Heap Sort & Graphs

15-121 Fall 2020
Margaret Reid-Miller

Today

 Heap implementation
 Heap Sort
* [ntroduction to Graphs
e Representations
* A few algorithms

Fall 2020 15-121 (Reid-Miller)

Priority Queue ADT

public interface PriorityQueue {
boolean isEmpty();
volid add (Comparable obj);
Comparable removeMin();
Comparable peekMin();

}
What is one way we can implement a priority queue?

Binary heap (one of many heap data structures)

Fall 2020 15-121 (Reid-Miller)

Binary Heaps
Binary heaps are a data structure with two properties:
1. Shape (structure) — complete binary tree
2. Order (heap) — For all nodes,
e parent >= children (max-heap) 2

» parent <= children (min-heap) 4 &
@ &

Fall 2020 15-121 (Reid-Miller)

Add an element to heap

What property do you maintain first?
Shape (structure)
What do you need to do that?
Put the new element at the end of the heap
What next?
Restore the order (heap) property
How do you do that?
“Heapify up”. Repeatedly swap with its parent

Fall 2020 15-121 (Reid-Miller)

Add to a min-heap

add 18

1. Add leaf

2. Heapify up:

(see next slide)

Fall 2020 15121 (Reid-Miller) 7

Add to a min-heap

18 added

Heapified up:
Swapped 18 & 87
Swapped 18 & 23

Fall 2020 15121 (Reid-Miller) 8

Remove the minimum

Which element do we remove from a heap?
The root (element at index 1)
What property do you fix first?
Shape (structure)
What do you need to do that?
Remove the last element and put it at the root
What next?
“Heapify down” to restore the heap property:

Repeatedly swap with smaller child (min-heap)

or larger child (max-heap)
Fall 2020 15-121 (Reid-Miller)

Removing from a min-heap

Remove min (14)

@ returnValue 14

(32) (2

OBNOIOND
@ @ 1. Put 64 at the root

(continued)

Fall 2020 15-121 (Reid-Miller) 10

Removing from a min-heap

Remove min (14)

returnValue 14

1. Put 64 at the root
2. heapify down:
Swap 64 & 23 (not 32)

Fall 2020 15-121 (Reid-Miller) 11

If the data structure is a binary tree

Add Problem:

-
e

I_

ow can | find where to put the new
ement?

ow do we find the parent of a child?

Remove Problem:
How can | find the element to put at the root?

Fall 2020 15-121 (Reid-Miller) 12

Towards a data structure

Suppose we number the nodes of the binary heap as
follows. Do you see a relationship between a node and
its children? A node and its parent?

1
PN For a node numbered i
2 3 left child is 2*i
/N /N right child is 2*i + 1
4 > 6 / parent is 1/ 2

/\ /\ /\ /\

8 9 10 11 12 13 14 15 (integer division)

Using this indexing we can store a binary tree in an
array (starting at index 1).

Fall 2020 15-121 (Reid-Miller) 13

Array implementation: put the nodes of
the tree into the array level by level

For a node i
left child is 2%i
right child is 2*i + 1
parentis i/ 2

2 3 4 5 6 7 8 9 10

1423|3241 |87 90|50 |64 |53

Fall 2020 15-121 (Reid-Miller) 14

Binary heaps runtime complexity

What is the height of the binary heap? O(log n) — ALWAYS

)
ISEmpty: O(1)
peekMin: O(1)
add: best: O(1) — sometimes add a large element
expected: O(1) — most nodes are at bottom 2 layers
worst: O(log n) — sometimes move up to root

removeMin: O(log n) — always move a large
element from the root down
(usually to bottom 2 layers)

Fall 2020 15-121 (Reid-Miller) 15

Heap Sort

If we add n values to an empty min-heap and then we
remove all the values from a heap, in what order will they be
removed?

Smallest to largest. We just invented Heap Sort!

