
15-319 / 15-619
Cloud Computing

Recitation 11

Tuesday, Mar 31, 2020

Overview
• Last week’s reflection

– Spark OPE

– Team Project Phase 1

– OLI Unit 4: Modules 15, 16, 17

– Quiz 8

• This week’s schedule
– Project 4.1, due on Sunday, April 5th

– OLI Unit 5: Modules 19 and 20

– Quiz 10, due on Friday, April 3rd

• Twitter Analytics: The Team Project
– Query 3 Early Bird Bonus, due on Sunday, April 5th

2

Modules to Read

• UNIT 5: Distributed Programming and Analytics
Engines for the Cloud
– Module 18: Introduction to Distributed Programming

for the Cloud
– Module 19: Distributed Analytics Engines for the

Cloud: MapReduce
– Module 20: Distributed Analytics Engines for the

Cloud: Spark

Project 4, Frameworks

• Project 4.1

– Iterative Batch Processing Using Apache
Spark

• Project 4.2

– Machine Learning on the Cloud

• Project 4.3

– Stream Processing with Kafka and Samza

4

Typical MapReduce Batch Job

• Simplistic view of a MapReduce job

• You write code to implement the following classes
– Mapper

– Reducer

• Inputs are read from disk and outputs are written to disk

– Intermediate data is spilled to local disk

Input

HDFSMapper ReducerHDFS

Output

5

Iterative MapReduce Jobs

• Some applications require iterative processing
• E.g., Machine Learning

• MapReduce: Data is always written to disk

– This leads to added overhead for each iteration

– Can we keep data in memory? Across Iterations?

– How do you manage this?

Input

HDFSMapper ReducerHDFS

Output

Prepare data for the next iteration

6

Apache Spark

• General-purpose cluster computing framework
• APIs in Python, Java, Scala and R
• Runs on Windows and UNIX-like systems

7

Spark Ecosystem
● Spark SQL

○ Process structured data
○ Run SQL-like queries against RDDs

● Spark Streaming
○ Ingest data from sources like Kafka
○ Process data with high level functions like map and reduce
○ Output data to live dashboards or databases

● MLlib
○ Machine learning algorithms such as regression
○ Utilities such as linear algebra and statistics

● GraphX
○ Graph-parallel framework
○ Support for graph algorithms and analysis

8

https://spark.apache.org/sql/
https://spark.apache.org/streaming/
https://spark.apache.org/mllib/
https://spark.apache.org/graphx/

Apache Spark APIs

● There exists 3 sets of APIs for handling data in Spark

Resilient
Distributed

Dataset (RDD)
DataFrame

Da
ta

se
t

● Distributed
collection of
JVM objects

● Functional
operators
(map, filter, etc.)

● Distributed
collection of
Row objects

● No compile time
type safety

● Fast, efficient
internal
representations

● Compile time
type-safe

● Fast

9

Resilient Distributed Datasets

● Can be in-memory or on disk
● Read-only objects
● Partitioned across the cluster based on a range or

the hash of a key in each record

RDD1 RDD1’

RDD2 RDD2’

RDD3 RDD3’

Machine B

Machine A

Machine C

RDD Operation
(e.g. map, filter)

10

Operations on RDDs
• Loading data

>>> input_RDD = sc.textFile("text.file")

• Transformation
– Applies an operation to derive a new RDD
– Lazily evaluated -- may not be executed immediately
>>> transform_RDD = input_RDD.filter(lambda x: "abcd" in x)

• Action
– Forces the computation on an RDD
– Returns a single object
>>> print "Number of “abcd”:" + transform_RDD.count()

• Saving data
>>> output.saveAsTextFile(“hdfs:///output”) 11

RDDs and Fault Tolerance

● Actions create new RDDs

● Uses the notion of lineage to support fault tolerance
○ Lineage is a log of transformations

○ Stores lineage on the driver node

○ Upon node failure, Spark loads data from disk to

recompute the entire sequence of operations

based on lineage

12

DataFrames and Datasets

● A DataFrame is a collection of rows
○ Tabular
○ Organized into named columns, like a table in a relational DB

● A dataset is a collection of objects
○ Domain specific
○ Object oriented

13

Operations on DataFrames
• Suppose we have a file people.json
{"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19}

• Create a DataFrame with its contents
val df = spark.read.json("people.json")

• Run SQL-like queries against the data
val sqlDF = df.where($"age" > 20).show()
+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

• Save data to file
df.where($"age" > 20).select(“name”).write.parquet(“output”)

Note: Parquet is a column-based storage format for Hadoop.

