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Overview
● Last week’s reflection

○ Team Project Phase 2, Live Test

○ Quiz 11

■ Graph and Stream Processing

● This week’s schedule
○ Project 4.2

■ Machine Learning on the cloud

○ Twitter Analytics: The Team Project

■ Phase 3

● Managed Services



Machine Learning in Production
● A proliferation of tools on the Cloud



ML on Managed Services

● Machine learning training on large datasets tend to be 
computationally intensive

● An increasingly affordable option for users without 
specialized IT infrastructure is to process ML workloads 
on the cloud with Managed Services like the Google AI 
Platform.

● Benefits:
○ No need to provision and configure virtual machines
○ Horizontal and vertical scaling is possible
○ No need to write custom logic to orchestrate multiple 

workers and achieve parallel training
○ Deploy your model to the cloud



P4.2 - Taxi Fare Prediction Application

● Accepts speech queries to get the fare estimate 
to get from point to point (based on historical 
data), and returns the result as speech

I would like to get from Central Park 
Zoo to Grand Central Terminal

Your expected fare from Central Park 
Zoo to Grand Central Terminal is $29.69 



P4.2 - Overview of Tasks

● Task 1: Data Visualization and Feature Engineering

● Task 2: Training, hyperparam tuning, deploying 
your model using the Google AI Platform and 
serving queries.

● Task 3: Stitch together services into a pipeline to 
build a user-facing interface for fare predictions.

● Bonus: 
○ Use Cloud Vision API to identify NYC landmarks
○ Use AutoML to train a custom model that accepts 

custom landmarks as input for prediction



Task 1: Feature Engineering 
- Data Visualization

● You are given a small training dataset 
containing historical data of fare prices in New 
York City.

● Steps to perform
○ Data exploration and visualization
○ Understand the data for Feature Engineering 

with regards to feature construction, data 
cleaning, etc.



Task 1: Feature Engineering 
- Data Visualization



Task 1: Feature Engineering

● You are given a small training dataset containing 
historical data of fare prices in New York City

● Steps to perform
○ Clean the data and remove outliers

■ Consider what you learned from the data 
visualization task

○ Extract or construct meaningful features that 
will improve performance over the baseline 
model (which uses raw features with no 
transformations) 



Task 1: Feature Engineering

● Feature engineering = transforming domain 
knowledge into better features

● Some ideas for feature engineering
○ Calculate distance from the geo-coordinates
○ Calculate distance to landmarks
○ What are good proxies for traffic conditions?



Task 1: Feature Engineering
● Evaluating your model

○ Metric: Root Mean Squared Error (RMSE)
○ K-fold Cross-Validation

■ Used to assess the predictive performance of the 
model outside the training sample on unseen data

○ Plot feature importance



Task 2: Training, Tuning & Deploying
● Train and tune the model on complete dataset on 

Google AI Platform.
● Deploy the trained model to AI Platform.
● Develop a Flask application that accepts web requests 

and returns fare predictions.
○ Transform raw features from web requests using 

the feature engineering solution developed in 
Task 1.

○ Make API calls to the model hosted on AI Platform
○ Format and return a web response

● Deploy the Flask application on Google App Engine.



Task 2: Tuning with Google AI 
Platform

● Hyperparameter Tuning
● Parameters v/s. Hyperparameters

○ Parameters: internal, often not set by the 
practitioners

○ Hyperparameters: external, often set by the 
practitioners before training
■ Basically, configuration parameters that 

impact the training process
● Finding optimal hyperparameters with an 

exhaustive Grid Search is expensive



Task 2: Tuning with GCP 
HyperTune

● Black box optimization service (does not need 
access to the underlying model)

● Need to specify a config yaml file that describes 
which hyperparameters to tune

● Uses a method called Bayesian Optimization to 
efficiently search through different combinations of 
hyperparameters

● An example of a HyperTune configuration file: 
hptuning_config.yaml

https://github.com/GoogleCloudPlatform/cloudml-samples/blob/master/census/hptuning_config.yaml


Task 2: Deploying Model to AI Platform

● To get a full score in this task, you need to:
○ Enable HyperTune, add at least 3 additional 

parameters to tune, run the hypertuning job 
and create a model on Google AI Platform.

