
P3.1 & Team Project

1

●
○
○
○

●
○
○
○
○

2

●
○
○
○

●
●

○
■

○
■

○
■

3

●
○

●
●

○
■
■
■
■

●
○
○

4

●

○
○
○
○
○
○
○

5

●

○
○

■
■

○
■

●

6

●

○
■

○

■

○
■

7

8

●
○

■
■
■
■

○

■

○
■
■

9

●
○
○
○
○

●
○
○

●
○
○

10

●

●
●

○
○
○
○

11

●
○

●
○

○

●

12

Scenario Instance
Type

Storage Type RPS Range RPS Increase Across 3
Iterations

1 t3.micro EBS Magnetic

Storage

171.12, 172.33,

189.34

Trivial (< 5%)

2 t3.micro EBS General

Purpose SSD

1649.65, 1709.24,

1729.24

Trivial (< 5%)

3 m4.large EBS Magnetic

Storage

527.70, 973.63,

1246.67

Significant (can reach ~140%

increase with an absolute value

of 450-700)

4 m4.large EBS General

Purpose SSD

2046.66, 2612.00,

2649.66

Noticeable (can reach ~30%

increase with an absolute value

of 500-600)
13

●

●

●

○

○

14

● Task 1: analyze data in flat files
○ Linux tools (e.g. grep, awk)
○ Data libraries (e.g. pandas)

● Task 2: Explore a SQL database (MySQL)
○ Load data, run queries, indexing, auditing
○ Plain-SQL vs ORM

● Task 3: Implement a Key-Value Store
○ Prototype of Redis using TDD

● Task 4: Explore a NoSQL DB (HBase)
○ Load data, design key, run basic queries

15

● Flat files, plain text or binary
○ Comma-Separated Values (CSV)

Carnegie,Cloud Computing,A,2018

○ Tab-Separated Values (TSV)

Carnegie\tCloud Computing\tA\t2018

○ A custom and verbose format

University: Carnegie, Course: Cloud

Computing, Section: A, Year: 2018
16

● Lightweight, Flexible, in favor of small tasks

○ Run it once and throw it away

● Inconvenient to perform complicated analysis

● Usually flat files should be fixed or append-only

● Writing to files without breaking data integrity is difficult

● Managing the relations among multiple files is also

challenging

17

● A collection of organized data

● Database management system (DBMS)

○ Interface between user and data

○ Store/manage/analyze data

● Relational databases

○ Based on the relational model (schema)

○ MySQL, PostgreSQL

● NoSQL Databases

○ Unstructured/semi-structured

○ Redis, HBase, MongoDB, Neo4J
18

● Advantages

○ Logical and physical data independence

○ Concurrency control and transaction support

○ Query the data easily (e.g., SQL)

● Disadvantages

○ Cost (computational resources, fixed schema)

○ Maintenance and management

○ Complex and time-consuming to design schema

19

● Compare flat files to databases

● Think about:

○ What are the advantages and disadvantages of using
flat files or databases?

○ In what situations would you use a flat file or a
database?

○ How to design your own database? How to load, index
and query data in a database?

20

● Analyze Yelp’s Academic Dataset

● https://www.yelp.com/dataset_challenge

○ business
○ checkin
○ review
○ tip
○ user

21

https://www.yelp.com/dataset_challenge

22

● Answer questions in runner.sh

○ Use tools such as awk and pandas

○ Similar to what you did in Project 1

● Merge TSV files by joining on a common field

● Identify the disadvantages of flat files

You may use Jupyter Notebook to help you solve the
questions in Python

23

● Prepare tables

○ A script to create the table and load data is provided

● Write MySQL queries to answer questions

● Learn JDBC

● Complete MySQLTasks.java

● Aggregate functions, joins

● Statement and PreparedStatement

● SQL injection

● Learn how to use proper indexes to improve performance
24

● Schema
○ The structure of the tables and the relations between tables
○ Based on the structure of the data and the application requirements

● Index
○ An index is simply a pointer to data in a table
○ It is a data structure (lookup table) that helps speed up the retrieval

of data from tables (e.g., B-Tree, Hash indexes, etc.)
○ Based on the data as well as queries
○ Build indexes based on the types of queries you’ll expect

We have an insightful section about the practice of indexing,
read it carefully! Very helpful for the team project

25

● How do we evaluate the performance of a query?
○ Run it

● What if we want/need to predict the performance
without execution?
○ Use EXPLAIN statement

● The EXPLAIN statement on a query predicts:
○ The number of rows to scan
○ Whether it makes use of indexes or not

