
Heap Sort & Graphs

15-121 Fall 2020
Margaret Reid-Miller

Today

• Heap implementation
• Heap Sort
• Introduction to Graphs
• Representations
• A few algorithms

Fall 2020 15-121 (Reid-Miller) 2

Priority Queue ADT
public interface PriorityQueue {

boolean isEmpty();
void add (Comparable obj);
Comparable removeMin();
Comparable peekMin();

}

What is one way we can implement a priority queue?

Binary heap (one of many heap data structures)

Fall 2020 15-121 (Reid-Miller) 3

Binary Heaps
Binary heaps are a data structure with two properties:

1. Shape (structure) – complete binary tree

2. Order (heap) – For all nodes,
• parent >= children (max-heap)
• parent <= children (min-heap)

2
4 8

7 5

Fall 2020 15-121 (Reid-Miller) 4

Add an element to heap

What property do you maintain first?
Shape (structure)

What do you need to do that?
Put the new element at the end of the heap

What next?
Restore the order (heap) property

How do you do that?
“Heapify up”: Repeatedly swap with its parent

Fall 2020 15-121 (Reid-Miller) 6

Add to a min-heap
add 18

1843

5

14 23

32 87 90

50 64 53

41

2. Heapify up:
(see next slide)

Fall 2020 15121 (Reid-Miller) 7

1. Add leaf

Add to a min-heap
18 added

1843

5

14 23

32 87 90

50 64 53

41 18

87

18

23

Fall 2020 15121 (Reid-Miller) 8

Heapified up:
Swapped 18 & 87
Swapped 18 & 23

Remove the minimum

Which element do we remove from a heap?
The root (element at index 1)

What property do you fix first?
Shape (structure)

What do you need to do that?
Remove the last element and put it at the root

What next?
“Heapify down” to restore the heap property:
Repeatedly swap with smaller child (min-heap)
or larger child (max-heap)

Fall 2020 15-121 (Reid-Miller) 9

Removing from a min-heap
Remove min (14)

64

14

32 23

50 87 90

53

41

returnValue 14

Fall 2020 15-121 (Reid-Miller) 10

(continued)

1. Put 64 at the root

Removing from a min-heap
Remove min (14)

14

32 23

50 87 90

53

41

returnValue 1464

64

23

Fall 2020 15-121 (Reid-Miller) 11

2. heapify down:
Swap 64 & 23 (not 32)

1. Put 64 at the root

If the data structure is a binary tree

Add Problem:
How can I find where to put the new
element?
How do we find the parent of a child?

Remove Problem:
How can I find the element to put at the root?

Fall 2020 15-121 (Reid-Miller) 12

Towards a data structure
Suppose we number the nodes of the binary heap as

follows. Do you see a relationship between a node and

its children? A node and its parent?
1

2 3
/ \ / \

4 5 6 7
/ \ / \ / \ / \

8 9 10 11 12 13 14 15

Using this indexing we can store a binary tree in an

array (starting at index 1).

For a node numbered i

left child is 2*i

right child is 2*i + 1

parent is i / 2

(integer division)

Fall 2020 15-121 (Reid-Miller) 13

1 2 3 4 5 6 7 8 9 10
5 14 23 32 41 87 90 50 64 53

5

14 23

32 87 90

50 64 53

41

Array implementation: put the nodes of
the tree into the array level by level

For a node i
left child is 2*i
right child is 2*i + 1
parent is i / 2

Fall 2020 15-121 (Reid-Miller) 14

Binary heaps runtime complexity
What is the height of the binary heap?

Runtime (min-heap):
isEmpty:
peekMin:
add: best:

expected:
worst:

removeMin:

Fall 2020 15-121 (Reid-Miller) 15

O(log n) – ALWAYS

O(1)
O(1)
O(1) – sometimes add a large element
O(1) – most nodes are at bottom 2 layers
O(log n) – sometimes move up to root

O(log n) – always move a large
element from the root down
(usually to bottom 2 layers)

Heap Sort
If we add n values to an empty min-heap and then we
remove all the values from a heap, in what order will they be
removed?

Smallest to largest.

Heap Sort Runtime:
1. Build the heap:
2. Repeatedly remove the min:
Total: O(n log n): best, expected, and worst case

What other sort has the same worst-case runtime?

What is the disadvantage of merge sort?

