)A = f[(X(T*) = Xo) cos 8 + (Y (T*) — Yo)sin 0 — 1] ,
2

Y(T*)A = f(X(T*) - Xo)singsind — (Y (T*) — Yo )4
singcosf + (Z(T*) — Zo) cos ¢ —13] , 3)

where A = ~(X(T*) = X;) cos ¢sin8 + (Y (T*) — Yp) cos ¢
cosf + (Z(T*) = Zy)sind — Iy, (Xo Yo Zo)T is the motion
plane coordinates of the camera stand gimbal center G as shown
in Fig. 3, the vector (I; I, I3)T is from G to the image plane
center O', and f is the camera focal length. '

2.2 Dynamical Model of the Camera Stand

The physical setup of the camera stand consists of the pan and
tilt rotations along two joints of the camera mount which include
DC motors. Taking two motors independent of each other, the
plant function of the joints can be derived as [7]

TR0(t) +6(2) 4)
| T24() + 6(0) (5)
where K and Ti, i = 1,2, stand for motor gain conslant

and molor time constant of each DC motor successively and ug
and u, are input joint torques or voltages.

N ]\’rlnllg ,

[{31 Uy ,
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2.3 Inverse Kinematics of the Camera Stand
As )‘(P(k ) = (X(K') Y(k') 0)7 refer to the estimated posi-

tions in the motion plane coordinates, they are mapped to camera
mount joint angles R(k’) = (6(k "y ¢(k"))T utilizing the inverse
kinermnatics of the camera mount such that

bk = tan“l(;T(:I)):—j\:‘;

tan™! (\/(X(k’) - Xofz': (?(kl) - Y)? )7

) (6)

sk =

2.4 Trajectory Planner

The task of the trajectory planner is to generate the subgoal/ desued

points ad [(k'+1)T.] and Rd[(lc’+ 1)T,] for the controller such
that a stable and smooth motion of the camera mount joints can
be obtained. Since the trajectory points are determined in every
T, by the estimator using the vision information, there is no need
to generate a smooth trajectory here; but, the generated trajec-
tories are checked in terms of the motor maximum velocity and
acceleration limits, and adjusted accordingly [7].

3 GENERATING VISUAL FEEDBACK

There are multiple objects on the conveyor belt and the one
among them which is closest to the camera needs to be tracked.
In order to accomplish this, three features of the objects are com-
puted: centroids which are used in generating subgoal trajectory
points for the tracking control, enclosing rectangles that enable
the selection of the target object and the determination motion
rectangle - the elongated area of the enclosing rectangle in the
conveyor belt motion direction - which is utilized in local window
operation for a less amount of computation. The conveyor motion
direction is assumed to be from left to right hereafter.

The segmentation problem is posed as a clustering problem.
The set X of N pixels constitute the sample points s;, ¢ =
1,..., N that need tobe clustered into L disjoint subsets X1,
where the resulting clusters constitute the unknown objects in the
camera image frame, and the centroids of each object k xP is
the center of each cluster as

(8)

where n* € R is the number of samples in the cluster k£ and
k=1,...,L.

In order to expedite the processing, a lower resolution image is
used and the edge pixels of an image - obtained via Sobel opera-
tors and thresholded with T, € R - are used as the samples to be
clustered. Let us suppose that N edge samples remain. Edges in
the first image frame are first roughly clustered using initial clus-
tering algorithm that is a nearest centroid classification approach
without any iterative optimization [8]. Assumingthat the objects
do not overlap, the algorithm assigns each sample s; to the cluster
X! where the relation |s; — X!| < Ty is valid and T4 € R is the
distance threshold. This algorithm works well for objects which
are similar in size, well-separated and have rotationally symmetric
locations. However, in a conveyor belt system, these conditions
may not be satisfied where there is no a priori knowledge about

xL

the object location and geometry. Therefore, in the initial clus-
tering part, T; is selected to have a small value so that any edge
pixels of objects with different sizes and close locations are not
grouped in the same cluster. Then the resulting clusters can be-
long to the same object and clusters belonging to the same object
are merged using a modified agglomerative hierarchical cluster-
ing algorithm. As different from the agglomerative (bottom-up)
hierarchical clustering (AHC) technique in where N samples are
merged hierarchically, we merge clusters X', I = 1,..., L, that
result from the initial clustering algorithm according to the rule:
If 3s; € Xk, 35j ¢ X! such that Isi — 8j] < Trm, then merge
k¥ and X!, where Ty, < T4 € R is the merging threshold.

