15-319 / 15-619
Cloud Computing

Recitation 7
P3.1 & Team Project
February 25, 2020

Overview

e Last week’s reflection
o OLI Unit 3 - Modules 10, 11, 12
o Quiz5
o Project 2.3

e This week’s schedule
o OLI Unit 3 - Module 13
o Quiz6
o Project 3.1
o Team Project, Phase 1 Q1 Checkpoint

Last Week

e Unit 3: Virtualizing Resources for the Cloud
o Module 10: Resource Virtualization - Memory
o Module 11: Resource Virtualization — /0O
o Module 12: Case Study
e Quiz5
® Project 2.3: Functions as a Service (FaaS)
o Task 1: Explore functions on various CSPs
m Azure Functions, GCP Cloud Functions, AWS Lambda
o Task 2: Extract thumbnails from a video stream
m Azure Functions and FFmpeg
o Task 3: Get image labels and index
m Azure Computer Vision, Azure Search

This Week

Unit 3: Virtualizing Resources for the Cloud
o Module 13: Storage and network virtualization
Quiz 6
Project 3: Storage and DBs on the cloud
o Project 3.1: Files v/s Databases
m Flat files
m MySQL
m Redis & Memcached
m HBase
Team Project
o Phase 1 released.
o Q1 Checkpoint due at the end of this week.

This Week’s Conceptual Content

e Unit 3: Virtualizing Resources for the Cloud

o Module 13: Storage and Network Virtualization

. LR .
Open Learning Initiative
Transforming higher education through the science of learning.

This Week’s Conceptual Content

e Unit 3 - Module 13: Storage and network virtualization

o Software Defined Data Center (SDDC)
o Software Defined Networking (SDN)
m Device virtualization
m Link virtualization
o Software Defined Storage (SDS)
m |OFlow

e Quizb6 6 Open Learning Initiative

Transforming higher education through the science of learning.

This Week’s Individual Project

® Project 3: Storage and DBs on the cloud

o P3.1: Files and Databases
m Comparison and usage of Flat files, RDBMS (MySQL) and NoSQL
(Redis, HBase)

Project 3
MySQmLM .mongoDB

J

Primers for Project 3

® Project 3: Storage and DBs on the cloud

o P3.1: Files and Databases

Primer: MySQL

Primer: Storage & |0 Benchmarking
Primer: NoSQL

m
m
m
m Primer: HBase basics

MySQL Primer

e Introduction to Structured Query Language (SQL)
o SELECT
o JOIN
o GROUP BY
o CREATE, ALTER, DROP, INSERT, UPDATE, DELETE
e Table indexing
o Single column vs Multi-column indexing
o Common pitfalls
e Storage Engines
o MylSAM
o InnoDB

10

Storage Engines in MySQL

® A storage engine is a software module that a DMS uses to
create, read, update data from a database

e MyISAM and InnoDB
e They have:
o Different caching mechanisms
o Different locking mechanisms
o Are optimized for either read or write
o More differences are explained in the primer

Experiment, and think of which one to use in the team project
Read the MySQL primer

11

Storage & 10 Benchmarking

Run sysbench

o Use prepare to load data for testing

Experiments

o Run sysbench with different storage systems and instance
types

o Do this multiple times to reveal different behaviors and
results

Compare Requests Per Second (RPS)

Remember to tag resources with the current project’s tags

12

Performance Benchmark Sample Report

Scenario Instance

Type
1 t3.micro
2 t3.micro
3 m4.large
4 m4.large

Storage Type

EBS Magnetic

Storage

EBS General
Purpose SSD

EBS Magnetic
Storage

EBS General
Purpose SSD

RPS Range

171.12, 172.33,
189.34

1649.65, 1709.24,
1729.24

527.70, 973.63,
1246.67

2046.66, 2612.00,
2649.66

RPS Increase Across 3

Iterations

Trivial (< 5%)

Trivial (< 5%)

Significant (can reach ~140%
increase with an absolute value
of 450-700)

Noticeable (can reach ~30%
increase with an absolute value
of 500-600)