26

● ORM abstracts the interaction with a DB for you:
○ Maps the domain class with the database table
○ Map each field of the domain class with a column of

the table
○ Map instances of the classes (objects) with rows in the

corresponding tables

27

● Decoupling of responsibilities
○ ORM decouples the CRUD operations and the business logic code

● Productivity
○ No need to keep switching between your OOP language such as

Java/Python, etc. and SQL
● Flexibility to meet evolving business requirements

○ Cannot eliminate the schema update problem, but it may ease the
difficulty, especially when used together with data migration tools

● Persistence transparency
○ Changes to a persistent object will be automatically propagated to

the database without explicit SQL queries
● Vendor independence

○ Abstracts the application from the underlying SQL database and
SQL dialect

28

● The current business application exposes an API that
returns the most popular Pittsburgh businesses

● It is based on a SQLite3 database with an outdated schema
● Your task:

○ Plug the business application to the MySQL database
and update the definition of the domain class to match
the new schema

● The API will be backwards compatible without modifying
any business logic code

29

● Non-SQL or NotOnly-SQL
○ Non-relational

● Why NoSQL if we already have SQL solutions?
○ Flexible data model (schemaless, can change)
○ Designed to be distributed (scale horizontally)
○ Certain applications require improved performance at

the cost of reduced data consistency (data staleness)
● Basic Types of NoSQL Databases

○ Schema-less Key-Value Stores (Redis)
○ Wide Column Stores (Column Family Stores) (HBase)
○ Document Stores (MongoDB)
○ Graph DBMS (Neo4j)

30

● It is impossible for a distributed data store to provide all the
following three guarantees at the same time:

○ Consistency: no stale data
○ Availability: no downtime
○ Partition Tolerance: network failure tolerance in a

distributed system

31

● Since DB is replicated, how is consistency maintained?
● Since the data is replicated, if one replica goes down, will

the entire service go down?
● How will the service behave during a network failure?

A database, replicated on two
nodes, Node 1 and Node 2

32

33

● Only two out of the three are feasible:
○ CA: non-distributed (MySQL, PostgreSQL)

■ Traditional databases like MySQL and PostgresQL
have only one server

■ Don’t provide partition tolerance
○ CP: downtime (HBase, MongoDB)

■ Stop responding if there is partition
■ There will be downtime

○ AP: stale data (Amazon DynamoDB)
■ Always available
■ Data may be inconsistent among nodes if there is a

partition
34

35

● Key-value store is a type of NoSQL database
○ Redis
○ Memcached

● Widely used as an in-memory cache

● Your task:
○ Implement a simplified version of Redis
○ We provide starter code Redis.java
○ You will implement

■ Hashes and Lists data structures in Redis
○ TDD with 100% code coverage

36

● HBase is an open source, column-oriented, distributed
database developed as part of the Apache Hadoop project

● Refer to the HBase Basics Primer

37

● Rows in HBase are sorted lexicographically by row key
● Hotspotting

○ A large amount of client traffic is directed to one/few
node/s
■ Pre-split the table
■ A good key design is very important

● Salting: randomly assign prefix

● Hashing: deterministically assign prefix

foo0001 → a-foo0001

foo0002 → d-foo0002

foo0003 → b-foo0003

foo0004 → b-foo0004

hash(foo0001) % NUM_REGIONS== 5 → 5-foo0001
38

● Your task:
○ Launch an HDInsights cluster
○ Load data so that it is evenly distributed across regions

■ Make sure to submit a design.pdf file with your
key design

○ Try different commands in the hbase-shell
○ Complete HBaseTasks.java using HBase Java APIs

39

● Tag your resources:
○ Key: Project, Value: 3.1

● An HDInsight cluster is very expensive
○ Exercise caution to plan for the budget

● Provisioning an HDInsight cluster takes ~30min
● Loading data to MySQL takes ~40 minutes

○ Be patient

● Remember to delete the Azure resource group to clean
up all the resources in the end

40

4
1

TEAM PROJECT
Twitter Data Analytics

Web-tier Storage-tier

42

● Phase 1:
○ Q1
○ Q2 (MySQL AND HBase)

● Phase 2
○ Q1
○ Q2 & Q3 (MySQL AND HBase)

● Phase 3
○ Q1, Q2, & Q3 (Managed Cloud Services)

Input your team
account ID and GitHub

username on TPZ

43

● Query 1 does not require a database (storage tier)
● Implement a web service that verifies and updates

blockchains.
● You must explore different web frameworks

○ Get at least 2 different web frameworks working
○ Select the framework with the better performance
○ Provide evidence of your experimentations
○ Read the report first

 40

45

• Data structure that supports digital currency.
• Designed to be untamperable.
• Distributed. Shared among all user nodes.

