hashCodes & Priority Queue ADT

15-121 Fall 2020
Margaret Reid-Miller



Today

 hashCodes

* Priority Queues

e Implementation: Heaps
 Heapsort (maybe)

Fall 2020 15121 (Reid-Miller)



Runtime

What is the worst-case runtime for contains, add,
remove using a hash table?

What is the best-case runtime?

What is the expected runtime?

Fall 2020 15121 (Reid-Miller)



Load Factor

Load Factor: (number of elements) / (length of array)

What is the expected size of a bucket?

What is a good load factor?

What can you do when the load factor gets too big?

Fall 2020 15121 (Reid-Miller)



Java Objects

All Java objects have the following 3 methods:
boolean equals(Object)

String toString()

int hashcode() — the value returned may be

negative or much larger than the hash table length.
Use to convert to a valid hash table index.

What does the Object class methods do?

equals: checks if same memory address
toString: returns "memory address" as a string
hashCode: returns "memory address" as an int

Fall 2020 15121 (Reid-Miller)



If you override equals you must
also override hashCode

HashSet and HashMap:
e uses an object's hashCode method to determine
the bucket index, and

e then uses the object’'s equals method to see if
the object is in the bucket.

Requirement:
If objl.equals(obj2)then
objl.hashCode() == obj2.hashCode()

* The two work together and both are necessary for
HashSet and HashMap to work correctly.

Fall 2020 15121 (Reid-Miller) 6



Object hashCode

Is the default Object hashcode method sufficient? No!

For example, suppose you write

Map m = new HashMap();
m.put(new Point(3, 5), "max");
String label = m.get(new Point(3, 5));

What value does label have? null

There are two Point instances. One added to the map.
The other to retrieve its associated label.

Although the two points are equal, they have two
different hashCodes!

Fall 2020 15121 (Reid-Miller)



Rule: hashCode

Rule: Whenever you write your own class and
you want to use instances of the class in a
HashSet or HashMap, you must write your

own hashCode method for you class.

Fall 2020 15121 (Reid-Miller)



Example: Point class

public class Point {
private int x;
private int vy;
private int greyScale; // for internal use only

public boolean equals(Object obj) {
if (obj instanceof Point) {

Point other = (Point) obj;
return this.x == other.x
&& this.y == other.y;

}

return false;

}
public int hashCode() { 222?72

Fall 2020 15121 (Reid-Miller)



Hash function properties

Desired properties:
1. The hash function should be fast to compute: O(1)
2. Limited number of collisions:

a) Given two elements, the probability that they
hash to the same index is low. (We would like
unequal objects have unequal hash codes.)

b) When many elements are added to the table,
they should appear “evenly” distributed.

3. To be valid, it must hash two objects of equal value
to the same index.

Fall 2020 15121 (Reid-Miller) 10



For Point class which hashCodes are
valid? Good?

public int hashCode() { return x; }

public int hashCode() { return x*y; }

public int hashCode() { return x+y; }

Fall 2020 15121 (Reid-Miller) 11



Valid? Good?

public int hashCode() { return 47; }

public int hashCode() {
return x*Math.random(); }

public int hashCode() { return x*1000 + y;}

Fall 2020 15121 (Reid-Miller) 12



Valid? Good?

public int hashCode(){
return (x + " " + y).hashCode; }

public int hashCode() {
return x*10000 + y*100 + greyScale; }

Fall 2020 15121 (Reid-Miller) 13



HashCode advice

 Rule: When writing a hashCode method,

do not use fields that are not included the
equals method.

 Rule-of-thumb: Include all fields and their
subparts that are used in the equals

method in its hash code computation to
minimize collisions.

Fall 2020 15121 (Reid-Miller) 14



If x.equals (y), must
hashCode(x) == hashCode(y)?

If hashCode(x) == hashCode(y) must
x.equals(y)?

Fall 2020 15121 (Reid-Miller)

15



Worst-case runtime complexity of
Map/Set implementations

implementation contains |add/remove |restriction
Unsorted array O(n) O(n)

Unsorted linked list O(n) O(n)

Sorted array O(logn) |O(n) Comparable
Sorted linked list O(n) O(n) Comparable
Binary tree O(n) O(n)

Binary search tree O(n) O(n) Comparable
Balance BST O(logn) |O(log n) Comparable
Hash table — expected | O(1) O(1) Need valid
Hash table — hash
worst-case one bucket | ©(") O(n) function

Fall 2020 15121 (Reid-Miller)



HashSet vs TreeSet

Advantages of HashSet (HashMap)
Near constant time: expected O(1)
* Don’t have to be Comparable

Advantages of TreeSet (TreeMap)
More operations than HashSet: fast min, max, range
* TreeSet iterator gives values in natural order
Don’t need to write a hash function
(No need to tune trade off between space and time)
But worst-case runtime: O(log n)

Fall 2020 15121 (Reid-Miller)

19



Java collections in one slide

List Set "fp
| | | |
ArrayList LinkedList TreeSet HashSet
TreeMap HashMap

<
[ et

S /}\? iin
T

D. Feinberg

Fall 2020 15121 (Reid-Miller) 20



Priority Queues

Binary Heaps



ADT vs Data structures

Abstract Data Types: List, Set, Map, Stack,

Queue (In Java, we typically define an interface
for ADTs.)

