
15-319 / 15-619
Cloud Computing

Recitation 9

Mar 17, 2020

1

Overview

● Last week’s reflection

○ Project 3.2

○ OLI Unit 4 - Module 14

○ Quiz 7

○ Online Programming Exercise for Multi-Threading

● This week’s schedule

○ Project 3.3

○ OLI - Modules 15, 16 & 17
○ Quiz 8 due on Friday, Mar 20th

● Team Project, Twitter Analytics

○ Phase 1 Q2 Checkpoint, 3/22.

2

Before Spring Break
● OLI : Module 14

○ Quiz 7

● Project 3.2

○ Social Networking Timeline with Heterogeneous Backends

■ MySQL

■ Neo4j

■ MongoDB

■ Choosing Databases, Storage Types & Tail Latency

● Team Project

○ Query 1 Final

● Multi-Threading OPE Exercise on Cloud9

3

This Week
● OLI : Modules 15, 16 & 17

○ Quiz 8 - Friday, Mar 20th

● Project 3.3 - Sunday, Mar 22nd

○ Task 1: Implement a Strong Consistency Model for

distributed data stores

○ Task 2: Implement a Strong Consistency Model

cross-region data stores

○ Bonus: Implement an Eventual Consistency Model

● Team Project, Twitter Analytics - Sunday, Mar 22nd

○ Query 2 Checkpoint

● Spark OPE - Scheduling

4

Conceptual Topics - OLI Content

OLI UNIT 4: Cloud Storage
● Module 15: Case Studies: Distributed File Systems

○ HDFS
○ Ceph

● Module 16: Case Studies: NoSQL Databases
● Module 17: Case Studies: Cloud Object Storage
● Quiz 8

○ Due on Friday, Mar 20th

■ Remember to click submit
● Within 2 hours, and
● Before the deadline!

5

Individual Projects

● Done

○ P3.1: Files v/s Databases

○ P3.2: Social networking with heterogeneous backends

■ MongoDB Primer

● Now

○ P3.3: Replication and Consistency models

○ Introduction to multithreaded programming in Java

○ Introduction to consistency models

6

Scale of Data is Growing

International Data Corporation's predicts massive data increases:
➢ From: 33 zettabytes in 2018

➢ To: 160 zettabytes in 2025.
○ appx. 50% of which will be stored in the public cloud!

For context, 1 zettabyte is 1 trillion gigabytes. And much of this data
will be consumed real-time.

7

Users are Global

8

~26ms

~14ms

● Information has physical limitations on speed of travel (Speed of light)
● Inherent latencies

○ Especially for real-time information, speed is everything!

Pittsburgh

Moscow

San
Francisco

1. A client sends a request to our server

Message takes time to physically reach server

(Network latency)

2. Server receives request and responds

Server has to read incoming packets and responds

(IO or Disk latency)

Message takes time to physically reach client

(Network latency)

Typical End-To-End Latency

9

Latency with a Single Backend

10

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage

~20ms ~40ms

~320ms

Min Latency: 20ms
Max Latency: 320ms

Average Latency: 126ms

Latency with a Single Backend

11

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage

~20ms ~40ms

~320ms

Means only users in the
United States will use

your service!

How do you give users
the same experience

across the globe?

1
2

Option 1: Global Replication

13

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

~20ms

Backend Storage 2:
Europe Central

~40ms

~20ms

Min Latency: 20ms
Max Latency: 40ms

Average Latency: 26.6ms

Option 2: Proximity Replication

14

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 2:
Europe Central

~20ms

Min Latency: 20ms
Max Latency: 20ms

Average Latency: 20ms

Backend Storage 3:
USA East

~20ms

~20ms

● By adding replicas, we can prevent latency from

being too large of an issue

○ Each added datacenter decreases the average

latency, as long as they are strategically placed

● But, we need to ensure that data is the same

across replicas

● Additionally, replicas increase cost linearly

Replication

15

Replication is not infinite

16

Cost and data consistency are the biggest issues, and
place scalability limitations

● Since we need to run multiple databases, we incur

the following costs.

○ (num replicas) * time * database cost
■ AWS RDS: (num replicas) * hours * $0.226

○ (num replicas) * data * cost per GB

■ AWS RDS: (num replicas) * data (per 10 GB) * $1.15

○ Cost grows quickly relative to replica count!

