
hashCodes & Priority Queue ADT

15-121 Fall 2020
Margaret Reid-Miller

Today

• hashCodes
• Priority Queues
• Implementation: Heaps
• Heapsort (maybe)

Fall 2020 15121 (Reid-Miller) 2

Runtime
What is the worst-case runtime for contains, add,
remove using a hash table?

What is the best-case runtime?

What is the expected runtime?

Fall 2020 15121 (Reid-Miller) 3

Load Factor
Load Factor: (number of elements) / (length of array)

What is the expected size of a bucket?

What is a good load factor?

What can you do when the load factor gets too big?

Fall 2020 15121 (Reid-Miller) 4

Java Objects
All Java objects have the following 3 methods:

boolean equals(Object)
String toString()
int hashcode() – the value returned may be
negative or much larger than the hash table length.
Use ____ to convert to a valid hash table index.

What does the Object class methods do?
equals: checks if same memory address
toString: returns "memory address" as a string
hashCode: returns "memory address" as an int

Fall 2020 15121 (Reid-Miller) 5

If you override equals you must
also override hashCode
HashSet and HashMap:

• uses an object’s hashCode method to determine

the bucket index, and

• then uses the object’s equals method to see if

the object is in the bucket.

Requirement:
If obj1.equals(obj2)then
obj1.hashCode() == obj2.hashCode()

• The two work together and both are necessary for

HashSet and HashMap to work correctly.

Fall 2020 15121 (Reid-Miller) 6

Object hashCode
Is the default Object hashcode method sufficient?

For example, suppose you write

Map m = new HashMap();
m.put(new Point(3, 5), "max");
String label = m.get(new Point(3, 5));

What value does label have?
There are two Point instances. One added to the map.

The other to retrieve its associated label.

Although the two points are equal, they have two

different hashCodes!

No!

null

Fall 2020 15121 (Reid-Miller) 7

Rule: hashCode

Rule: Whenever you write your own class and
you want to use instances of the class in a
HashSet or HashMap, you must write your
own hashCode method for you class.

Fall 2020 15121 (Reid-Miller) 8

Example: Point class
public class Point {
private int x;
private int y;
private int greyScale; // for internal use only

public boolean equals(Object obj) {
if (obj instanceof Point) {

Point other = (Point) obj;
return this.x == other.x

&& this.y == other.y;
}
return false;

}
public int hashCode() { ????

Fall 2020 15121 (Reid-Miller) 9

Hash function properties
Desired properties:
1. The hash function should be fast to compute: O(1)
2. Limited number of collisions:

a) Given two elements, the probability that they
hash to the same index is low. (We would like
unequal objects have unequal hash codes.)

b) When many elements are added to the table,
they should appear “evenly” distributed.

3. To be valid, it must hash two objects of equal value
to the same index.

Fall 2020 15121 (Reid-Miller) 10

For Point class which hashCodes are
valid? Good?

public int hashCode() { return x; }

public int hashCode() { return x*y; }

public int hashCode() { return x+y; }

Fall 2020 15121 (Reid-Miller) 11

Valid? Good?
public int hashCode() { return 47; }

public int hashCode() {
return x*Math.random(); }

public int hashCode() { return x*1000 + y;}

Fall 2020 15121 (Reid-Miller) 12

Valid? Good?
public int hashCode(){

return (x + " " + y).hashCode; }

public int hashCode() {
return x*10000 + y*100 + greyScale; }

Fall 2020 15121 (Reid-Miller) 13

HashCode advice
• Rule: When writing a hashCode method,

do not use fields that are not included the
equals method.

• Rule-of-thumb: Include all fields and their
subparts that are used in the equals
method in its hash code computation to
minimize collisions.

Fall 2020 15121 (Reid-Miller) 14

If x.equals(y), must
hashCode(x) == hashCode(y)?

If hashCode(x) == hashCode(y)must
x.equals(y)?