– Decentralized
– Fault Tolerant.

• Consists of chained blocks.
• Each block consists of transactions.

46

• Q1 input:

47

• Block:
– Created by “miners”.
– Has a list of transactions.
– Block hash encapsulates

all transaction info and block
Metadata, as well as the hash of the previous block,
plus a PoW chosen by the miner.

– Miner finds a PoW (Proof of Work) through brute
forcing, to make the block hash lexicographically
smaller than the hash target.

– Block hash formula:

48

• Transaction:
– Signature is computed with

hash value using RSA.
sig=RSA(hash, key)

– Hash value computed using
all info in the blue box.

– Transaction hash formula:

49

• Reward:
– Special type of transaction.
– Created by miner.
– Is the last transaction in

the block’s transaction list.
– Reward amount determined by block id,

500000000 for the first two blocks, halved for
any two following blocks.

50

• New transactions:
– Contains transactions made by

your team or by some other
accounts.

– Transaction made by some
other account has the same
format as any non-reward
transaction in the block list.

– For the transactions made by
your team, you need to fill in
missing fields and sign it using
the key given to you.

51

• Q1 Output:
– Collect the new transactions.
– Create a reward transaction.
– Include these transactions in a new block.
– Compute a PoW that makes the new block

hash satisfies the new hash target.
– Append the block to the chain.
– Respond with the zlib compressed and Base64

encoded new JSON.

52

• Q1 Output:
– There will be malicious attempts to break the

blockchain.
– You need to check the validity of the chain.
– If the chain is not valid, return a string that starts

with INVALID.
– You can append any debug info you want. Just

make sure it does not start a new line.
– E.g., INVALID|any_debug_info_you_like

Use Case: When you follow someone on twitter, recommend close friends.

Three Scores:
• Interaction Score - closeness
• Hashtag Score - common interests
• Keywords Score - to match interests

Final Score: Interaction Score * Hashtag Score * Keywords Score

Query:
GET /q2?
user_id=<ID>&
type=<TYPE>&
phrase=<PHRASE>&
hashtag=<HASHTAG> 38

Response:
<TEAMNAME>,<AWSID>\n
uid\tname\tdescription\ttweet\n
uid\tname\tdescription\ttweet

GET /q2?

user_id=100123&

type=retweet&

phrase=hello%20cc&

hashtag=cmu

TeamCoolCloud,1234-0000-0001

100124\tAlan\tScientist\tDo machines think?\n

100125\tKnuth\tprogrammer\thello cc!

54

● Web server architectures
● Dealing with large scale real world tweet data
● HBase and MySQL optimization 35

GCP Dataproc, Azure
HDInsight, or Amazon EMR

Web-tier Storage-tier

● Commit your code to the private repo we set up
○ Update your GitHub username in TPZ!

● Make changes on a new branch
○ Work on this branch, commit as you wish
○ Open a pull request to merge into the master

branch
● Code review

○ Someone else needs to review and accept (or
reject) your code changes

○ This process will allow you to capture bugs and
remain informed on what others are doing

 37

1. Design your architecture early and apply for limit increase.
2. EC2 VM is not the only thing that costs money.
3. Primers and individual projects are helpful.
4. You don’t need all your hourly budget to get Q1 target.
5. Coding is the least time consuming part.
6. Think before you do. Esp. for ETL (Azure, GCP, or AWS).
7. Divide workload appropriately. Take up your responsibility.
8. Read the write-up.
9. Read the write-up again.

10. Start early. You cannot make-up the time lost. Lots to finish.
11. I’m not kidding. Drama happens frequently.

57

Phase Deadline (11:59PM EST)

●
●
●
●
●
●

●

●

58

● Writeup and queries were released on Monday.
● Phase 1 milestones:

○ Q1 Checkpoint: Sunday, 3/1
■ A successful 10-min submission for Q1
■ Checkpoint 1 Report

○ Q1 final due: Sunday, 3/8
■ Achieve the Q1 target

○ Q2 Checkpoint: Sunday, 3/22
■ A successful 10-min submissions:

● Q2 MySQL and Q2 HBase.
○ Q2 final due: Sunday, 3/29

■ Achieve the Q2 target for Q2 MySQL and Q2 HBase.
○ Phase 1, code and report: 3/31

● Start early, read the report and earn bonus points! 36

Phase 1 weeks Tasks Deadline

●
●
●
●
●

●
●

●
●
●

●

●
●

●
● ●

●

●
● ●

●

60

61

62