Cost as a limiting factor

17

Data Consistency

18

Database Reads

19

Client 2:
Pittsburgh

Client 3:
Moscow

Client 1:
San Francisco

Backend Storage 1:
USA West

Backend Storage 2:
Europe Central

~20ms

Read operations are sent to
the closest replica to

minimize latency

Backend Storage 3:
USA East

~20ms

~20ms

Database Writes

20

~20ms

Clients see large amounts of
latency for writes, as the

writes need to propagate to
all replicas

~20ms

~20ms~240ms

~40ms

● Read operations are fast
○ All clients have a replica close to them to

access

● Write requests are slow
○ Write requests must update all the replicas

○ If a certain key has multiple write requests,
newer write requests may have to wait for
older requests to complete.

Replication Reads and Writes

21

● Advantages
○ Low latency for reads
○ Reduce the workload of a single backend server
○ Handle failures of nodes by rerouting to

alternative backup replica
● Disadvantages

○ Requires more storage capacity and cost
○ Updates are significantly slower
○ Changes must reflect on all datastores (using

various consistency models)

Pros and Cons of Replication

 22

Data Consistency Models

● Data consistency across replicas is important
○ Five consistency levels (explained in primers):

■ Strict

■ Strong (Linearizability)

■ Sequential

■ Causal

■ Eventual Consistency

● This weeks project!

23

Data Consistency Example:
 Consider a Bank

24

Account Balance

xxxxx-4437 $100

Bad Example
Allow concurrent writes

25

Account Balance

xxxxx-4437 $100

Bad Example
Allow concurrent writes

26

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Bad Example
Allow concurrent writes

27

Account Balance

xxxxx-4437 $0

$100

$100

Both requests are
processed

concurrently, and we
lose $100 as both are

accepted

Good Example
Global Locking

28

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Good Example
Global Locking

29

Account Balance

xxxxx-4437 $100

Withdraw $100

Withdraw $100

Only one write request
can be processed per

key at a time,
preventing double

withdrawals!

Good Example
Global Locking

30

Account Balance

xxxxx-4437 $0

$100

$0

The balance is set to 0
as soon as the money
is withdrawn, and the

second request is
denied

P3.3: Consistency Models

31

Tradeoff: Consistency vs. Latency
● Strict
● Strong
● Sequential
● Causal
● Eventual

Please read the primers to ensure you know what
each of these models mean!

vs.

P3.3 Tasks 1 & 2: Strong Consistency

32

● Every request has a global timestamp order

where timestamp is issued by a Truetime Server.

● Operations must be ordered by these timestamps

Requirement: At any given point of time, all clients

should read the same data from any datacenter

replica

P3.3 Task 1: Strong Consistency

33

Coordinator:

● A request router that

routes the web requests

from the clients to each

datastore

● Preserves the order of

both read and write

requests

Datastore:

● The actual backend

storage that persists

collections of data

P3.3 Task 1: Strong Consistency

34

Single PUT request for key ‘X’

● Block all GETs for key ‘X’

until all datastores are

updated

● GET requests for a

different key ‘Y’ should

not be blocked

Multiple PUT requests for ‘X’

● Resolved in order of their

timestamp received from

the Truetime Server.

● GET requests must return

the most recent value to

the request timestamp

P3.3 Task 2:
Global Coordinators and Data Stores

us-west
us-east

singapore

DCI

coordinator datacenter

DCI

coordinator datacenterDCI

coordinator datacenter

35

P3.3 Task 2: Architecture

32

P3.3 Task 2: Global Replication

37

Operates similarly to Task 1,

although it requires you to

have both coordinator and

data centers in all 3 regions

rather than just one.

Users will be spread out

globally.

Task 2 Workflow and Example

• Launch a total of 8 machines (3 data centers, 3 coordinators, 1

truetime server and 1 client) in US East!

• We will simulate global latencies for you.

○ Do not actually create instances across

the globe!

• Finish the code for the

Coordinators and Datastores

38

PRECOMMIT

39

Contacts the Data Center of a given
region and notifies it that a PUT request

is being serviced for the specified key
with the corresponding timestamp.

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:

Complete KeyValueStore.java and Coordinator.java

 40

TrueTime Server

put?key=X&value=1

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 41

TrueTime Server

put?key=X&value=1

KeyValueLib.getTime()

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 42

TrueTime Server

put?key=X&value=1

precommit?key=X×tamp=1

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 43

TrueTime Server

put?key=X&value=1

PUT(REGIONAL-DNS, "X", "1",
1, "strong")

US-EAST
DC

US-WEST
DC

SINGAPORE
DC

US-EAST
COORDINATOR

US-WEST
COORDINATOR

SINGAPORE
COORDINATOR

Client

P3.3 Task 2:
Complete KeyValueStore.java (in DCs) and Coordinator.java (in
Coordinators)

 44

TrueTime Server

put?key=X&value=1

Response back

Hints - PRECOMMIT
● In strong consistency, “PRECOMMIT” should be

useful to help you lock requests because they are

able to communicate with Data Center instances.