Letting L denotes for the remaining number of clusters after
merging, the modified AHC algorithm becomes as

.LletL=Lk=0.
Step 2 Ifany s; € X™ and s; € X™ obeys the merging rule,
k'=k+ 1, merge X™ and X™ into the cluster X, and delete
Xxm a.ndX" fromX wherem = 1,..., L1, n—m+1 L.
Step 3. If any merging is done, i, = k, k= 0, and go to Step 2;
otherwise, compute xp' of the resulting clusters by the equation
(8) wherel =1,.. ., L and stop.

Resulting merged L clusters constitute the objects at the im-
age. Then, enclosing rectangle features of each object are com-
puted. The object having the largest right enclosing rectangle side
is selected as the target t. Since the target enclosing rectangle is
in the reduced size image, it is approximated in the original size
by multiplying rectangle coordinates by four. Correcting these
coordinates by the algorithm given in [7], accurate centroid is
calculated by averaging the edge pixels in the new rectangle.

The motion rectangle of the target at k** frame is computed
and resulting rectangle region is denoted as Ak, Letting the
enclosing rectangle region that the target will be at T*+1 seconds
later is A¥*!, it is assumed that
Ab+HL C AR 9)
Then the target object can be searched in the region AF, in the
(k + 1)** image frame which enables a local window search and
reduces the computation time significantly. For a moving camera
such as in our case, this relation is valid only after direct and in-
verse transformations gn en in [7]; the computed A¥, corresponds
to-another region A%, in the image plane T+ seconds later.

Assummg no object enters to the front of the target object in
the regxon A and lettmg the enclosing rectangle coordinates as

(z1%, v1*) and (z2*, y2*) in the k** frame, the motion recta.ngle
algorithm at k' frame is as follows:

= 2'2‘ ! :c;“

Step 1. Az*

frame.

Step 2. Find the first vertical i that crosses the target edge

pixels in the region A" by scanning vertxca.lly from the end of

Ak to the begmnmg, 1:2 +1 = i and zl“ is approximated as
k+1 — Azt

Step 3. Appl) the correcnon algorithm [7] for finding the accu-

rate ¥+, yi ! and yit

Step 4. Compute xp‘(T"“) and vp(T**+!) from the equa-

tions (12) and (1) respectively.

is known from k — 1'* image
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4 ESTIMATION OF THE POSITIONS

In order to compensate for the inherent delay in the visual fea-
ture computations, the paositions of the target object are predicted
(T* 4+ mF*T.) ahead for the trajectory planner based on the avail-
able information at time T%~!. Fig. 4 illustrates the relation
between the vision and control sampling periods.

The estimation of the target position is based on its velacity
Vp where Vp can be modeled by the linear parametrization
form [9] as

Vp(t) = a™M(t), (10)

where @ € R™%? = (a;a3) is unknown parameter matrix to
be estimated where a; € R™, i = 1,2, and M € R™ =
(Vpt—-1T ... Vp(t—-d)T)T isasignal matrix where m = 2d
and d is the order of the model. The aimis to calculate estimated
values of &; where the estimated output can be written as

Vp(t) = aTM(t) . (11)

Due to the time-varying nature of the target velocity, least-
squares estimator with erponential forgeiting technique [10]
is used in getting VP (T*) and XP (k"). This algorithm discards
old data exponentially under the assumption that the most recent
data contain more information. The algorithm is the result of the
minimization of the following cost function J '

t
- . 2
J =Y MH [Vp(k) - &TM(k)] (12)
k=1
where 0 < Ag < 1 is the ezponential forgetling factor. Mini-
mizing J withrespect to &, a;’s are estimated on-line by recursive
equations as follows

=1 _ 1 Pe-yMToM@)Pu-1)
P(t) = 5, [P(t D= S MeP- M ) ] , (13)

af =&~ + P(OOMT(0)[Ve(t) - (&HTM()] , (14)

wherei = 1, ..., n and P(t) is a positive definite symmetric gain
matrix. Ft is assumed that the vector ¢;(0) and matrix P(0) are
given. P(0) can be selected as small when accurate knowledge
of the vector &(0) is known.

The predicted positions of the target for the planning of the
camera motion can now be computed from the successive images

as [7]

Xp(K')=Xp(TFY + VP(Tk‘l)Tk_‘l + aTM(k)mT, .
(15)

"5 CONTROL LAWS

For tracking the subgoal trajectory points generated by the plan-

ner, PD and self-tuning control laws are used. The former is a
simple and fast technique while the latter is expensive but does

not need the exact knowledge of the joint dynamics and can comr
pensate for unknown dynaniics and payloads without deteriorat-
ing its performance. :

* Taking u(t) = (ug(t), u4(t))T, the control law for a PD con-

‘trol can be written as

u(t) = Kp(RY(@) - R(1)) + Kg(@d(t) - (1)),  (16)

where Kp = diag[K} K} K2K?] and Kg = diag[K}K}K}
K2) denote for the proportional and derivative gain matrices.
For a minimum overshoot, a critically damped PD controller is

proposed and a condition is computed as
K= 2 TE(KIKE +1
d = 7\? m( \p ‘m ) ’
where?1 = 1, 2.

