15-319 / 15-619
Cloud Computing

Recitation 4
February 04, 2020

Administrative - OH & Piazza

e Make use of office hours
o Make sure that you are able to clearly describe the problem and what you

have tried so far to provide the fullest context

o Piazza Course Staff
Google calendar in ET
o Google calendar in PT

©)

® Suggestions for using Piazza

o Read the Piazza Post Guidelines (@6) before asking questions
Read Piazza questions & answers carefully to avoid duplicates
Name the subject properly so that others can find your post
Try to ask a public question if possible so others can also benefit
Don’t ask a public question about a quiz question

O O O O

https://piazza.com/cmu/spring2020/1531915619/staff
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America/New_York
https://calendar.google.com/calendar/embed?src=es85648jqofmrnnlnrup3nbuus%40group.calendar.google.com&ctz=America%2FLos_Angeles
https://piazza.com/class/k562fiaob2hlh?cid=7

Administrative - Cloud spending

O O O O

Monitor AWS expenses regularly
Always do the cost calculation before launching services
Keep in mind that there is a 6-hour delay for AWS to update their logs on
spending

m Accurate and timely expense reports are hard

® The cost logs every 6 hours may be inaccurate

m Anitem may take days before it is reported in the logs

m By the end of the billing cycle, the CSPs corrects the logs
Terminate your instances when not in use
Stopped instances have EBS costs (50.1/GB-Month)
Make sure spot instances are tagged right after launch
Working within the specified budget is a very important skill to learn

Important - Compromised Accounts

e DON’T EVER EXPOSE YOUR AWS CREDENTIALS!
o Github
o Bitbucket
o Anywhere public...
e DON’T EVER EXPOSE YOUR GCP CREDENTIALS!
e DON’T EVER EXPOSE YOUR Azure CREDENTIALS!
o Applicationld, ApplicationKey
o StorageAccountKey, EndpointUrl

Reflection

e Conceptual content on OLI

@)

Modules 3, 4, Quiz 2

® Project theme - Big data analytics

©)

Inverted Index: Implemented an inverted index with MapReduce using

TDD

Wiki Data Parallel Processing Analysis: Use MapReduce to process

36GB compressed / 128GB uncompressed wiki data

m MapReduce application to filter records and calculate aggregate
daily pageviews

Data Analytics: Use Jupyter Notebooks and the pandas library to

analyze the data and answer questions

This Week

e Quiz 3 (OLI Modules 5 & 6)
o Due on Friday, Feb 7th, 2020, 11:59PM ET
® Project 2.1 and Reflection
o Due on Sunday, Feb 9th, 2020, 11:59PM ET
e Project 1.2 Discussion
o Due on Sunday, Feb 9th, 2020, 11:59PM ET
e P1.2 Code Review
o Due on Wednesday, Feb 12th, 2020, 11:59PM ET
® Primers released this week
o P2.2 - Intro to Containers and Docker
o P2.2 - Kubernetes and Container Orchestration
o Code Review

Code Review

e Code review is the systematic examination of source code. The goal of code review
is to make sure that the code achieves its objective using a sound approach and to
expose students to alternative approaches.

e We want you to develop good coding habits and skills that will be useful for your
careers.

® Please read the “Code Review” primer on TheProject.Zone.

® For Project 1.2, completing code review is worth 5 points, and it will contribute
toward the total grade of Project 1.2.

OLI Module 5 - Cloud Management

Cloud Software stack - enables provisioning,
monitoring and metering of virtual user “resources” on
top of the Cloud Service Provider’s (CSP) infrastructure.

Cloud middleware

Provisioning

Metering

Orchestration and automation

Case Study: Openstack - Open-source cloud stack implementation

OLI Module 6 - Cloud Software
Deployment Considerations

® Programming on the cloud

e Deploying applications on the cloud

O

O O O O

Build fault-tolerant cloud services
Load balancing

Scaling resources

Dealing with tail latency
Economics for cloud applications

Project 2
Overview

Scaling and Elasticity with
® VMs
e C(Containers
® Functions

2.1 Scaling Virtual Machines
Horizontal scaling in / out using AWS APIs
Load balancing, failure detection, and cost
management on AWS

Infrastructure as Code (Terraform)

2.2 Scaling with Containers
Building your own container-based
microservices

Docker containers

Manage multiple Kubernetes Cluster
Multi Cloud deployments

2.3 Functions as a Service
Develop event driven cloud functions

Deploy multiple functions to build a video
processing pipeline

10

Project 2.1 Learning Objectives

Design solutions and invoke cloud APIls to programmatically provision and deprovision
cloud resources for a dynamic load.