● Locking needs to be performed on Data Center

instances.

● Lock by key across all the Data Center instances

in strong consistency.

 45

P3.3: Eventual Consistency (Bonus)

46

● Write requests are performed in the order
received by the local coordinator
○ Operations may not be blocked for replica

consensus (no communication between
servers across region)

● Clients that request data may receive multiple
versions of the data, or stale data
○ Problems left for the application owner to

resolve

● Read the two primers

● Consider the differences between the 2

consistency models before writing code

● Think about possible race conditions

● Read the hints in the writeup and skeleton

code carefully

● Don’t modify any class except

Coordinator.java and KeyValueStore.java

Suggestions

 47

How to Run Your Program

● Run “./copy_code_to_instances” in client instance to copy your

code to servers on each of the Data centers instance,

Coordinators instance.

● Run “./start_servers” in the client instance to start the servers

on each of the data center instances, coordinator instances

and the truetime server instance.

● Use “./submitter” to test your implementations.

● If you want to test one simple PUT/GET request, you could

directly send the request to Data centers or Coordinators.

 48

Start early!

 49

Piazza FAQ
1. Search before asking a question

2. Post public questions when possible

https://piazza.com/class/k562fiaob2hlh

 50

https://piazza.com/class/k562fiaob2hlh

5
1

TEAM PROJECT
Twitter Data Analytics

Query 1 Recap

Team Project - Q1 CKPT1
● 38 teams attempted a Query 1 submission.
● 20 teams made successful 10-minute submission.
● 5 teams reached 32,000 RPS.

Team Project

Twitter Analytics Web Service
• Given ~1TB of Twitter data
• Build a performant web service

to analyze tweets
• Explore web frameworks
• Explore and optimize database systems

Web-tier Storage-tier

Twitter Analytics System Architecture

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization 35

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

● M family instances only; must be ≤ large type
 ✓ m5.large, m5.medium, m4.large ✗ m5.2xlarge, m3.medium, t2.micro

● Only General Purpose (gp2) SSDs are allowed for storage

○ m5d (which uses NVMe storage) are forbidden

● Other types are allowed (e.g., t2.micro) but only for testing

○ Using these for any submissions = 100% penalty

● $0.85/hour applies to every submission

● AWS endpoints only (EC2/ELB).

56

Reminder on Penalties

Phase 1: Budget

57

● AWS budget of $55 for Phase 1
● Your web service should not cost more than $0.85 per hour

this includes (see write-up for details):
○ EC2 cost
○ EBS cost
○ ELB cost
○ We will not consider the cost of data transfer and EMR

● Even if you use spot instances, we will calculate your cost
using the on-demand instance price

● Q2 target throughput: 10000 RPS for both MySQL and
HBase

1. Libraries can be bottlenecks

2. MySQL connection configuration

3. MySQL warmup

4. Response formatting: be careful with \n \t

5. Understand the three types of scores completely.

 58

Query 2: Tips

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_warm_up

1. Consider doing ETL on GCP/Azure to save AWS budget

2. Be careful about encoding 😁

○ use utf8mb4 in MySQL

3. Pre-compute as much as possible

4. ETL can be expensive, so read the write-up carefully

 59

Query 2: More Tips

Suggested Tasks for Phase 1
Phase 1 weeks Tasks Deadline

Week 1
● 2/23

● Team meeting
● Writeup
● Complete Q1 code & achieve correctness
● Q2 Schema, think about ETL

● Q1 Checkpoint due on 3/1
● Checkpoint Report due on 3/1

Week 2
● 3/2

● Q1 target reached
● Q2 ETL & Initial schema design completed

● Q1 final target due on 3/8

Week 3
● Spring

Break

● Take a break or make progress (up to your
team)

Week 4
● 3/16

● Achieve correctness for both Q2 MySQL,
Q2 HBase & basic throughput

● Q2 MySQL Checkpoint due on 3/22
● Q2 HBase Checkpoint due on 3/22

Week 5
● 3/23

● Optimizations to achieve target
throughputs for Q2 MySQL and Q2 HBase

● Q2 MySQL final target due on 3/29
● Q2 HBase final target due on 3/29

60

This Week’s Deadlines

• Quiz 8:

Due: Friday, March 20, 2020 11:59PM ET

• Complete OPE task scheduling

Due: This week

• Project 3.3: Consistency

Due: Sunday, March 22, 2020 11:59PM ET

• Team Project Phase 1 Q2 Checkpoint

Due: Sunday, March 22, 2020 11:59PM ET
61

62