13

|0 Benchmarking Conclusions

SSD has better performance than magnetic disk
md4.large instance offers better performance than t3.micro

The RPS increase across 3 iterations for m4.large is more

significant than that for t2.micro

o An instance with more memory can cache more of the
previous requests for repeated tests

o Caching is a vital performance tuning mechanism

14

Project 3.1 Overview

Task 1: analyze data in flat files

o Linux tools (e.g. grep, awk)

o Data libraries (e.g. pandas)

Task 2: Explore a SQL database (MySQL)

o Load data, run queries, indexing, auditing
o Plain-SQL vs ORM

Task 3: Implement a Key-Value Store

o Prototype of Redis using TDD

Task 4: Explore a NoSQL DB (HBase)

o Load data, design key, run basic queries

Refer to the HBase Basics and NoSQL Primers!

15

Flat Files

e Flat files, plain text or binary
o Comma-Separated Values (CSV)

Carnegie,Cloud Computing,A,2018
o Tab-Separated Values (TSV)

Carnegie\tCloud Computing\tA\t2018

o A custom and verbose format

University: Carnegie, Course: Cloud
Computing, Section: A, Year: 2018

16

Flat Files

Lightweight, Flexible, in favor of small tasks

o Run it once and throw it away

Inconvenient to perform complicated analysis

Usually flat files should be fixed or append-only
Writing to files without breaking data integrity is difficult
Managing the relations among multiple files is also

challenging

17

Databases

A collection of organized data

Database management system (DBMS)

o Interface between user and data

o Store/manage/analyze data

Relational databases

o Based on the relational model (schema)
o MySQL, PostgreSQL

NoSQL Databases

o Unstructured/semi-structured

o Redis, HBase, MongoDB, Neo4J

18

Databases

e Advantages
o Logical and physical data independence
o Concurrency control and transaction support
o Query the data easily (e.g., SQL)

e Disadvantages
o Cost (computational resources, fixed schema)
o Maintenance and management

o Complex and time-consuming to design schema

19

Flat Files vs Databases

e Compare flat files to databases

e Think about:

o What are the advantages and disadvantages of using
flat files or databases?

o In what situations would you use a flat file or a
database?

o How to design your own database” How to load, index
and query data in a database?

20

Dataset

e Analyze Yelp’s Academic Dataset

e https://www.velp.com/dataset challenge

business
checkin
review
tip

user

O O O O O

21

https://www.yelp.com/dataset_challenge

Inspect and visualize data using Facets

Sort by

Feature order » [[] Reverse order Feature search

Features: int(4) string(5)

Numeric Features (4) Chart to show
Standard v
count missing mean std dev Zeros min median max Oliog Clexpand
funny
10,000 0% 0.65 1.84 73.27% 0 0 46 i I
stars

10,000 0% 3.74 1.27 0% 1 4 5 . I
500 W Il

cool

1
useful
10,000 0% 1.67 3.06 44.16% 0 1 95 l

10,000 0% 0.78 1.96 65.98% 0 0 43 I

22

Task 1: Flat Files

e Answer questions in runner.sh
o Use tools such as awk and pandas
o Similar to what you did in Project 1
e Merge TSV files by joining on a common field

e Identify the disadvantages of flat files

You may use Jupyter Notebook to help you solve the
questions in Python

23

Task 2: MySQL

Prepare tables

o A script to create the table and load data is provided
Write MySQL queries to answer questions

Learn JDBC

Complete MySQLTasks.java

Aggregate functions, joins

Statement and PreparedStatement

SQL injection

Learn how to use proper indexes to improve performance

24

MySQL Indexing

e Schema

o The structure of the tables and the relations between tables
o Based on the structure of the data and the application requirements

e Index

o Anindex is simply a pointer to data in a table

o ltis a data structure (lookup table) that helps speed up the retrieval
of data from tables (e.g., B-Tree, Hash indexes, etc.)