Heap Sort Runtime:
1. Build the heap: n * O(log n)
2. Repeatedly remove the min: n* O(log n)
Total: O(n log n): best, expected, and worst case

What other sort has the same worst-case runtime? Merge sort

What is the disadvantage of merge sort? Not in place

Fall 2020 15-121 (Reid-Miller) 16

Heap Sort (in place)

1. Build a max-heap by adding each successive
element in the array to the heap.

max-heap |—-> not yet added

2. Remove the maximum and put it at the last index,
remove the next maximum and put it at 2nd to last
Index, and so on. In particular, repeatedly swap the
root with last element in the heap and heapify down
the new root to restore the heap one size smaller.

h largest values
Max-N€ap <€+ i, increasing order

Fall 2020 15-121 (Reid-Miller) 17

parent of j = (j-1)/2

1. Building the max-heap

ADD NEXT VALUE TO HEAP AND FIX HEAP

o 1 2 3 4 5 6
39 (53

o 1 2 3 4 5 6
93 (39 (95

o 1 2 3 4 5 6
95 |39 |33 |72

Fall 2020

15-121 (Reid-Miller)

95
39 (&3

18

parent of j = (j-1)/2

1. Building the max-heap (cont'd)
(95

95

72

53

39

61

CONTINUE UNTIL THE HEAP IS COMPLETED...

0

1

2

3

4

)

6

95

72

83

39

61

48

53

Fall 2020

15-121 (Reid-Miller)

72 (&3

39

95

72
39 (67

19

children of j = (j+1)*2-1, (j+1)*2

0

1

2. Sorting from the heap

2

3

4

)

6

95

72

83

39

61

48

53

SWAP THE MAX OF THE HEAP

WITH THE LAST VALUE OF THE HEAP:

0

1

2

3

4

)

6

53

72

83

39

61

48

95

FIX THE HEAP (NOT INCLUDING MAX):

0

1

2

3

4

)

6

83

72

53

39

61

48

95

Fall 2020

15-121 (Reid-Miller)

95

o6

l remove max

@@@
T

20

children of j = (j+1)*2-1, (j+1)*2

0

2. Sorting from the heap (cont'd)

1

2

3

4

)

6

83

72

53

39

61

48

95

SWAP THE MAX OF THE HEAP

WITH THE LAST VALUE OF THE HEAP:

0o 1 2 3 4 5 6
48 |72 |53 |39 (61 |83 |95
FIX THE HEAP (NOT INCLUDING MAX):

0o 1 2 3 4 5 6
72 |61 |53 (39 (48 |83 |95

Fall 2020

15-121 (Reid-Miller)

72

67

83

T

l remove max

72
&3

39 (48

21

children of j = (j+1)*2-1, (j+1)*2

2. Sorting from the heap (cont'd)

0

1

2

3

4

)

6

72

61

53

39

48

83

95

SWAP THE MAX OF THE HEAP

WITH THE LAST VALUE OF THE HEAP:

0o 1 2 3 4 5 6

48 |61 [53 |39 |72 (83 |95

FIX THE HEAP (NOT INCLUDING THAT MAX):
0o 1 2 3 4 5 6

61 48 |53 |39 (72 |83 |95

Fall 2020

15-121 (Reid-Miller)

67
39 (48

l remove max

67
4 63
39

REPEAT UNTIL THE HEAP
HAS 1 NODE LEFT

)

22

Graphs

A graph G = (V,E) is a set of vertices V
and a collection of edges E

vertex (node)
multiple edge
undirected

edge (arc)

self-loop

N

Fall 2020 15-121 (Reid-Miller)

directed
edge

In an undirected graph, an edge E = (x,y)

connects vertex x to vertex y (and vice-versa)
Thus, the edges (x,y) and (y,x) are the same edge.

V= {vq, V4, Vo, V3, V4}

E = { {VO’ V1}! {VO’ V2}’
{VO’ V4}’ {V1’ V2}1
{1, va}, {v2, va} }

An undirected graph with n
vertices can have at most
how many edges?

(n choose 2)=n*(n-1)/2

Fall 2020 15-121 (Reid-Miller) 25

In a directed graph, an edge E = (x,y) connect

vertex x to vertex y (but not vice-versa).
Thus, (X,y) and (y,x) are not the same edges.

V= {vq, V4, Vo, V3, V4}

E={ {vi, Vo}, {Vo, Va},
{Va, Vo}, {V1, Va},
{Va, 4}, {Vv2, V3},
{Va, Va}, {V4, V3} }

A directed graph with n

vertices can have at

most how many edges?
n*(n-1)

Fall 2020 15-121 (Reid-Miller) 26

Graph Terminology

A graph G = (V,E) is a set of vertices V
and a collection of edges E.