Configure and deploy an Elastic Load Balancer and an Auto Scaling Group on AWS.
Develop solutions that monitor cloud resource metrics to manage cloud resources with
the ability to deal with resource failure.

Analyze a workload pattern and develop elasticity policies to maintain the Quality of
Service (QoS) of a web service.

Account for cost as a constraint when provisioning cloud resources and analyze the
performance tradeoffs due to budget restrictions.

Orchestrate infrastructure on the cloud using Terraform as part of the deployment
process.

11

Overview of Quality of Service (QoS),
Latency and Cloud Elasticity

Quality of Service (QoS)

Load patterns for web services
Vertical scaling (Scale up/down)
Horizontal scaling (Scale out/in)
Load balancers

Autoscaling groups

Resource monitoring (CloudWatch)

12

Quality of Service (QoS)

Quantitatively Measure QoS

e Performance: Throughput, Latency
(Very helpful in Project 2 & Team Project)

e Availability: the probability that a system is operational at a given time
(Project 2)

e Reliability: the probability that a system will produce a correct output up
to a given time (Project 2)

13

QoS Matters:

e Amazon found every 100ms of latency
cost them 1% in sales (~$1B).

14

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

Bandwidth

Netflix Traffic Comparison - House of Cards Season 3 Launch Weekend

Thursday
o g o b b b b o o ot o o b
)
0°°m°° 5_0%0%0%0%0%0“ L o° o

APy T e° e° o° . 0‘3 WF® m° c° Ny

——Typical Weekend (Feb 19 - 22)

Friday

Saturday

o ot ‘}‘b‘b“‘r‘b‘hﬁh
o~ Qvevq°w
N h%o%e“\oo Y c°$o°0 °o°

Sunday

SR 0 08 g8 8 o 8 8 8
SN0

A b b R A A b
% N ORI v!:&.e $c° S e°e°o°0°a°c°c°o°

o
o
o

—House of Cards Launch Weekend (Feb 26 - Mar 1) [~Jsandvine

The Ferenstein Wire

15

Reality, human patterns...

Daily
Weekly
Monthly
Yearly

BLACK
FRIDAY
NOV 23

THANKSGIVING

NOV 22

2012 Holiday shopping result

CYBER
MONDAY

NOV 26

GREEN
MONDAY
DEC 10

FREE
SHIPPING
DAY

sl NEW
YEAR'S
EVE

XMAS

sapient.com
16

Cloud Comes to the Rescue!
Scaling!

17

PO: Vertical Scaling

Load
Generator

=

X

Small Data Center Instance
Serves 100 requests per second

Medium Data Center Instance
Serves 1000 requests per second

Large Data Center Instance
Serves 10000 requests per second

18

PO: Vertical Scaling Limitation

e However, one

vavs e —
\

limited resources. Load
Generator

e Reboot/Downtime.

Horizontal Scaling

Load — 7
Generator

- ~

20

How do we distribute load?

21

Instance Failure?

e e
S

22

VWhat You Need

* Make sure that the workload is even on each server
Do not assign a load to servers that are down

* Increase/Remove servers according to a changing load
How does a cloud service help solve these problems?

—
2

Load Balancer

Managed group of servers 23

Load balancer

e “Evenly” distribute the load
e A simple distribution strategy
o Round Robin

® Load check
e Health check

Load Balancer

e What if the Load Balancer becomes the bottleneck?
o Elastic Load Balancer (ELB)
m Could scale up based on load
o Elastic, but it still takes time
m Through the warm-up process

24

Scaling

Manual Scaling:

e Over provisioning and low utilization
e EXxpensive on manpower
e Lose customers

Autoscaling:

e Automatically adjust the size based
on demand

e Flexible capacity and scaling sets
e Save cost

Traditional Scaling

Lost customers

Capacity

Wasted Capacity

Time

Amazon Auto Scalin

Capacity

Time

Virtuas lized Infrastructu re

25

AWS Autoscaling

Auto Scaling on AWS [Auto Scaling Group

Round }'?obin

You can build a load balanced HTTP Connections

auto-scaled web service. W g >

|

|

|

Using the AWS APIs: Health l
|

|

e ELB |
e Auto Scaling Group W - i
e EC2 | s |
e CloudWatch - i |
e Auto Scaling Policy & |
|

|

I

|

Amazon Auto Scaling Group

Elastic Load

Balancer Auto Scaling Group
User Load EC2 Instance
'-:—-f’: = — — — — - - - -—) wo CPU Utilization Mo Network Owt —
== EC2 Instance
= 2 s
Amazon CloudWatch
EC2 Instance
Scale In
Rule je—
EC2 Instance A
_______________________________________ Scale Out

Rule .

