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Today

• Heap implementation
• Heap Sort 
• Introduction to Graphs
• Representations
• A few algorithms
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Priority Queue ADT
public interface PriorityQueue {

boolean isEmpty();
void add (Comparable obj);
Comparable removeMin();
Comparable peekMin();

}

What is one way we can implement a priority queue?

Binary heap (one of many heap data structures)
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Binary Heaps
Binary heaps are a data structure with two properties:

1. Shape (structure) – complete binary tree

2. Order (heap) – For all nodes, 
• parent >= children (max-heap)
• parent <= children (min-heap)

2
4 8

7 5
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Add an element to heap

What property do you maintain first?
Shape (structure)

What do you need to do that? 
Put the new element at the end of the heap 

What next?
Restore the order (heap) property

How do you do that?
“Heapify up”:  Repeatedly swap with its parent
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Add to a min-heap
add 18

1843

5

14 23

32 87 90

50 64 53

41

2. Heapify up:
(see next slide)
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1. Add leaf



Add to a min-heap
18 added

1843

5

14 23

32 87 90

50 64 53

41 18

87

18

23
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Heapified up:
Swapped 18 & 87
Swapped 18 & 23



Remove the minimum

Which element do we remove from a heap?
The root (element at index 1)

What property do you fix first?
Shape (structure)

What do you need to do that? 
Remove the last element and put it at the root

What next?
“Heapify down” to restore the heap property:
Repeatedly swap with smaller child (min-heap) 
or larger child (max-heap)
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Removing from a min-heap
Remove min (14)

64

14

32 23

50 87 90

53

41

returnValue 14
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(continued)

1. Put 64 at the root



Removing from a min-heap
Remove min (14)

14

32 23

50 87 90

53

41

returnValue 1464

64

23

Fall 2020 15-121 (Reid-Miller) 11

2. heapify down:
Swap 64 & 23 (not 32)

1. Put 64 at the root



If the data structure is a binary tree

Add Problem: 
How can I find where to put the new 
element?
How do we find the parent of a child?

Remove Problem:
How can I find the element to put at the root?
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Towards a data structure
Suppose we number the nodes of the binary heap as 

follows.  Do you see a relationship between a node and 

its children?  A node and its parent?
1

2           3
/   \ /   \

4     5     6     7   
/ \ / \ / \ / \

8   9 10 11 12 13 14 15

Using this indexing we can store a binary tree in an 

array (starting at index 1). 

For a node numbered i

left child is 2*i

right child is  2*i + 1

parent is       i / 2 

(integer division)
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1 2 3 4 5 6 7 8 9 10
5 14 23 32 41 87 90 50 64 53

5

14 23

32 87 90

50 64 53

41

Array implementation: put the nodes of 
the tree into the array level by level

For a node i
left child is 2*i
right child is 2*i + 1
parent is  i / 2 
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Binary heaps runtime complexity
What is the height of the binary heap?

Runtime (min-heap): 
isEmpty:
peekMin:
add:  best:

expected:
worst:    

removeMin:
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O(log n) – ALWAYS

O(1)
O(1)
O(1) – sometimes add a large element
O(1) – most nodes are at bottom 2 layers
O(log n) – sometimes move up to root

O(log n) – always move a large 
element from the root down 
(usually to bottom 2 layers)



Heap Sort
If we add n values to an empty min-heap and then we 
remove all the values from a heap, in what order will they be 
removed? 

Smallest to largest. 

Heap Sort Runtime:
1. Build the heap: 
2. Repeatedly remove the min: 
Total: O(n log n): best, expected, and worst case

What other sort has the same worst-case runtime?

What is the disadvantage of merge sort? 
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We just invented Heap Sort!

Merge sort
Not in place

n * O(log n)
n * O(log n)



1. Build a max-heap by adding each successive 
element in the array to the heap.

2. Remove the maximum and put it at the last index, 
remove the next maximum and put it at 2nd to last 
index, and so on. In particular, repeatedly swap the 
root with last element in the heap and heapify down 
the new root to restore the heap one size smaller.

max-heap

Heap Sort (in place)
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max-heap not yet added

largest  values 
in increasing order



1. Building the max-heap

0 1 2 3 4 5 6

39 53 95 72 61 48 83
39

0 1 2 3 4 5 6

53 39 95 72 61 48 83 39

53

0 1 2 3 4 5 6

95 39 53 72 61 48 83
5339

95

ADD NEXT VALUE TO HEAP AND FIX HEAP
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parent of j = (j-1)/2



1. Building the max-heap (cont'd)

0 1 2 3 4 5 6

95 72 53 39 61 48 83 5372

95

39

0 1 2 3 4 5 6

95 72 83 39 61 48 53
8372

95

39 61 48 53

CONTINUE UNTIL THE HEAP IS COMPLETED...
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parent of j = (j-1)/2



2. Sorting from the heap
0 1 2 3 4 5 6

95 72 83 39 61 48 53

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

53 72 83 39 61 48 95
5372

83

39 61 480 1 2 3 4 5 6

83 72 53 39 61 48 95

FIX THE HEAP (NOT INCLUDING MAX):

8372

95

39 61 48 53

remove max
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children of j = (j+1)*2-1, (j+1)*2



2. Sorting from the heap (cont'd)
0 1 2 3 4 5 6

83 72 53 39 61 48 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

48 72 53 39 61 83 95
5361

72

39 480 1 2 3 4 5 6

72 61 53 39 48 83 95

FIX THE HEAP (NOT INCLUDING MAX):

5372

83

39 61 48

remove max
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children of j = (j+1)*2-1, (j+1)*2