Data Structures: array, dynamic array, sorted

dynamic array, linked list, doubly-linked list,
binary search tree, hash table, etc.

(Not always a clear distinction, though)

Fall 2020 15121 (Reid-Miller) 22



Priority Queue ADT

Priority Queue has the following operations:

ISEmpty

add (with priority)
remove (highest priority)
peek (at highest priority)

public interface PriorityQueue {
boolean isEmpty();
volid add (Comparable obj);
Comparable removeMin();
Comparable peekMin();

}

Fall 2020 15121 (Reid-Miller)

23



Towards a PQ implementation

What data structures have we seen that has an O(log n)
worst-case runtime to add?

* O(log n) often suggests a balanced binary tree
(not necessarily a search tree).

If we can peek at the highest priority in O(1) runtime in
the worst case, where must be the highest priority item?

Fall 2020 15121 (Reid-Miller) 24



Towards a PQ implementation

Where would you expect to find the 2"9 highest priority
item?

Does it matter in which subtree, left or right, that the 2@
highest item is?
 No. The only requirement is that it should be the
highest priority item in its subtree.

Fall 2020 15121 (Reid-Miller) 25



Introducing Binary Heaps

Binary heaps are a data structure with two properties:
1. Shape
2. Order

(Aside: When a program runs, memory is divided into
two parts:

stack — stores values of parameters and local variables.
heap — stores objects and arrays.

Heap data structures have no relation to the memory
heap.)

Fall 2020 15121 (Reid-Miller) 26



The binary heap Shape property

A binary heap is a complete binary tree —

 all levels are completely filled, except the bottom
level which is filled from left to right.

The 7 smallest heap shapes:

S A
ST O O

Fall 2020 15121 (Reid-Miller) 27



The binary heap Order Property

Min-Heap: parent <= children for all nodes
(the highest priority is the minimum)

Max-Heap: parent >= children for all nodes
(highest priority is the maximum)

Fall 2020 15121 (Reid-Miller) 28



Is it a min-heap?

O
O ©

(20) (16) (48) (62
(53, (71) L voates e

Fall 2020 15121 (Reid-Miller)

29



Fall 2020

Is it a min-heap?

No, it violates the
order property.

15121 (Reid-Miller)

30



Fall 2020

Is it a min-heap?

15121 (Reid-Miller)

Yes.

31



Possible Heaps

What are all possible min-heaps on elements 1, 2, 3, 4?7
What shape can the tree have?

What value(s) can the root have?

What must be a child of the root?

Can 4 be a child of the root?

O O O
2 @ G @ (2 @

O O ©

Exercise: What are all the min-heaps on 1,2,3,4,57?
Fall 2020 15121 (Reid-Miller) 32



Add an element to heap

Step 1: Maintain the shape property first.

Where must the new element go to keep the tree
complete? Ignore that it might violate the order

property.

Step 2: Then restore the order property.
To where must we move the new element?

Fall 2020 15121 (Reid-Miller) 33



Add to a min-heap

Add 43

1. Shape property
2. Order property

Fall 2020 15121 (Reid-Miller) 34



Add to a min-heap

add 18

1. Add leaf

2. Heapify up:

(see next slide)

Fall 2020 15121 (Reid-Miller) 35



Add to a min-heap

18 added

Heapified up:
Swapped 18 & 87
Swapped 18 & 23

Fall 2020 15121 (Reid-Miller) 36



Add to a min-heap

add 2

(5)
(14 (18,
2. Heapify up:

@ m @ @ (see next slide)
ONOOICIDIO

1. Add leaf

Fall 2020 15121 (Reid-Miller) 37



Add to a min-heap

2 added

(2
(145 O

) (@) (1) (o

Heapified up:

S d2&23
) @E®E @ Sl

Swapped 2 & 5

Fall 2020 15121 (Reid-Miller) 38



Remove the minimum

Step 1: Maintain the shape property first

What element should we use to replace the
root we just removed?

Step 2: Then restore the order property
To where must we move the new root?

Fall 2020 15121 (Reid-Miller) 39



Removing from a min-heap

Remove min (5)

returnValue 5

1. Shape property:
Put 53 at the root

(continued)

Fall 2020 15121 (Reid-Miller) 40



Removing from a min-heap

Remove min (5)

returnValue 5

2. heapify down:

Swap 53 & 14 (not 23)
Swap 53 & 32 (not 41)
Swap 53 & 50 (not 64)

Fall 2020 15121 (Reid-Miller) 41



Removing from a min-heap

Remove min (14)

@ returnValue 14

(32) (2

OBNOIOND
@ @ 1. Put 64 at the root

(continued)

Fall 2020 15121 (Reid-Miller) 42



Removing from a min-heap

Remove min (14)

returnValue 14

1. Put 64 at the root
2. heapify down:
Swap 64 & 23 (not 32)

Fall 2020 15121 (Reid-Miller) 43



Exercise

e Build a min-heap with 12, 6, 4, 8, 10, 9.
 Repeatedly remove the minimum until empty.