o Based on the data as well as queries

o Build indexes based on the types of queries you'll expect

We have an insightful section about the practice of indexing,
read it carefully! Very helpful for the team project

25

EXPLAIN statement in MySQL

How do we evaluate the performance of a query?
o Run it

What if we want/need to predict the performance

without execution?
o Use EXPLAIN statement

The EXPLAIN statement on a query predicts:
o The number of rows to scan
o Whether it makes use of indexes or not

26

Object Relational Mapping (ORM)

e ORM abstracts the interaction with a DB for you:

O

O

Maps the domain class with the database table
Map each field of the domain class with a column of

the table
Map instances of the classes (objects) with rows in the
corresponding tables

Mapped to
public class Course { — course
String courseld; —> course_id (PK)
String name; — name
}
Domain Class —> Database Table
Objects — Rows 27

Benefits of ORM

Decoupling of responsibilities

o ORM decouples the CRUD operations and the business logic code

Productivity
o No need to keep switching between your OOP language such as
Java/Python, etc. and SQL
Flexibility to meet evolving business requirements
o Cannot eliminate the schema update problem, but it may ease the
difficulty, especially when used together with data migration tools
Persistence transparency
o Changes to a persistent object will be automatically propagated to
the database without explicit SQL queries
Vendor independence
o Abstracts the application from the underlying SQL database and
SQL dialect

28

ORM Question in the MySQL Task

e The current business application exposes an API that
returns the most popular Pittsburgh businesses

e Itis based on a SQLite3 database with an outdated schema

e Your task:

o Plug the business application to the MySQL database

and update the definition of the domain class to match
the new schema

e The API will be backwards compatible without modifying
any business logic code

29

NoSQL

e Non-SQL or NotOnly-SQL
o Non-relational
e Why NoSQL if we already have SQL solutions?
o Flexible data model (schemaless, can change)
o Designed to be distributed (scale horizontally)
o Certain applications require improved performance at
the cost of reduced data consistency (data staleness)
e Basic Types of NoSQL Databases
o Schema-less Key-Value Stores (Redis)
o Wide Column Stores (Column Family Stores) (HBase)
o Document Stores (MongoDB)
o Graph DBMS (Neo4j)

30

CAP Theorem

e Itis impossible for a distributed data store to provide all the
following three guarantees at the same time:

o Consistency: no stale data

o Availability: no downtime

o Partition Tolerance: network failure tolerance in a
distributed system

31

Single Node to Distributed
Databases

L I
\)
L b

‘mqm

Replica Replica

Single node Distributed System
A database, replicated on two
nodes, Node 1 and Node 2
e Since DB is replicated, how is consistency maintained?
e 3Since the data is replicated, if one replica goes down, will
the entire service go down?
e How will the service behave during a network failure?

32

CAP Theorem in
Distributed Databases

data: x data: x
Consistency Node 1 Node 2
Availability Node 1 Node 2

Partition Tolerance Node 1 : A’\ Node 2

33

CAP Theorem

e Only two out of the three are feasible:
o CA: non-distributed (MySQL, PostgreSQL)
m [raditional databases like MySQL and PostgresQL
have only one server
m Don’t provide partition tolerance
o CP: downtime (HBase, MongoDB)
m Stop responding if there is partition
m There will be downtime
o AP: stale data (Amazon DynamoDB)
m Always available
m Data may be inconsistent among nodes if there is a
partition

34

Only two at a time

data: x N p data: x
Node 1 A Node 2
Consistency & Partition Tolerant & 2 T
(CP) ‘A’ \A/
Client 1 Unavailable Client 2
data: x . p data: y
Node 1 A Node 2
Available & Partition Tolerant
(AP)
Client 1 Inconsistent Client 2

35

Task 3: Implement Redis

e Key-value store is a type of NoSQL database
o Redis
o Memcached

e \Widely used as an in-memory cache

e Your task:
o Implement a simplified version of Redis
o We provide starter code Redis.java
o You will implement
m Hashes and Lists data structures in Redis
o TDD with 100% code coverage