14

Project 4.1

15

● Spark OPE: Implement a TF-IDF inverted index

● Task 1: Exploratory Analysis on a graph based
dataset

● Task 2: Create an efficient Spark program to
calculate user influence

● Bonus: Use Azure Databricks to run Task 2

Twitter Social Graph Dataset

● tsv format
● Appx. 10GB of data (do not download)
● Edge list of (follower, followee) pairs

○ Directed
● # of followers distribution → power tail

16

Task 1 Exploratory Data Analysis

● Two parts to Task 1
a. Counting using Zeppelin notebook

■ Find the number of edges
■ Find the number of vertices

b. Find top 100 most-popular users
■ RDD API
■ Spark DataFrame API

17

Task 2: PageRank

● Started as an algorithm to rank websites in
search engine results

● Assign ranks based on the number of links
pointing to them

● A page that has links from
○ Many nodes ⇒ high rank
○ A high-ranking node ⇒ (slightly less) high rank

● In Task 2, we will implement pagerank to find the
rank of each user

18

Basic PageRank

● How do we measure influence?
○ Intuitively, it should be the node with the most followers

19

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices

0.333 0.333

0.333
20

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following

0.333 0.333

0.333
21

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following

0.333/2
= 0.167

0.333 + 0.333/2
= 0.500

0.333
From Node 2

From Node 1

From Node 1From Node 0

22

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not

change between iterations
● PageRank is guaranteed to converge

0.333/2
= 0.167

0.333 + 0.333/2
= 0.500

0.333

From Node 2

From Node 1

From Node 1From Node 0

23

Basic PageRank
● Influence scores are initialized to 1.0 / # of vertices
● In each iteration of the algorithm, scores of each user are

redistributed between the users they are following
● Convergence is achieved when the scores of nodes do not

change between iterations
● PageRank is guaranteed to converge

0.208 0.396

0.396
24

Basic PageRank Pseudocode

val links = spark.textFile(...).map(...).cache()
var ranks = // RDD of (URL, rank) pairs
for (i <- 1 to ITERATIONS)
{

// Build an RDD of (targetURL, float) pairs
// with the contributions sent by each page
val contribs = links.join(ranks).flatMap
{

case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}

// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey(_ + _)

 .mapValues(sum => a/N + (1-a)*sum)
}

Reference: https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala 25

(Note: This does not meet the requirements of Task 2)

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPageRank.scala

PageRank Terminology
● Dangling or sink vertex

○ No outgoing edges
○ Redistribute contribution equally among all vertices

● Isolated vertex
○ No incoming and outgoing edges
○ No isolated nodes in Project 4.1 dataset

● Damping factor d
○ Represents the probability that a user clicking on links

will continue clicking on them, traveling down an edge
○ Use d = 0.85

Dangling vertex
Isolated vertex

26

Visualizing Transitions

● Adjacency matrix:

● Transition matrix: (rows sum to 1)

27

Task 2: PageRank
Formula for calculating rank

d = 0.85

28

Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

29

Task 2: PageRank
Formula for calculating rank

d = 0.85

Note: contributions from isolated and
dangling vertices are constant in an
iteration

Let

This simplifies the formula to

30

Task 2: PageRank
Formula for calculating rank

d = 0.85

31

Task 2: PageRank
Formula for calculating rank

d = 0.85

32

What you need to do for Task 2

● Run your page rank application on a 10GB
graph data for 10 iterations.

● Using HDInsight cluster on Azure:
○ Use the Terraform template provided
○ Very expensive - 2.6USD per hour

● Scoring for Task 2 has 2 components:
○ 100% correctness for page rank - 30 points
○ Performance optimization (runtime within

30 minutes) - 30 points

33

General Hints
● Starter code:

○ SparkUtils.scala - Use this for creating SparkSession objects.
● Test out commands on a Zeppelin notebook (refer to the Zeppelin

primer)
● Test Driven Development (TDD):

○ Starter code contains a small graph test.
○ Develop and test locally first!
○ Develop and test locally first!
○ Develop and test locally first! HDInsight clusters are expensive
○ Add more test cases to check robustness.
○ Each submission can take anywhere from 6 min to an hour to run on

the cluster.
● When in doubt, read the docs!