Fall 2020 15121 (Reid-Miller) 44



If the data structure is a binary tree

Add Problem:

-
e

I_

ow can | find where to put the new
ement?

ow do we find the parent of a child?

Remove Problem:
How can | find the element to put at the root?

Fall 2020 15121 (Reid-Miller) 45



Towards a data structure

Suppose we number the nodes of the binary heap as
follows. Do you see a relationship between a node and
its children? A node and its parent?

1
PN For a node numbered i
2 3 left child is  2*i
/N /N right child is 2*i + 1
4 > 6 / parent is 1/ 2

/\ /\ /\ /\

8 9 10 11 12 13 14 15 (integer division)

Using this indexing we can store a binary tree in an
array (starting at index 1).

Fall 2020 15121 (Reid-Miller) 46



ArrayList implementation

For a node i
left child is 2%i
right child is 2*i + 1
parentis i/ 2

2 3 4 5 6 7 8 9 10

1423|3241 |87 90|50 |64 |53

Fall 2020 15121 (Reid-Miller) 47



Binary heaps runtime complexity

What is the height of the binary heap? O(log n) — ALWAYS

)
ISEmpty: O(1)
peekMin: O(1)
add: best: O(1) — sometimes add a large element
expected: O(1) — most nodes are at bottom 2 layers
worst: O(log n) — sometimes move up to root

removeMin: O(log n) — always move a large
element from the root down
(usually to bottom 2 layers)

Fall 2020 15121 (Reid-Miller) 48



Heap Sort

If we add n values to an empty min-heap and then we
remove all the values from a heap, in what order will they be
removed?

Smallest to largest. We just invented Heap Sort!

Heap Sort Runtime:
1. Build the heap: n * O(log n)
2. Repeatedly remove the min: n* O(log n)
Total: O(n log n): best, expected, and worst case

What other sort has the same worst-case runtime? Merge sort

What is the disadvantage of merge sort? Not in place

Fall 2019 15-121 (Reid-Miller) 49



Heap Sort (in place)

1. Build a max-heap by adding each successive
element in the array to the heap.

max-heap |—-> not yet added

2. Remove the maximum and put it at the last index,
remove the next maximum and put it at 2nd to last
Index, and so on. In particular, repeatedly swap the
root with last element in the heap and heapify down
the new root to restore the heap one size smaller.

h largest values
Max-N€ap <€+ i, increasing order

Fall 2019 15-121 (Reid-Miller) 50




parent of j = (j-1)/2

1. Building the max-heap

ADD NEXT VALUE TO HEAP AND FIX HEAP

o 1 2 3 4 5 6
39 (53

o 1 2 3 4 5 6
93 (39 (95

o 1 2 3 4 5 6
95 |39 |33 |72

Fall 2019

15-121 (Reid-Miller)

95
39 (&3

51



parent of j = (j-1)/2

1. Building the max-heap (cont'd)
(95

95

72

53

39

61

CONTINUE UNTIL THE HEAP IS COMPLETED...

0

1

2

3

4

)

6

95

72

83

39

61

48

53

Fall 2019

15-121 (Reid-Miller)

72 (&3

39

95

72
39 (67

52



children of j = (j+1)*2-1, (j+1)*2

0

1

2. Sorting from the heap

2

3

4

)

6

95

72

83

39

61

48

53

SWAP THE MAX OF THE HEAP

WITH THE LAST VALUE OF THE HEAP:

0

1

2

3

4

)

6

53

72

83

39

61

48

95

FIX THE HEAP (NOT INCLUDING MAX):

0

1

2

3

4

)

6

83

72

53

39

61

48

95

Fall 2019

15-121 (Reid-Miller)

95

o6

l remove max

@@@
T

53



children of j = (j+1)*2-1, (j+1)*2

0

2. Sorting from the heap (cont'd)

1

2

3

4

)

6

83

72

53

39

61

48

95

SWAP THE MAX OF THE HEAP

WITH THE LAST VALUE OF THE HEAP:

0o 1 2 3 4 5 6
48 |72 |53 |39 (61 |83 |95
FIX THE HEAP (NOT INCLUDING MAX):

0o 1 2 3 4 5 6
72 |61 |53 (39 (48 |83 |95

Fall 2019

15-121 (Reid-Miller)

72

67

83

T

l remove max

72
&3

39 (48

54



children of j = (j+1)*2-1, (j+1)*2

2. Sorting from the heap (cont'd)

0

1

2

3

4

)

6

72

61

53

39

48

83

95

SWAP THE MAX OF THE HEAP

WITH THE LAST VALUE OF THE HEAP:

0o 1 2 3 4 5 6

48 |61 [53 |39 |72 (83 |95

FIX THE HEAP (NOT INCLUDING THAT MAX):
0o 1 2 3 4 5 6

61 48 |53 |39 (72 |83 |95

Fall 2019

15-121 (Reid-Miller)

67
39 (48

l remove max

67
4 63
39

REPEAT UNTIL THE HEAP
HAS 1 NODE LEFT

)

95