2. Sorting from the heap (cont'd)
0 1 2 3 4 5 6

72 61 53 39 48 83 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

48 61 53 39 72 83 95

5348

61

390 1 2 3 4 5 6

61 48 53 39 72 83 95

FIX THE HEAP (NOT INCLUDING THAT MAX):

5361

72

39 48

remove max

REPEAT UNTIL THE HEAP 
HAS 1 NODE LEFT
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children of j = (j+1)*2-1, (j+1)*2



Graphs



A graph G = (V,E) is a set of vertices V 
and a collection of edges E

v0

v4v3

v2v1

vertex (node)

undirected 
edge (arc)

directed 
edge

multiple edge

self-loop
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In an undirected graph, an edge E = (x,y) 
connects vertex x to vertex y (and vice-versa)

v0

v4v3

v2v1

V = {v0, v1, v2, v3, v4}

E = { {v0, v1},  {v0, v2},
{v0, v4}, {v1, v2},
{v1, v3}, {v2, v3} }
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An undirected graph with n 
vertices can have at most 
how many edges?
(n choose 2) = n * (n-1) / 2 

Thus, the edges (x,y) and (y,x) are the same edge.



In a directed graph, an edge E = (x,y) connect 
vertex x to vertex y (but not vice-versa).

v0

v4v3

v2v1

V = {v0, v1, v2, v3, v4}

E = { {v1, v0}, {v0, v2},

{v4, v0}, {v1, v2},

{v3, v1}, {v2, v3},

{v3, v4}, {v4, v3}  }
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A directed graph with n 
vertices can have at 
most how many edges?

n * (n-1)  

Thus, (x,y) and (y,x) are not the same edges.



Graph Terminology

• A graph G = (V,E) is a set of vertices V 
and a collection of edges E.

• In an undirected graph, an edge E = (x,y) connects 
vertex x to vertex y (and vice-versa). Thus, the 
edges (x,y) and (y,x) are the same edge.

• In a directed graph, an edge E = (x,y) connect 
vertex x to vertex y (but not vice-versa). Thus, (x,y) 
and (y,x) are not the same edges.

• A simple graph has no multiple edges between 
vertices or loops from a vertex to itself.
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Graph Terminology

v0

v4v3

v2v1

paths from v0 to v2:
v0 ® v2
v0 ® v1 ® v2
v0 ® v1 ® v3 ® v2

cycles starting at v3:
v3 ® v1 ® v2 ® v3
v3 ® v2 ® v0 ® v1 ® v3 
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v0 and v4 are adjacent

degree of v2 is 3



More Terminology

• Node vb is adjacent to node va in a graph if there is 

an edge from va to vb. 

• A path in a graph is a sequence of vertices p0, ..., pn

such that each adjacent pair of vertices pk and pk+1

are connected by an edge from pk to pk+1.

• A cycle is a path that starts and ends at the same 

vertex (i.e. p0 = pn).

• The degree of a vertex in an undirected graph is the 

number of edges that connect to the vertex.
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Graph Examples

• Communication Networks

Hunt
PosnerMM

Purnell Doherty
WEH

HH

Porter

CFA

GHC

Baker
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Graph Examples

• Transportation Routes
Seattle

Los Angeles
DFW

Miami

New York
Chicago
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Storing a graph

Adjacency Matrix
An adjacency matrix G for an n-vertex graph is 
an n x n array of 0/1 values such that Gjk = 1 if 
vertex k is adjacent to vertex j; otherwise Gjk = 0.

In other words, Gjk = 1 if there is an edge from 
vertex j to vertex k; otherwise it is 0.

Fall 2020 15-121 (Reid-Miller) 32



Example (Adjacency Matrix)

0 1 2 3 4
0 0 1 1 0 1
1 1 0 1 1 0
2 1 1 0
3 1 1 1 1
4 1 0 0

v0

v4v3

v2v1

destination

so
ur
ce
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Storing a graph: Another way

Adjacency List: an array of edge lists.

• An edge list for vertex k is a linked list that 
stores all nodes that are adjacent to vertex k.

• There is a linked list for every vertex of the 
graph. 
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Example (Adjacency List)

v0

v4v3

v2v1

0     1     2     3     4 

0

2

1

2

4

0

2

3

0

1

3

1

2

3

source

destination
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Weighted Graphs

Some graphs have an associated “weight” 
assigned to each edge.

• Weights: cost, distance, capacity, etc.

• Costs are typical non-negative integer values.

• Possible problems to solve using weighted 
graphs: shortest path between nodes, minimal 
spanning tree, etc.
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Weighted graph represented as 
an Adjacency Matrix

v0

v4v3

v2v1

1 7
2

3
4

6
5

2
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0 1 2 3 4
0 ¥ 1 7 ¥ 2
1 1 ¥ 4 3 ¥
2

3

4

destination

so
ur

ce



Example (weighted)

v0

v4v3

v2v1

1 7
2

3
4

6
5

2

0     1     2      3      4 

0,2

2,6

1,1

2,7

4,2

0,1

2,4

3,3

0,7

1,4

3,5

1,3

2,5

3,2

source

destination
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Storage methods advantages (+) 
and disadvantages(-)

• Adjacency Matrix
+ O(1) to add or remove an edge
+ O(1) to determine if an edge exists in a graph.
+ Generally better for dense graphs where |E| = O(|V|2)
- Storage:  O(|V|2)

• Adjacency Lists
+ Faster to perform an operation on all

nodes adjacent to a node in a sparse graph.
+ Generally better for sparse graphs where |E| = O(|V|)
+ Storage:  O(|V| + |E|)
- Access edge (u, v)  O(degree of v)
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