Fall 2020 15121 (Reid-Miller) 15

Worst-case runtime complexity of
Map/Set implementations

implementation contains add/remove restriction
Unsorted array O(n) O(n)
Unsorted linked list O(n) O(n)
Sorted array O(log n) O(n) Comparable
Sorted linked list O(n) O(n) Comparable
Binary tree O(n) O(n)
Binary search tree O(n) O(n) Comparable
Balance BST O(log n) O(log n) Comparable
Hash table – expected O(1) O(1) Need valid

hash
function

Hash table –
worst-case one bucket O(n) O(n)

Fall 2020 15121 (Reid-Miller) 16

HashSet vs TreeSet
Advantages of HashSet (HashMap)

Near constant time: expected O(1)
* Don’t have to be Comparable

Advantages of TreeSet (TreeMap)
More operations than HashSet: fast min, max, range

* TreeSet iterator gives values in natural order
Don’t need to write a hash function
(No need to tune trade off between space and time)
But worst-case runtime: O(log n)

Fall 2020 15121 (Reid-Miller) 19

List Set Map

ArrayList LinkedList TreeSet HashSet
HashMapTreeMap

D. Feinberg

Java collections in one slide

Fall 2020 15121 (Reid-Miller) 20

Priority Queues

Binary Heaps

ADT vs Data structures

Abstract Data Types: List, Set, Map, Stack,
Queue (In Java, we typically define an interface
for ADTs.)

Data Structures: array, dynamic array, sorted
dynamic array, linked list, doubly-linked list,
binary search tree, hash table, etc.

(Not always a clear distinction, though)

Fall 2020 15121 (Reid-Miller) 22

Priority Queue ADT
Priority Queue has the following operations:

isEmpty
add (with priority)
remove (highest priority)
peek (at highest priority)

public interface PriorityQueue {
boolean isEmpty();
void add (Comparable obj);
Comparable removeMin();
Comparable peekMin();

}
Fall 2020 15121 (Reid-Miller) 23

Towards a PQ implementation
What data structures have we seen that has an O(log n)
worst-case runtime to add?

• O(log n) often suggests a balanced binary tree
(not necessarily a search tree).

If we can peek at the highest priority in O(1) runtime in
the worst case, where must be the highest priority item?

Fall 2020 15121 (Reid-Miller) 24

Towards a PQ implementation

Where would you expect to find the 2nd highest priority
item?

Does it matter in which subtree, left or right, that the 2nd

highest item is?

• No. The only requirement is that it should be the
highest priority item in its subtree.

Fall 2020 15121 (Reid-Miller) 25

Introducing Binary Heaps
Binary heaps are a data structure with two properties:

1. Shape
2. Order

(Aside: When a program runs, memory is divided into
two parts:
stack – stores values of parameters and local variables.
heap – stores objects and arrays.

Heap data structures have no relation to the memory
heap.)

Fall 2020 15121 (Reid-Miller) 26

The binary heap Shape property
A binary heap is a complete binary tree –

• all levels are completely filled, except the bottom
level which is filled from left to right.

The 7 smallest heap shapes:

Fall 2020 15121 (Reid-Miller) 27

The binary heap Order Property

Min-Heap: parent <= children for all nodes
(the highest priority is the minimum)

Max-Heap: parent >= children for all nodes
(highest priority is the maximum)

Fall 2020 15121 (Reid-Miller) 28

Is it a min-heap?

5

14 23

20 16 48 62

53 71

Fall 2020 15121 (Reid-Miller) 29

No, it violates the
shape property.

Is it a min-heap?

5

14 23

12 26 34 20

24 35

Fall 2020 15121 (Reid-Miller) 30

No, it violates the
order property.

Is it a min-heap?

5

14 23

32 87 90

50 64 53

41

Fall 2020 15121 (Reid-Miller) 31

Yes.