○ Deploy the fare prediction application to GAE 
that uses the model created above and serves 
web requests correctly.

○ The predictions should achieve a target 
accuracy, measured by RMSE.



Task 3: ML Application Pipeline
● Build an end-to-end application pipeline to predict car 

fare requests using the following architecture.



Task 3: ML Application Pipeline

● Your application will include multiple APIs
○ Functional APIs to be implemented

■ /predict - Generate fare predictions for a JSON 
array of rides

■ /speechToText - Convert WAV audio to text string
■ /textToSpeech - Convert text string to WAV audio
■ /namedEntities - Identify landmarks in a given 

sentence
■ /directions - For two given NYC landmarks, 

determine the latitude / longitude for each pickup 
and drop off pair



Task 3: ML Application Pipeline

Putting it together:
● /farePrediction - Given a WAV audio ride request, determine the predicted 

fare
○ Response 

■ { "predicted_fare": "23.78", 
   “entities": ["Charging Bull", "Carnegie Hall"], 
    "text": "Your expected fare from Charging Bull to Carnegie Hall                                                                     
is $23.78", 
     "speech": <BASE64 ENCODED AUDIO> }

● General solution flow
○ Speech to text ride request (/speechToText)
○ Extract entities from text ride request (/namedEntities)
○ Get the coordinates of the pickup and drop off locations (/directions)
○ Query the AI Platform model to get the predicted fare (/predict)
○ Convert the text response to speech (/textToSpeech)



Bonus: Landmark Recognition
● (5 points) Use Cloud Vision to identify NYC landmarks
● (5 points) Add unique destinations using AutoML

● /farePredictionVision
○ Unlike /farePrediction, the ride request will not be 

sent as WAV audio
○ The API will accept the source and destination as 

images of NYC landmarks
○ Must query the Cloud Vision API and custom 

AutoML model to determine the landmark names
○ Continue with the same request as /farePrediction



Bonus: Landmark Recognition

... ... ...



Bonus: Landmark Recognition

... ... ...



Hints

● Task 1: Feature transformation

■ The exact same feature transformations must be 
applied to the training and the test set

■ Cannot share code if stateful functions are used, 
for example:
● get_dummies()
● df.qcut()

■ Store state like bin ranges and categorical values 
to apply the transformation consistently

○ Jupyter: command not found (use virtualenv)



Hints

● Task 2: HyperTune
○ Read the XGBoost hyperparameter doc to 

understand which hyperparameters can help 
most.

○ You can change the number of workers for 
the AI Platform training job to parallelize the 
training process.

○ Learn to make good estimates for the cost for 
each run
■ Cost = Consumed ML Units *  $0.49



Issues to Consider

● Overfitting
○ RMSE on training data is much lower than test 

data
○ You should not filter outliers just because it makes 

your cross validation scores look better, since 
some of these records may be representative of 
the patterns in the real world.
■ Students who do this may pass Task 1, but will 

fail Task 2.
■ You should make sure you have good features 

first, before trying to play around with filtering 
outliers.
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TEAM PROJECT
Twitter Data Analytics



Team Project Phase 2 Live Test 
Top Q1 Teams

Pikachu 47656.00

WhiteGiving 43577.52

RedChillies 42597.50

randomGroup 40378.63

WuhanJiayou 39302.70

WhiteGiving 62070.91

FollowMe 54065.30

RedChillies 48608.60

Pikachu 47317.40

14 Principles 44390.81

Q1H Q1M

Congrats to WhiteGiving, Pikachu, RedChillies for 
top performance for both HBase and MySQL tests.



Team Project Phase 2 Live Test 
Top Q2 Teams

WhiteGiving 22791.10

FollowMe 11775.96

Frantic Horizon 10988.26

Best_In_Adelaide 10367.73

infinity 10253.90

FollowMe 28206.20

WhiteGiving 27394.40

Frantic Horizon 24737.30

SV No.1 23095.02

RedChillies 19509.22

Q2H Q2M

Congrats to WhiteGiving, FollowMe, Frantic Horizon 
for top performance for both HBase and MySQL tests.