Fall 2020 15-121 (Reid-Miller) 16

We just invented Heap Sort!

Merge sort
Not in place

n * O(log n)
n * O(log n)

1. Build a max-heap by adding each successive
element in the array to the heap.

2. Remove the maximum and put it at the last index,
remove the next maximum and put it at 2nd to last
index, and so on. In particular, repeatedly swap the
root with last element in the heap and heapify down
the new root to restore the heap one size smaller.

max-heap

Heap Sort (in place)

Fall 2020 15-121 (Reid-Miller) 17

max-heap not yet added

largest values
in increasing order

1. Building the max-heap

0 1 2 3 4 5 6

39 53 95 72 61 48 83
39

0 1 2 3 4 5 6

53 39 95 72 61 48 83 39

53

0 1 2 3 4 5 6

95 39 53 72 61 48 83
5339

95

ADD NEXT VALUE TO HEAP AND FIX HEAP

Fall 2020 15-121 (Reid-Miller) 18

parent of j = (j-1)/2

1. Building the max-heap (cont'd)

0 1 2 3 4 5 6

95 72 53 39 61 48 83 5372

95

39

0 1 2 3 4 5 6

95 72 83 39 61 48 53
8372

95

39 61 48 53

CONTINUE UNTIL THE HEAP IS COMPLETED...

Fall 2020 15-121 (Reid-Miller) 19

parent of j = (j-1)/2

2. Sorting from the heap
0 1 2 3 4 5 6

95 72 83 39 61 48 53

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

53 72 83 39 61 48 95
5372

83

39 61 480 1 2 3 4 5 6

83 72 53 39 61 48 95

FIX THE HEAP (NOT INCLUDING MAX):

8372

95

39 61 48 53

remove max

Fall 2020 15-121 (Reid-Miller) 20

children of j = (j+1)*2-1, (j+1)*2

2. Sorting from the heap (cont'd)
0 1 2 3 4 5 6

83 72 53 39 61 48 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

48 72 53 39 61 83 95
5361

72

39 480 1 2 3 4 5 6

72 61 53 39 48 83 95

FIX THE HEAP (NOT INCLUDING MAX):

5372

83

39 61 48

remove max

Fall 2020 15-121 (Reid-Miller) 21

children of j = (j+1)*2-1, (j+1)*2

2. Sorting from the heap (cont'd)
0 1 2 3 4 5 6

72 61 53 39 48 83 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

48 61 53 39 72 83 95

5348

61

390 1 2 3 4 5 6

61 48 53 39 72 83 95

FIX THE HEAP (NOT INCLUDING THAT MAX):

5361

72

39 48

remove max

REPEAT UNTIL THE HEAP
HAS 1 NODE LEFT

Fall 2020 15-121 (Reid-Miller) 22

children of j = (j+1)*2-1, (j+1)*2

Graphs

A graph G = (V,E) is a set of vertices V
and a collection of edges E

v0

v4v3

v2v1

vertex (node)

undirected
edge (arc)

directed
edge

multiple edge

self-loop

Fall 2020 15-121 (Reid-Miller) 24

In an undirected graph, an edge E = (x,y)
connects vertex x to vertex y (and vice-versa)

v0

v4v3

v2v1

V = {v0, v1, v2, v3, v4}

E = { {v0, v1}, {v0, v2},
{v0, v4}, {v1, v2},
{v1, v3}, {v2, v3} }

Fall 2020 15-121 (Reid-Miller) 25

An undirected graph with n
vertices can have at most
how many edges?
(n choose 2) = n * (n-1) / 2

Thus, the edges (x,y) and (y,x) are the same edge.

In a directed graph, an edge E = (x,y) connect
vertex x to vertex y (but not vice-versa).

v0

v4v3

v2v1

V = {v0, v1, v2, v3, v4}

E = { {v1, v0}, {v0, v2},

{v4, v0}, {v1, v2},

{v3, v1}, {v2, v3},

{v3, v4}, {v4, v3} }

Fall 2020 15-121 (Reid-Miller) 26

A directed graph with n
vertices can have at
most how many edges?

n * (n-1)

Thus, (x,y) and (y,x) are not the same edges.

Graph Terminology

• A graph G = (V,E) is a set of vertices V
and a collection of edges E.

• In an undirected graph, an edge E = (x,y) connects
vertex x to vertex y (and vice-versa). Thus, the
edges (x,y) and (y,x) are the same edge.