Possible Heaps
What are all possible min-heaps on elements 1, 2, 3, 4?
What shape can the tree have?
What value(s) can the root have?
What must be a child of the root?
Can 4 be a child of the root?

Exercise: What are all the min-heaps on 1,2,3,4,5?

1

2 3

4

1

3 2

4

1

2 4

3

Fall 2020 15121 (Reid-Miller) 32

Add an element to heap
Step 1: Maintain the shape property first.

Where must the new element go to keep the tree
complete? Ignore that it might violate the order
property.

Step 2: Then restore the order property.
To where must we move the new element?

Fall 2020 15121 (Reid-Miller) 33

Add to a min-heap
Add 43

43

5

14 23

32 87 90

50 64 53

41

Fall 2020 15121 (Reid-Miller) 34

1. Shape property
2. Order property

Add to a min-heap
add 18

1843

5

14 23

32 87 90

50 64 53

41

2. Heapify up:
(see next slide)

Fall 2020 15121 (Reid-Miller) 35

1. Add leaf

Add to a min-heap
18 added

1843

5

14 23

32 87 90

50 64 53

41 18

87

18

23

Fall 2020 15121 (Reid-Miller) 36

Heapified up:
Swapped 18 & 87
Swapped 18 & 23

Add to a min-heap
add 2

28743

5

14 18

32 23 90

50 64 53

41

Fall 2020 15121 (Reid-Miller) 37

1. Add leaf

2. Heapify up:
(see next slide)

Add to a min-heap
2 added

28743

5

14 18

32 23 90

50 64 53

41 2

23

2

18

2

5

Heapified up:
Swapped 2 & 23
Swapped 2 & 18
Swapped 2 & 5

Fall 2020 15121 (Reid-Miller) 38

Remove the minimum
Step 1: Maintain the shape property first

What element should we use to replace the
root we just removed?

Step 2: Then restore the order property
To where must we move the new root?

Fall 2020 15121 (Reid-Miller) 39

Removing from a min-heap
Remove min (5)

5

14 23

32 87 90

50 64

41

returnValue 5

53

Fall 2020 15121 (Reid-Miller) 40

(continued)

1. Shape property:
Put 53 at the root

Removing from a min-heap
Remove min (5)

5

14 23

32 87 90

50 64

41

returnValue 5
53

53

14

53

32

53

50

Fall 2020 15121 (Reid-Miller) 41

2. heapify down:
Swap 53 & 14 (not 23)
Swap 53 & 32 (not 41)
Swap 53 & 50 (not 64)

Removing from a min-heap
Remove min (14)

64

14

32 23

50 87 90

53

41

returnValue 14

Fall 2020 15121 (Reid-Miller) 42

(continued)

1. Put 64 at the root

Removing from a min-heap
Remove min (14)

14

32 23

50 87 90

53

41

returnValue 1464

64

23

Fall 2020 15121 (Reid-Miller) 43

2. heapify down:
Swap 64 & 23 (not 32)

1. Put 64 at the root

Exercise

• Build a min-heap with 12, 6, 4, 8, 10, 9.
• Repeatedly remove the minimum until empty.

Fall 2020 15121 (Reid-Miller) 44

If the data structure is a binary tree

Add Problem:
How can I find where to put the new
element?
How do we find the parent of a child?

Remove Problem:
How can I find the element to put at the root?

Fall 2020 15121 (Reid-Miller) 45

Towards a data structure
Suppose we number the nodes of the binary heap as
follows. Do you see a relationship between a node and
its children? A node and its parent?

1

2 3
/ \ / \

4 5 6 7
/ \ / \ / \ / \

8 9 10 11 12 13 14 15

Using this indexing we can store a binary tree in an
array (starting at index 1).