36

Task 4: Explore HBase

e HBase is an open source, column-oriented, distributed
database developed as part of the Apache Hadoop project

Master

fffaoKeeper
» Cluster
\T’h’\ /

|onserver

e Refer to the HBase Basics Primer

37

RowKey Design

e Rows in HBase are sorted lexicographically by row key
e Hotspotting

o Alarge amount of client traffic is directed to one/few
node/s

m Pre-split the table

m A good key design is very important

e Salting: randomly assign prefiX 00001 — a-fo00001

foo0002 — d-foo0002
foo0003 — b-foo0003

foo0004 — b-foo0004
e Hashing: deterministically assign prefix

hash(foo0001) % NUM_REGIONS==5 — 5-foo0001

Task 4: Explore HBase

e Your task:
o Launch an HDInsights cluster
o Load data so that it is evenly distributed across regions
m Make sure to submit a design.pdf file with your
key design
o Try different commands in the hbase-shell
o Complete HBaseTasks.java using HBase Java APIs

39

Project 3.1 - Reminders

Tag your resources:

o Key: Project, Value: 3.1

An HDInsight cluster is very expensive

o Exercise caution to plan for the budget
Provisioning an HDInsight cluster takes ~30min
Loading data to MySQL takes ~40 minutes

o Be patient

Remember to delete the Azure resource group to clean
up all the resources in the end

40

TEAM PROJECT
Twitter Data Analytics

= + 9= 1T

Team Project

Twitter Analytics Web Service

Given ~1TB of Twitter data
Build a performant web service
to analyze tweets

Explore web frameworks

Explore and optimize database systems

P

Query

THEPR:7JECT.ZONE iy EC2

Load Generation <:’ Web-tier
Response KH'ITP Web Service /

Query

—
po—

Response

-)

-

-

.
-
AN

My o

M P AR CHE

HBRASE

Storage-tier

\ Database /

42

Team Project

e Phase 1:
o Q1 Input your team

t ID and GitHub
o Q2 (MySQL AND HBase) | ramn o

username on TPZ

e Phase 2
o Q1
o Q2 & Q3 (MySQL AND HBase)

e Phase 3
o Q1,Q2, & Q3 (Managed Cloud Services)

43

Query 1 - CloudCoin

e Query 1 does not require a database (storage tier)

e Implement a web service that verifies and updates
blockchains.

e You must explore different web frameworks

O

O
O
O

Get at least 2 different web frameworks working

Select the framework with the better performance

Provide evidence of your experimentations
Read the report first

40

What is a blockchain, though?

Data structure that supports digital currency.
Designed to be untamperable.

Distributed. Shared among all user nodes.
— Decentralized

— Fault Tolerant.

Consists of chained blocks.

Each block consists of transactions.

45

{
"chain": [
0
"all_tx": [{
"recv": 895456882897,
"amt": 500000000,
"time": "1582520400000000000",
"hash": "4b277860"

: "07c98747",
“target": "1"

Q1 Example

"all_tx": [
{
"sig": 1523500375459,

"recv": 831361201829,
"fee": 2408,

[] amt": 126848946,
] "time": "1582520454597521976",
. "send": 895456882897,

"hash": "c@473abd"

PP

—— zlib Compressed Block List Transaction List Jrecyt, 621452032575,
H . . . "time": "1582521602184738591",
Block Object —— Block Object — Transaction Object — | "hest: "absstise”

“send": 895456882897,
"hash": "b6clblof"

Timestamp :
Signature y

(Sender’s Account)

"recv": 905790126919,
"amt": 250000000,

"hash": "b@750555"

Recipient’s Account

Block ID Timestamp .
"hash": "@@055fd15",
Stargeti: ol
New Target All Transactions Sender’s Account i
mall_tx": [
{
New Transactions Proof of Work Recipient’s Account e manse)
, n e
Block Hash Transaction Amount i bt eitaear,
"hash": "46b61f8e"
. . . +
—— Transaction List —— Hash Target Transaction Fee (
. ::sig"l:l.295251186908,
— New Transaction —) i Kt
Transaction Hash rant": 83725081,
o
o
[