In an undirected graph, an edge E = (x,y) connects
vertex x to vertex y (and vice-versa). Thus, the
edges (x,y) and (y,x) are the same edge.

In a directed graph, an edge E = (x,y) connect
vertex x to vertex y (but not vice-versa). Thus, (x,y)
and (y,x) are not the same edges.

A simple graph has no multiple edges between
vertices or loops from a vertex to itself.

Fall 2020 15-121 (Reid-Miller) 27

Graph Terminology

Vo and v, are adjacent

@ paths from v, to v,:
Vo — Vo
Vo —> V41 —> Vo
G '@ Vo —> V41 —> V3 —> Vo
' cycles starting at vj:
V3 —> V4 —> Vo — V3
V3 —> Vo — Vg —> V4 —> V3
degree of v, is 3

Fall 2020 15-121 (Reid-Miller) 28

More Terminology

Node v, is adjacent to node v, in a graph if there is
an edge from v, to v,.

A path in a graph is a sequence of vertices py, ..., P
such that each adjacent pair of vertices p, and p;.1
are connected by an edge from p, to py.1.

A cycle is a path that starts and ends at the same
vertex (i.e. pg = p,).

The degree of a vertex in an undirected graph is the
number of edges that connect to the vertex.

Fall 2020 15-121 (Reid-Miller) 29

Graph Examples

e Communication Networks

MM Posner

Hunt

GHC Purneli Doherty

WEH

Fall 2020 15-121 (Reid-Miller) 30

Graph Examples

* Transportation Routes

Seattle

ChicaV

Los Angeles
DFW

Fall 2020 15-121 (Reid-Miller)

New York

Miami

31

Storing a graph

Adjacency Matrix

An adjacency matrix G for an n-vertex graph is
an n x n array of 0/1 values such that Gy = 1 if
vertex k is adjacent to vertex j; otherwise G, = 0.

In other words, G, = 1 if there is an edge from
vertex | to vertex k; otherwise it is O.

Fall 2020 15-121 (Reid-Miller) 32

Fall 2020

source
N

15-121 (Reid-Miller)

Example (Adjacency Matrix)

destination

0 1 2 3 4
1 1 10 |1
0 | 1 1 10
1 |0
1 1 1
0 0

33

Storing a graph: Another way

Adjacency List: an array of edge lists.

* An edge list for vertex k is a linked list that

stores all nodes that are adjacent to vertex k.

* There is a linked list for every vertex of the
graph.

Fall 2020 15-121 (Reid-Miller)

34

Example (Adjacency List)

source_0 1 2 3 4
NN
I

L[~ e

[[>Fr ISk |-
L [eFt ISk 1]
L [eFt |=Fr 1]
L [ert ISk 1

destination
Fall 2020 15-121 (Reid-Miller) 35

Weighted Graphs

Some graphs have an associated “weight”
assigned to each edge.

* Weights: cost, distance, capacity, etc.
e Costs are typical non-negative integer values.

* Possible problems to solve using weighted
graphs: shortest path between nodes, minimal
spanning tree, etc.

Fall 2020 15-121 (Reid-Miller)

36

Weighted graph represented as
an Adjacency Matrix

destination
o 1 2 3 4

Ol |1 |7 |00] 2

"1 oo |4 | 3 |0

source
N

Fall 2020 15-121 (Reid-Miller) 37

Example (weighted)

N
w
N

2 destination
Fall 2020 15-121 (Reid-Miller) 38

Storage methods advantages (+)
and disadvantages(-)

e Adjacency Matrix
+ O(1) to add or remove an edge
+ O(1) to determine if an edge exists in a graph.
+ Generally better for dense graphs where |E| = O(|V|?)
- Storage: O(|V|?)
 Adjacency Lists

+ Faster to perform an operation on all
nodes adjacent to a node in a sparse graph.

+ Generally better for sparse graphs where |E| = O(|V])
+ Storage: O(|V| + |E|)
- Access edge (u, v) O(degree of v)

Fall 2020 15-121 (Reid-Miller) 39