27

Amazon CloudWatch Alarm

* Monitor CloudWatch metrics for some specified
alarm conditions

e Take automated action when the condition is met

Resources with CPU Utilization = :> User-Defined
CloudWatch Other Metrics... < - - CloudWatch Action
Enabled Alarm
CloudWatch

Metrics Repository Amazon

CloudWatch

e Task1

o AWS Horizontal Scaling

e Task 2

o AWS Auto Scaling

e Task 3

o AWS Auto Scaling with Terraform

Project 2.1 Scaling on AWS

Load <:>
Generator

29

Project 2.1 Scaling on AWS

Task 1 - AWS Horizontal Scaling:

e Implement Horizontal Scaling in AWS.

e Write a program that launches the web
service instances and ensures that the
target total RPS is reached.

Load —
Generator

e Your program should be fully
automated: launch LG — submit
password — Launch WS — start test
— check log — add more WS...

30

Project 2.1 Scaling on AWS

Autoscaling Group

-
e Task1
o AWS Horizontal Scaling
' o Task 2
® o AWS Auto Scaling Load
Generator
e Task3

o AWS Auto Scaling with Terraform

P2.1-Task 2

Programmatically create two securities groups, LG, Application Load Balancer
(ALB), Auto-Scaling Group (ASG) along with Auto Scaling Policy, launch
configuration, and target group.

Adjust Scale-Out and Scale-In policies if necessary

Your solution also needs to be fault tolerant

Health configurations are important

Elastic Load Balancer

Target Group

Launch Configuration

Auto Scaling Group
CloudWatch Alarm

Add Resource

Remove Resource

Actions (Policies) 32

Hints for Project 2.1 AWS Autoscaling

Task 2 - AWS Auto Scaling

Do a dry run via the console to make sure you understand the workflow
completely before you implement the workflow programmatically.
The Autoscaling test could be very expensive!

o On-demand, charged by per second, do not blindly launch tests
CloudWatch monitoring is helpful for policy tuning.

Observe and analyze the pattern, experiment with a policy, collect data to
verify why it achieved a certain performance, and iterate until you achieve
your goal.

Explore ways to check if your instance is ready.
You will need spend a lot of time understand the APl documents. .

Project 2.1 Scaling on AWS

Autoscaling Group

e

e Task1
o AWS Horizontal Scaling
e Task 2
o AWS Auto Scaling Load
' o Task 3 Generator
e

o AWS Auto Scaling with Terraform

Project 2.1 Scaling on AWS

'Task 3 - AWS Auto Scaling with Terraform:

e Read the Infrastructure as Code primer to learn about infrastructure
automation

e Make sure that terraform plan generates the expected resource

e Make sure that all the variables (AMI ID, CloudWatch thresholds, Security
Group names, etc.) are manually specified in the terraform main file

35

Project 2.1 Code Submission

At the end of each task, you need to submit your code for that task to
TheProject.Zone.

We will grade your code for each task separately.

You will execute the the submitter corresponding to each task in their
respective folders.

36

Penalties for Project 2.1

Violation Pen_alty of the
project grade
Spending more than $20 for this project phase on AWS -10%
Spending more than $40 for this project phase on AWS -100%
Failing to tag all your resources in either parts (EC2 instances, ELB, ASG) for this project
: _) -10%
with the tag: key=Project, value=2.1
Submitting your AWS/Andrew credentials in your code for grading -100%
Using instances other than t3.micro (testing only) or m5.large for Horizontal scaling on
-100%
AWS
Using instances other than t3.micro (testing only), m5.large for Autoscaling on AWS -100%
Submitting executables (.jar, .pyc, etc.) instead of human-readable code (.py,.java, .sh, _100%
etc.)

37

Penalties for Project 2.1 cont.

Violation

Attempting to hack/tamper the autograder in any way

Cheating, plagiarism or unauthorized assistance (please refer to the university policy on
academic integrity and our syllabus)

Penalty of the
project grade

-200%

-200%

38

AWS Cloud APIs

e AWS CLI (link)

e AWS Java SDK (link)

e AWS Python SDK (link)

amazon

webservices™

39

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-python/

This Week

e Quiz 3 (OLI Modules 5 & 6)
o Due on Friday, Feb 7th, 2020, 11:59PM ET
e Project 2.1 and Reflection
o Due on Sunday, Feb 9th, 2020, 11:59PM ET
e Project 1.2 Discussion
o Due on Sunday, Feb 9th, 2020, 11:59PM ET
e P1.2 Code Review
o Due on Wednesday, Feb 12th, 2020, 11:59PM ET
e Primers released this week
o P2.2- Intro to Containers and Docker
o P2.2 - Kubernetes and Container Orchestration
o Code Review

40

Questions?

41