Self-tuning controller is designed using a multivariable exoge-
nous ARX-model for the joint velocity [5]

- (17)

UK'T) = af + A(g™") QK) +BC(¢ ul(¥ = )T
+e€(k’), (18)
where k! = T* /T, +m* -1, m* = 1, ..., T¥/T.. Operator ¢!
causes a delay of one control sampling period, i.e,, ¢ 7' Vp (k') =
Vp (k' —1). The vector ajj € R? accounts for the gravitational
effects. Moreover, A®(¢71) € R?*? = A%q’l-lm . +AL. g
and B®(¢7') € R™2 = B§ + BSq~' +...+ BS, ;¢ "'+
where n’ specifies the order of the model. The equation error
e(k') € R?isa white Gaussian zero mean random variable
with known finite variance. For the centroid velocity (k') =
(k") Qu(k"))T and position R(k') = (8(k') ¢(k"))T, the

unknown parameters in ag, ‘A€ and BE€ are written as:

c aj, af,
AL = {asl 22] (19)
bS, b¢
'Bc = [ 21 22] N 20
0 b3y b5, (20)
aS = [a5, GBZ]T ) (21)

Writing the equation (18) in a different notation, the velocity
model becomes as (n’ = 1)

Q(k') =aTM(lc')+e(k’) , (22)

a € R%*? = [a! o?], (23)
o = [af; af, b§; 855 a§i)7 (24)
ag = [a5; a5, b3, b5, af,)T (25)

M(t) = [Q(t — 1) Q4(t — 1) ug(t — 1) ug(t — 1) 1]7(26)

The recursive equations in (13) and (14) are used for estimat-
ing a;’s. The controller is designed on the basis of the velocity
model (22) in which the estimates are used for the unknown pa-
rameters. The control u(k’) is determined by minimizing

Telu) = B[l +1) - ad( + 1) + 9 [R(F) +

QT = RAK + D]y + u()l3y 98], 27)
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Fig. 5. One and four objects to be tracked.

where Qd(lc’ + 1) and Rd(lc’ + 1) are the desired velocity and
angle vectors of the joint motors at time (k' + 1)7T, as specified
by the output of the trajectory planner. v, Q, and W are sym-
metrical positive definite weighting matrices and || B|| 5 denotes
for ATBA.

Substituting (&' + 1) by its estimated model (22), expand-
ing {|.|I’s and minimizing I;[u] with respect to u(k’), u(k’) is
computed as

u(k') = [W + (BS)TQB®] ' (Be)TQ[ad (k' + 1) -
ACQ(k') - A + 7(Rd(k' +1) ~ R(K) — Q(k")T.)]28)

6 EXPERIMENTS

For assessing the performance of the complete visual servoing
systern with respect to real-time applicability, tracking accuracy
and speed, two sets of experiments are conducted: (i) experiments
based on a simulation of the carnera mount tracking system, (1)
experiments performed using a 6-DOF robotic manipulator.

6.1 Simulated Camera Mount Tracking

The task of the camera mount shown in Fig. 2 is chosen as
supplying the position and velocity information of a moving target
object for a robotic manipulator. For achieving this task, the
camera mount tracks a target object, follows it for a duration ¢,,
and do the same processes for the other objects successively until
no object renains in the field of view of-the camera.

In the simulations, the gimbal center vector is so that the cam-

era image plane is parallel to the conveyor motion direction ini-,

tially. The vector ({1, 12,13} is (0,75,20) mm and f = 22 mm.
In the vision algorithm, T, Ty and T;, are chosen as 200, 10

and Ty/2 respectively. The initial parameter values in predict-.

ing the target centroid velocity are A1(0) = 0.71, A9(0) =
0.37, and P(0) = 100/, and the forgetting factor is u = 0.99.
* For the planner, the maxiimum velocity and acceleration of the
joint motors are taken as 0.5 rad/sec and 0.6 rad/sec® where
K} = K% =13.26, T}, = T2 = 0.0135 for the joint motors.
T, for self tuning and PD controllers are taken as 12 msec and
10 msec respectively. For the self tuning controller, n = 1,
A({(O) = 0.5/, Bﬁ((}) = I, and aﬁ(O) = 0, and p = 0.95.
When the relative distance between the camera optical axis and
.object position is less than the threshold value 3 mm, the track-
ing is achieved and ¢, = 2 sec is chosen. '