Transaction Amount) A
— Reward Transaction — “target": "0a"
(Transaction Fee)

’
"new_target": "ee07",
"new_tx": [

Timestamp

"sig": 160392705122,

"recv": 658672873303,

: 3536,

1 34263741,

": "1582521636327155516",
": 831361201829,

": "1fb48c71"

(Transaction Hash) .
Miner’s Account

(Signature)

Reward Amount

"recv": 895456882897,
"amt": 34263741,
“time": "1582521645744862608"

Transaction Hash

=]
a o

“time": "1582521016852310220",

"time": "1582521603026667063",

Q1 Example

{

e Block: "all_tx": [...],
— Created by “miners”. “pow”: "cloud”,
— Has a list of transactions "id: 2,
' "hash": "09288a38",
— Block hash encapsulates "target": "0a"
all transaction info and block b

Metadata, as well as the hash of the previous block,
plus a PoW chosen by the miner.

— Miner finds a PoW (Proof of Work) through brute
forcing, to make the block hash lexicographically
smaller than the hash target.

— Block hash formula:

CCHash(SHA-256("block_id|previous_block_hash|tx1_hash|tx2_hash|tx3_hash...") + PoW)

Q1 Example

 Transaction:
— Signature is computed with

"send": 831361201829,

hash value using RSA. "recv": 905790126919,
sig=RSA(hash, key) TSaa 6025,

— Hash Va'ue Computed USing "time": "1582521009246242025",

. . "sig": 829022340937,
all info in the blue box. "hash": "46b61f8e"

— Transaction hash formula: '

CCHash("timestamp|sender|recipient|amount |fee")

48

Q1 Example

e Reward:

Special type of transaction. {

Created by miner. ;;:\'2333332326919
Is the last transaction in

the block’s transaction list. b
Reward amount determined by block id,
500000000 for the first two blocks, halved for

any two following blocks.

"hash": "b0750555"

49

"time": "1582521603026667063",

Q1 Example

New transactions:

— Contains transactions made by
your team or by some other
accounts.

— Transaction made by some
other account has the same
format as any non-reward
transaction in the block list.

— For the transactions made by
your team, you need to fill in
missing fields and sign it using
the key given to you.

"new_tx":

||sig||:

[

"recv":

Ilfeell
"amt":

"time":
"send":
"hash":

"recv":

"amt":

"time":

160392705122,
658672873303,

: 3536;

34263741,
"1582521636327155516",
831361201829,
"1fb48c71"

895456882897,
34263741,
"1582521645744862608"

50

Q1 Example

Q1 Output:

Collect the new transactions.

Create a reward transaction.

Include these transactions in a new block.
Compute a PoW that makes the new block
hash satisfies the new hash target.

Append the block to the chain.

Respond with the zlib compressed and Base64
encoded new JSON.

51

Q1 Example

Q1 Output:

There will be malicious attempts to break the
blockchain.

You need to check the validity of the chain.

If the chain is not valid, return a string that starts
with INVALID.

You can append any debug info you want. Just
make sure it does not start a new line.

E.g., INVALID|any debug info_you like

52

Query 2 - User Recommendation System

Use Case: When you follow someone on twitter, recommend close friends.

Three Scores:
» Interaction Score - closeness
« Hashtag Score - common interests
« Keywords Score - to match interests

Final Score: Interaction Score * Hashtag Score * Keywords Score

Query: Response:
GET /.q2? <TEAMNAME>,<AWSID>\n
user_id=<ID>& uid\tname\tdescription\ttweet\n

=< >
Lyr?rz SeTZPPﬁRi SE>g uid\tname\tdescription\ttweet

hashtag=<HASHTAG> 38

Q2 Example

GET /g2?
user_id=100123&
type=retweetd&
phrase=hello%20cc&
hashtag=cmu

TeamCoolCloud, 1234-0000-0001
100124\tAlan\tScientist\tDo machines think?\n
100125\ tKnuth\tprogrammer\thello cc!