Team Project Phase 2 Live Test 
Top Q3 Teams

WhiteGiving 5140.80

infinity 3151.50

FollowMe 2030.20

Frantic Horizon 1775.30

PepeFTW 1667.61

WhiteGiving 16616.00

SV No.1 9683.10

infinity 8484.20

PepeFTW 7675.00

Frantic Horizon 5986.30

Q3H Q3M

Congrats to WhiteGiving, infinity, Frantic Horizon, 
PepeFTW for top performance for both HBase and 
MySQL tests.



● Use only AWS managed services for all queries

● Development budget: $100

○ Penalty for lavishness: >$150

● Live test:

○ Per-hour-budget: $1.28 (included in $100)

● Perform ETL on your beloved GCP and Azure

Team Project - Phase 3



Cloud Managed Services
● Managed services remove the burden from 

having to operate the provisioned cloud 
resources.

● Management tools such as monitoring, patching, 
security, backup are offered as part of the 
service.



● RPS targets have been changed → 
○ Q1: 35000
○ Q2: 12000
○ Q3: 6000

● Teams should NOT use any EC2 instances or EBS volumes
● Rule of thumb: 

○ If you see anything in EC2 dashboard, stop
○ If you are doing sudo apt install 

mysql-server, stop
● Teams should explore the managed services provided by AWS 

to come up with a solution
● Teams are required to use Terraform (unless Terraform does 

not have support for your particular managed service)

Team Project - Phase 3



● No EC2 instances and EBS volumes in the live test!  
○ Nonetheless, you can use those to do verification or 

comparison to the hosted service you built before in the 
development process.

● You can check the EC2 web console after launching the 
managed service to verify if the managed service is allowed
○ Example 1: Lambda is allowed since it there will be no 

EC2 instances visible in the web console while using.
○ Example 2:  EMR is not allowed because there are master 

and slave machines in the web console.

Team Project General Hints



● One option would be to split the services into web-tier and 
storage-tier and choose different managed services.
○ If so, the compatibility of these two services should be 

taken into account.

● Consider the different characteristics of queries to decide what 
kind of managed services to use.

● High performance/cost ratio is valued.
○ Try your best to achieve the highest possible ratio.

Team Project General Hints



Team Project Time Table
Phase (and query due) Start Deadlines Code and Report Due

Phase 1
● Q1, Q2

Monday 02/24/2020
00:00:00 ET

Q1 Checkpoint: Sunday 
03/01/2020 23:59:59 ET
Q1: Sunday 03/08/2020 
23:59:59 ET
Q2 Checkpoint: Monday 
03/23/2020 23:59:59 ET
Q2: Sunday 03/29/2020 
23:59:59 ET

Tuesday 03/31/2020 
23:59:59 ET

Phase 2
● Q1, Q2,Q3

Monday 03/30/2020
00:00:00 ET

Sunday 04/12/2020
15:59:59 ET

Phase 2 Live Test (Hbase 
AND MySQL)

● Q1, Q2, Q3

Sunday 04/12/2020
17:00:00 ET

Sunday 04/12/2020
23:59:59 ET

Tuesday 04/14/2020
23:59:59 ET

Phase 3
● Q1, Q2, Q3 (Managed 

services)

Monday 04/13/2020
00:00:00 ET

Sunday 04/26/2020
15:59:59 ET

Phase 3 Live Test
● Q1, Q2, Q3 (Managed 

services)

Sunday 04/26/2020
17:00:00 ET

Sunday 04/26/2020
23:59:59 ET

Tuesday 04/28/2020
23:59:59 ET



Upcoming Deadlines

● Team Project: Phase 2
○ Code and report due:

■ Tuesday, April 14, 2020 11:59 PM ET

● Project 4.2: Machine Learning on the Cloud
○ Due Sunday, April 19, 2020, 11:59 PM ET

● Team Project: Phase 3
○ Live-test:

■ Sunday, April 26, 2020 3:59 PM ET

○ Code and report due:

■ Tuesday, April 28, 2020 11:59 PM ET



Questions?