○ SparkSQL
○ RDD

● Don’t forget to include in your submission
○ Updated references file

● Arguably the hardest P4 project. Start early! 34

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html

Pagerank Hints

● Ensuring correctness
○ Make sure total scores sum to 1.0 in every iteration
○ Understand closures in Spark

■ Do not do something like this
val data = Array(1,2,3,4,5)

var counter = 0

var rdd = sc.parallelize(data)

rdd.foreach(x => counter += x)

println("Counter value: " + counter)

○ Graph representation
■ Adjacency lists use less memory than matrices

○ More detailed walkthroughs and sample calculations
can be found here

35

https://s3.amazonaws.com/15619public/webcontent/pagerank_examples.pdf

Spark UI
• Provides useful information on your Spark programs
• You can learn about resource utilization of your cluster
• Is a stepping stone to optimize your jobs

Status of RDD
actions being
computed

Info about cached
RDDs and
memory usage

In-depth job info

36

Optimization Hints

● Understand RDD manipulations
○ Actions vs Transformations
○ Lazy transformations

● Use the Ambari UI
○ Are you utilizing your cluster completely? How can you

change that? Refer optimization hints in the writeup.
● Use the Spark UI

○ Are your RDDs cached as expected? (Thrashing)
○ Memory errors - check container logs
○ Parameter tuning applied successfully?
○ Exponential increase in partitions?

● How do you represent the node IDs? Int/String/Long?
● Many more optimization hints in the writeup!

37

Bonus Task - Databricks

● Databricks is an Apache Spark-based unified analytics
platform.

● Azure Databricks is optimized for Azure
○ Software-as-a-Service

● One-click setup, an interactive workspace, and an
optimized Databricks runtime

● Optimized connectors to Azure storage platforms for
fast data access

● Run the same PageRank application (in Task 2) on
Azure Databricks to compare the differences with
Azure HDInsight

38

What you need to do for bonus?

● You can only get bonus (10 points) when:
○ 100% correctness
○ Runtime under 30 minutes on Databricks

● Copy your code to a Databricks notebook:
○ Do not create or destroy SparkSession objects
○ Change the output to DBFS instead of WASB

● Create a cluster and job using databricks-setup.sh
● Submitter takes in a job ID
● Don’t forget to destroy resources after you are done!

39

How to change your code?
object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
 val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
 val sc = spark.sparkContext

 … Your implementation goes here …
 graphRDD = sc.textFile(inputGraphPath)
 graphRDD.map(...)

 spark.close()
 }

 def main(args: Array[String]): Unit = {
 val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
 val outputPath = "wasb:///pagerank-output"
 val iterations = 10

 calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
 }
}

40

How to change your code?
object PageRank {
 def calculatePageRank(inputGraphPath: String, outputPath: String, iterations: Int, isLocal: Boolean): Unit = {
 val spark = SparkUtils.getSparkSession(isLocal, appName = "PageRank")
 val sc = spark.sparkContext

 val inputGraph = "wasb://spark@cmuccpublicdatasets.blob.core.windows.net/Graph"
 val outputPath = "dbfs:/pagerank-output"
 val iterations = 10
 … Your implementation goes here …
 graphRDD = sc.textFile(inputGraphPath)
 graphRDD.map(...)

 spark.close()
 }

 def main(args: Array[String]): Unit = {

 calculatePageRank(inputGraph, outputPath, iterations, isLocal=false)
 }
}

41

42

TEAM PROJECT
Twitter Data Analytics

Team Project

Twitter Analytics Web Service
• Given ~1TB of Twitter data
• Build a performant web service

to analyze tweets
• Explore web frameworks
• Explore and optimize database systems

Web-tier Storage-tier

43

Twitter Analytics System Architecture

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization 44

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

Phase 1 Scoreboard (f19)

Phase 1 Scoreboard (s20)

Team Project
● Phase 1:

○ Q1
○ Q2 (MySQL AND HBase)

● Phase 2
○ Q1
○ Q2 & Q3 (MySQL AND HBase)

● Phase 3
○ Q1
○ Q2 & Q3 (MySQL OR HBase)

47

Team Project Time Table

48

Phase (and query due) Start Deadlines Code and Report Due

Phase 1
● Q1, Q2

Monday 02/24/2020
00:00:00 ET

Checkpoint 1, Report: Sunday
03/08/2020 23:59:59 ET
Checkpoint 2, Q1: Sunday
03/22/2020 23:59:59 ET
Phase 1, Q2: Sunday
03/29/2020 23:59:59 ET

Phase 1: Tuesday
03/31/2020 23:59:59 ET
(upload PDF report and
verify your submission)

Phase 2
● Q1, Q2,Q3

Monday 03/30/2020
00:00:00 ET

Q3 Early Bird Bonus: Sunday
04/05/2020 23:59:59 ET
Phase2 Due: Sunday
04/12/2020 15:59:59 ET

Phase 2 Live Test (Hbase AND
MySQL)

● Q1, Q2, Q3

Sunday 04/12/2020
17:00:00 ET

Sunday 04/12/2020
23:59:59 ET

Tuesday 04/14/2020
23:59:59 ET (upload PDF
report and verify your
submission)

Phase 3
● Q1, Q2, Q3 (Managed

services)