• In a directed graph, an edge E = (x,y) connect
vertex x to vertex y (but not vice-versa). Thus, (x,y)
and (y,x) are not the same edges.

• A simple graph has no multiple edges between
vertices or loops from a vertex to itself.

Fall 2020 15-121 (Reid-Miller) 27

Graph Terminology

v0

v4v3

v2v1

paths from v0 to v2:
v0 ® v2
v0 ® v1 ® v2
v0 ® v1 ® v3 ® v2

cycles starting at v3:
v3 ® v1 ® v2 ® v3
v3 ® v2 ® v0 ® v1 ® v3

Fall 2020 15-121 (Reid-Miller) 28

v0 and v4 are adjacent

degree of v2 is 3

More Terminology

• Node vb is adjacent to node va in a graph if there is

an edge from va to vb.

• A path in a graph is a sequence of vertices p0, ..., pn

such that each adjacent pair of vertices pk and pk+1

are connected by an edge from pk to pk+1.

• A cycle is a path that starts and ends at the same

vertex (i.e. p0 = pn).

• The degree of a vertex in an undirected graph is the

number of edges that connect to the vertex.

Fall 2020 15-121 (Reid-Miller) 29

Graph Examples

• Communication Networks

Hunt
PosnerMM

Purnell Doherty
WEH

HH

Porter

CFA

GHC

Baker

Fall 2020 15-121 (Reid-Miller) 30

Graph Examples

• Transportation Routes
Seattle

Los Angeles
DFW

Miami

New York
Chicago

Fall 2020 15-121 (Reid-Miller) 31

Storing a graph

Adjacency Matrix
An adjacency matrix G for an n-vertex graph is
an n x n array of 0/1 values such that Gjk = 1 if
vertex k is adjacent to vertex j; otherwise Gjk = 0.

In other words, Gjk = 1 if there is an edge from
vertex j to vertex k; otherwise it is 0.

Fall 2020 15-121 (Reid-Miller) 32

Example (Adjacency Matrix)

0 1 2 3 4
0 0 1 1 0 1
1 1 0 1 1 0
2 1 1 0
3 1 1 1 1
4 1 0 0

v0

v4v3

v2v1

destination

so
ur
ce

Fall 2020 15-121 (Reid-Miller) 33

Storing a graph: Another way

Adjacency List: an array of edge lists.

• An edge list for vertex k is a linked list that
stores all nodes that are adjacent to vertex k.

• There is a linked list for every vertex of the
graph.

Fall 2020 15-121 (Reid-Miller) 34

Example (Adjacency List)

v0

v4v3

v2v1

0 1 2 3 4

0

2

1

2

4

0

2

3

0

1

3

1

2

3

source

destination
Fall 2020 15-121 (Reid-Miller) 35

Weighted Graphs

Some graphs have an associated “weight”
assigned to each edge.

• Weights: cost, distance, capacity, etc.

• Costs are typical non-negative integer values.

• Possible problems to solve using weighted
graphs: shortest path between nodes, minimal
spanning tree, etc.

Fall 2020 15-121 (Reid-Miller) 36

Weighted graph represented as
an Adjacency Matrix

v0

v4v3

v2v1

1 7
2

3
4

6
5

2
Fall 2020 15-121 (Reid-Miller) 37

0 1 2 3 4
0 ¥ 1 7 ¥ 2
1 1 ¥ 4 3 ¥
2

3

4

destination

so
ur

ce

Example (weighted)

v0

v4v3

v2v1

1 7
2

3
4

6
5

2

0 1 2 3 4

0,2

2,6

1,1

2,7

4,2

0,1

2,4

3,3

0,7

1,4

3,5

1,3

2,5

3,2

source

destination
Fall 2020 15-121 (Reid-Miller) 38

Storage methods advantages (+)
and disadvantages(-)

• Adjacency Matrix
+ O(1) to add or remove an edge
+ O(1) to determine if an edge exists in a graph.
+ Generally better for dense graphs where |E| = O(|V|2)
- Storage: O(|V|2)

• Adjacency Lists
+ Faster to perform an operation on all

nodes adjacent to a node in a sparse graph.
+ Generally better for sparse graphs where |E| = O(|V|)
+ Storage: O(|V| + |E|)
- Access edge (u, v) O(degree of v)

Fall 2020 15-121 (Reid-Miller) 39