54

Twitter Analytics System Architecture

4 N
I Extract Load — | ..
Raw Tweet
Data
4 1 My-oii e
Query Query
THEPR7 JECT.ZONE p—, EC2 ™» AP ACHE
Load Generation b Web-tier Rds— HBHSE
Response \HTTP Web Service/ Response Storage-tier

\ Database /

. Web server architectures
. Dealing with large scale real world tweet data
. HBase and MySQL optimization 35

Git Workflow

e Commit your code to the private repo we set up
o Update your GitHub username in TPZ!
e Make changes on a new branch
o Work on this branch, commit as you wish
o Open a pull request to merge into the master
branch
e Code review
o Someone else needs to review and accept (or
reject) your code changes
o This process will allow you to capture bugs and
remain informed on what others are doing

37

Heartwarming Tips from Your Beloved TAs

—_—\ =

~ OO NOOR WM~

Design your architecture early and apply for limit increase.
EC2 VM is not the only thing that costs money.

Primers and individual projects are helpful.

You don’t need all your hourly budget to get Q1 target.
Coding is the least time consuming part.

Think before you do. Esp. for ETL (Azure, GCP, or AWS).
Divide workload appropriately. Take up your responsibility.
Read the write-up.

Read the write-up again.

Start early. You cannot make-up the time lost. Lots to finish.
I’'m not kidding. Drama happens frequently.

o7

Team Project Time Table xHH]

Phase Deadline (11:59PM EST)
Phase 1 (20%) e Q1 CKPT (5%): Sun, 3/1
- Query1 e Reportl (5%): Sun, 3/1
- Query 2 e Q1 FINAL (10%): Sun, 3/8
e Q2 CKPT (10%): Sun, 3/22
e Q2M & Q2H FINAL (50%): Sun, 3/29
e Report2 (20%): Tue, 3/31
Phase 2 (30%) ® Live Test on Sun, 4/12
- Add Query 3
Phase 3 (50%) e Live Test on Sun, 4/26
- Managed Services
58

Team Project Deadlines - Phase 1

e \Writeup and queries were released on Monday.
e Phase 1 milestones:
o Q1 Checkpoint: Sunday, 3/1
m A successful 10-min submission for Q1
m Checkpoint 1 Report
o Q1 final due: Sunday, 3/8
m Achieve the Q1 target
o Q2 Checkpoint: Sunday, 3/22
m A successful 10-min submissions:
e Q2 MySQL and Q2 HBase.
o Q2 final due: Sunday, 3/29
m Achieve the Q2 target for Q2 MySQL and Q2 HBase.
o Phase 1. code and report: 3/31
e Start early, read the report and earn bonus points! 36

Suggested Tasks for Phase 1¢

Phase 1 weeks | Tasks Deadline
Week 1 e Team meeting e Q1 Checkpoint due on 3/1
o 2/24 e Writeup e Checkpoint Report due on 3/1
e Complete Q1 code & achieve correctness
e Q2 Schema, think about ETL
Week 2 e Q1 target reached e Q1 final target due on 3/8
o 3/2 ® Q2 ETL & Initial schema design completed
Week 3 e Take a break or make progress (up to
e Spring your team)
Break
Week 4 ® Achieve correctness for both Q2 MySQL, e Q2 MySQL Checkpoint due on 3/22
e 3/16 Q2 HBase & basic throughput e Q2 HBase Checkpoint due on 3/22
Week 5 e Optimizations to achieve target e Q2 MysQl final target due on 3/29
e 3/23 throughputs for Q2 MySQL and Q2 HBase e Q2 HBase final target due on 3/29

60

This Week’s Deadlines Q\

e Quiz 6: OLI Module 13
Due: Friday, Feb 28™" 2020 11:59PM ET

* Project 3.1: Files v/s Databases
Due: Sunday, Mar 1%, 2020 11:59PM ET

e Team Project Phase 1 Q1 Checkpoint 1
Due: Sunday, Mar 1°%, 2020 11:59PM ET

61

Q&A