Monday 04/13/2020
00:00:00 ET

Sunday 04/26/2020
15:59:59 ET

Phase 3 Live Test
● Q1, Q2, Q3 (Managed

services)

Sunday 04/26/2020
17:00:00 ET

Sunday 04/26/2020
23:59:59 ET

Tuesday 04/28/2020
23:59:59 ET

Team Project Deadlines

49

● Phase 2 milestones:

○ Q3 Bonus (Reach Q3 target, MySQL+HBase):

■ due on Sunday, April 5

○ Phase 2, Live test:

■ Q1/Q2/Q3/mixed on Sunday, April 12

○ Phase 2, code, scripts and report:

■ due on Tuesday, April 14

Live Test Schedule - setup

50

Live Test Schedule - HBase

51

Live Test Schedule - MySQL

52

AWS Budget Reminder

 53

No penalty -10% grade penalty -100% grade penalty

Total budget $60 $60 - $100 $100+

Live Test budget ~$20 ~$20 ~$20

Development budget ~$40 ~$40 - ~$80 ~$80+

● Use GCP and Azure for ETL.
● Use spot instances to reduce spending during development.

● Phase 2 budget is $60, with a double budget penalty at $100.

● Your web service should cost ≤ $0.89/hour, including:

○ EC2

■ We evaluate your cost using the On-Demand Pricing

towards $0.89/hour even if you use spot instances.

○ EBS & ELB

○ Ignore data transfer and EMR cost

● Phase 2 - Live Test Targets:

○ Query 1 - 32000 RPS

○ Query 2 - 10000 RPS (for both MySQL and HBase)

○ Query 3 - 1500 RPS (for both MySQL and HBase)

○ Mixed - 10000/1500/500 RPS (for both MySQL and HBase)

Hourly Budget Reminder

 54

https://aws.amazon.com/ec2/pricing/on-demand/

Phase 2, Query 3

● Problem Statement
○ Given a time range and a user id range, which tweets

have the most impact and what are the topic words?

● Impact score and topic words (see the write up for details)
○ Impact of tweets: Which tweet is “important”? Calculate

using the effective word count, favorite count, retweet
count and follower count.

○ Topic words: In this given range, what words could be
viewed as a “topic”? Done using TF-IDF.

● Request/Response Format
○ Request: Time range, uid range, #words, #tweets.
○ Response: List of topic words with their topic score, as

well as a list of tweets (after censoring).

Phase 2, Query 3 FAQs
Question 1: How to calculate the topic score?

For word w in the given range of tweets, calculate:

● Calculate the Term Frequency of word w in tweet t(i)

● Calculate Inverse Document Frequency for word w

● Calculate Impact Score of each tweet

●

Phase 2, Query 3 FAQs

Question 2: When to censor? When to exclude stop words?

● Censor in the Web Tier or during ETL. It is your own

choice.

○ If you censor in ETL, consider the problem it brings to

calculating the topic word scores (two different words

might look the same after censoring).

● You should count stop words when counting the total

words for each tweet in order to calculate the topic score.

● Exclude stop words when calculating the impact score and

selecting topic words.

Hints
● Completely understand every AssessMe question.

● Completely understand the definition of a word. This is different

for text censoring and calculating scores.

● A query contains two ranges. Log some requests to get an idea

on the range of user_id and timestamps.

● Optimization is time-consuming. Before ETL, please

○ Think about your schema design (rowkey for HBase in

particular).

○ Think about your database configuration.

 58

Hints

● Understand and keep an eye on

○ EC2 CPU Credits and burstable performance

○ EBS volume I/O Credits and Burst Performance

● Remember that you can put the web-tier and

storage-tier on the same instance.

 59

Hints

● Profile your cloud service and think about which

component is the bottleneck.

● There are some useful tips for improving HBase

performance in the writeup of the NoSQL primer,

HBase primer and P3.1.

● Understand different metrics (e.g., locality, number of

read requests) in HBase UI (port 16010) and HDFS UI

(port 50070).

 60

Warning

● NEVER open all ports to the public (0.0.0.0) when

using instances on a public cloud.

● For your purposes, you likely only need to open port

80 to the public. Port 22 should be open only to

your own machine.

● Port 3306 (for MySQL) and HBase ports should be

open only to cluster members if necessary.

 61

Upcoming Deadlines

● P4.1 Iterative Batch Processing Using Apache Spark

○ Due: 04/05/2020 11:59 PM EDT

● Quiz 10

○ Due: 04/03/2020 11:59 PM EDT

● Team Project : Phase 2

○ Early bird bonus due: 04/05/2020 11:59 PM Pittsburgh

○ Live-test due: 04/12/2020 3:59 PM Pittsburgh

○ Code and report due: 04/14/2020 11:59 PM Pittsburgh

Questions?

63