For a node numbered i
left child is 2*i
right child is 2*i + 1
parent is i / 2

(integer division)

Fall 2020 15121 (Reid-Miller) 46

1 2 3 4 5 6 7 8 9 10
5 14 23 32 41 87 90 50 64 53

5

14 23

32 87 90

50 64 53

41

ArrayList implementation

For a node i
left child is 2*i
right child is 2*i + 1
parent is i / 2

Fall 2020 15121 (Reid-Miller) 47

Binary heaps runtime complexity
What is the height of the binary heap?

Runtime (min-heap):
isEmpty:
peekMin:
add: best:

expected:
worst:

removeMin:

Fall 2020 15121 (Reid-Miller) 48

O(log n) – ALWAYS

O(1)
O(1)
O(1) – sometimes add a large element
O(1) – most nodes are at bottom 2 layers
O(log n) – sometimes move up to root

O(log n) – always move a large
element from the root down
(usually to bottom 2 layers)

Heap Sort
If we add n values to an empty min-heap and then we
remove all the values from a heap, in what order will they be
removed?

Smallest to largest.

Heap Sort Runtime:
1. Build the heap:
2. Repeatedly remove the min:
Total: O(n log n): best, expected, and worst case

What other sort has the same worst-case runtime?

What is the disadvantage of merge sort?

Fall 2019 15-121 (Reid-Miller) 49

We just invented Heap Sort!

Merge sort
Not in place

n * O(log n)
n * O(log n)

1. Build a max-heap by adding each successive
element in the array to the heap.

2. Remove the maximum and put it at the last index,
remove the next maximum and put it at 2nd to last
index, and so on. In particular, repeatedly swap the
root with last element in the heap and heapify down
the new root to restore the heap one size smaller.

max-heap

Heap Sort (in place)

Fall 2019 15-121 (Reid-Miller) 50

max-heap not yet added

largest values
in increasing order

1. Building the max-heap

0 1 2 3 4 5 6

39 53 95 72 61 48 83
39

0 1 2 3 4 5 6

53 39 95 72 61 48 83 39

53

0 1 2 3 4 5 6

95 39 53 72 61 48 83
5339

95

ADD NEXT VALUE TO HEAP AND FIX HEAP

Fall 2019 15-121 (Reid-Miller) 51

parent of j = (j-1)/2

1. Building the max-heap (cont'd)

0 1 2 3 4 5 6

95 72 53 39 61 48 83 5372

95

39

0 1 2 3 4 5 6

95 72 83 39 61 48 53
8372

95

39 61 48 53

CONTINUE UNTIL THE HEAP IS COMPLETED...

Fall 2019 15-121 (Reid-Miller) 52

parent of j = (j-1)/2

2. Sorting from the heap
0 1 2 3 4 5 6

95 72 83 39 61 48 53

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

53 72 83 39 61 48 95
5372

83

39 61 480 1 2 3 4 5 6

83 72 53 39 61 48 95

FIX THE HEAP (NOT INCLUDING MAX):

8372

95

39 61 48 53

remove max

Fall 2019 15-121 (Reid-Miller) 53

children of j = (j+1)*2-1, (j+1)*2

2. Sorting from the heap (cont'd)
0 1 2 3 4 5 6

83 72 53 39 61 48 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

48 72 53 39 61 83 95
5361

72

39 480 1 2 3 4 5 6

72 61 53 39 48 83 95

FIX THE HEAP (NOT INCLUDING MAX):

5372

83

39 61 48

remove max

Fall 2019 15-121 (Reid-Miller) 54

children of j = (j+1)*2-1, (j+1)*2

2. Sorting from the heap (cont'd)
0 1 2 3 4 5 6

72 61 53 39 48 83 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:
0 1 2 3 4 5 6

48 61 53 39 72 83 95

5348

61

390 1 2 3 4 5 6

61 48 53 39 72 83 95

FIX THE HEAP (NOT INCLUDING THAT MAX):

5361

72

39 48

remove max

REPEAT UNTIL THE HEAP
HAS 1 NODE LEFT

Fall 2019 15-121 (Reid-Miller) 55

children of j = (j+1)*2-1, (j+1)*2