The first sinulation is realized with a metal single object dis-
played in Fig. 5. For the controllers, Q = 0.0121, v = 300/,
Kp = I areselected. The resulting camera optical axis positions
with PD and self tuning controllers and the measured object tra-
Jectory are shown in Fig. 6. From the figure, it is observed that
self tuning control results in a quicker tracking of the trajectory
with less tracking error as compared to PD control.
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Fig. 6. Trajectories resulting from PD (dotted) and self-
tuning (solid) controllers for one and four object cases
(black points show the measured target positions).
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In the second simmilation, four objects as shown in Fig. 5
are used in the simulation. Using the same parameters with the
one object case, the rﬁultihg trajectories for PD and self-tuning
controllers are displayed in Fig. 6. In this case, the effect of
the abrupt changes can be observed clearly where larger peaks
exist. However, these peaks can be reduced by making T, small
which is a large value for both controllers in the sirulations. In
spite of the largeness of 7., both controllers are successful in
tracking while self tuning control performs better with respects
to generating smooth trajectories and having less tracking error
and PD is faster in tracking.

6.2 Robot Grasping Experiments

The applicability of the vision system in real-time is assessed by
experiments in which one moving target object is to be grasped
by the gripper of a Manutec R15 6-DOF industrial manipulator
as shown in Fig. 1. The system hardware configuration is given
in Fig. 7. Scorpion frame-grabber card acquires images that are
taken from a stationary camera and Eagle board filters them with
the Sobel edge mask. The vision algorithm is run on an IBM 486
DX-66 PC using the Borland C + + Compiler.

In the experiment, a set of five spongy objects as shown in
Fig. 8 are to be picked by the manipulator successively. At any
k" edge filtered image of the size 640 x 480 with 256 grey lev-
els which include any combination of the objects is thresholded
by T. = 100. The size of the resulting edge map is reduced to
160 x 120. Thep, for T; = 8 and T;,, = Ty4/2, the objects are
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Fig. 7. Hardware used in the experiments.

Fig. 8. The spongy objects used in the experiments.

segmented The clusters having less than eight pixels are consid-
ered to be the pointwise background noise and eliminated.

Computing X p (T*) target centroid position, Vp (T*) is cal-
culated using the equation (1) for the k** frame where k =
0,..., K. Assuming the conveyor speed is constant, target con-
stant Velocnty Vis estlmated as

Zv (T*) .

This estimation reduces the measurement noise in the velocnty
values with a large I{. But since the camera field of view is
fixed and limited, K has a limit and for the experiments K = 4
is taken For the grasping, the target object centroxd posxtlon is
estimated t = £, + t. seconds later as

(29)

Xp(TX +¢t) = XP(TK) AA (30)

where for the experiment setup, ¢, = 2.1 sec is the grasplng
time which is determined empirically and ¢, = 0. 205 sec is the
" communication time between the PC and robot controller. Then,
XP (T¥ +1) is converted to the robot coordinates and sent to the
robot controller. Robot manipulator goes to that point, grasps
the object and puts it into a box.

In order to assess the real-time application performance of the
vision system, the maximum allowable speeds of the conveyor belt

V* € R are found for grasping different number of objects from -

a set of objects successfully. For the set of objects shown in Fig.
8, V* values for grasping one, two, three, four and five objects are
tabulated in Table 1. In a static camera case, V* is determined
by two main factors: the delay mherent. in the vision algorithm
and K.

Number of Objects v
in the Scene (cm/sec)

Number of Succes'sive
Grasped Ob]ects

13.84
13.13
11.38
10223
8.02
4.95
3.89
3.69
2.85
2.37
2.10
1.98
143
1.35
118

OV b W O GO R BT DD DD e =
VO s O Q0 QU W N O A N

‘Table 1. Maximum allowable v_elocitiﬁ.

7 CONCLUSION

A pasition-based visual s;ar'voing structure for the on-line servoing

-of a pan-tilt camera-mount with multiple objects in the camera

field of view case is presented. In the camera mount simulations,
it-is observed that self-tuning controller is less sensitive to the
noise and changes in the target motion while PD controller is
fast when vision measurements are accurate. The applicability
of the introduced vision algorithm is tested by the picking task
of a Manutec R17 robotic manipulator which gets its visual in-
formation from a stationary camera over a conveyor belt. The
experimental résults are successful in terms of picking the objects
in the determined speed limits for different cases.
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