
Hash Tables

15-121 Fall 2020
Margaret Reid-Miller

Today

• Sets and Maps review
• Hash Tables
• Next time
• hashCodes
• Priority Queues

Fall 2020 15121 (Reid-Miller) 2

List

• Sequence of elements
• Indexed starting at 0… (an index)
• A list can have duplicates.

Fall 2020 15121 (Reid-Miller) 3

Set
(sometimes called a bag)

A set is “bag” of objects
• No duplicates with respect to .equals()
• Membership

Operations I want to be fast:
• Does the set contain this element?
• Add this element to the set
• Remove an element from the set

Fall 2020 15121 (Reid-Miller) 4

Tom Sue

Sally Fred

Dave

Map
(also called dictionary or associative array)

A map is a table of (key,value) pairs.
• Indexed by key (must be unique).
• Many keys can “map” to the same value.

Operations I want to be fast:
• Get Tom’s section
• Set Dave’s section to B
• Remove Fred from the class

Fall 2020 15121 (Reid-Miller) 5

Name Section
Tom A
Fred B
Dave A
Sally C

TreeSet / TreeMap
• TreeSet is a class that implements a sorted Set.
• TreeMap is a class that implements a sorted Map.
• Advantages:

• The TreeSet /TreeMap can be traversed (using an
iterator) in order.

• Subsets/submaps based on a range of values can be
generated easily from a TreeSet/TreeMap.

• Disadvantages:
• Contains, insert, and remove operations on the treeMap

take O(log N) time for sets with N elements.
Use a TreeMap only when you need the keys in order

Fall 2020 15121 (Reid-Miller) 6

Both TreeSet & TreeMap use a balanced binary
search tree called a “red-black tree".

Red-Black balanced binary search trees:
• The height of a red-black tree is guaranteed to be 2 log n.
• Every time you add or remove an element, the tree may be

restructured to maintain balance.
• The runtime to rebalance the tree is worst case O(log n).

Thus
• Operations contains/add/remove for Sets and
get/set/remove for map have worst-case O(log n)
runtime.

Fall 2020 15121 (Reid-Miller) 7

Worst case O(log n) time!

Great! We’re done!

The course is over! Yay!

Unless…

Fall 2020 15121 (Reid-Miller) 8

• Can we do better than worst-case O(log n)?
• What would be better?

O(1)
• What data structure do we know that usually gives

O(1) time?
arrays

• E.g., Suppose we want to maintain a set of students,
where a student object has a 9-digit id and a student
name.

• How can we use the student id to find a student in an
array?

Fall 2020 15121 (Reid-Miller) 9

Really Big Array (?)
Use the student id as the index into a really big array:

contains: O(1), add: O(1), remove: O(1). Yay!!!

Problem:

Fall 2020 15121 (Reid-Miller) 10

0
1

…

151212018 à id:	151-21-2018
name:	Dave

…

999999999

Memory hog: The range of student id values
is independent on the number of students
(size of the set).

Moderate Size Array (better)
Key Idea: Use the key to compute an index into a
moderate size array.
• Want: contains, add, remove: O(1), memory: O(n)
Example: Use last two digits of the student id

• Problem:

Fall 2020 15121 (Reid-Miller) 11

0
1

18 à id:	151-21-2020
name:	Dave

99

Two or more students might have the
same last two digits.

Hash Table
• Hash Table – An array that refers to elements in

set/map
• Hash Function – A function that maps a key to an index

in hash table
• hash(key) -> index

• But if you want to allow for any set of student id values,
then we have to deal with the fundamental problem of
collisions.

• Collision: when some keys map to the same index:
x ≠ y, but hash(x) = hash(y).

Fall 2020 15121 (Reid-Miller) 12

Collisions

• Can we prevent collisions when we don’t know in
advance which keys will be used in the set?
• No. Since the number of possible keys is much

greater than the size of the hash table, there must

be two keys that map to the same index.

• Any set that contains those two keys will have a

collision.

• Pigeonhole Principle: If you put more than n items

into n bins, then at least one bin contains more than

one item.

Fall 2020 15121 (Reid-Miller) 13

all possible keys

S1
S2

The Birthday Paradox
• How likely are two keys going to hash to the same

index?

• Probability that none of n people have the same
birthday:

p’ = 1*(364/365)*(363/365)*…*((365- n +1)/365)

• Probability at least two people have the same
birthday is p = 1 – p’

When n = 23, p = 0.5.
When n = 30, p = 0.7
When n = 50, p = 0.97 !!

Fall 2020 15121 (Reid-Miller) 14

Surprisingly likely!

Hash Function
Desired properties of a hash function:

1. The hash function should be fast to compute: O(1)
2. Limited number of collisions:

• Given two keys, the probability they hash to the same
index is low.

• When table has many keys they should be “evenly”
distributed.

Examples of hash functions:
• If the key is an integer:

key % tablesize
• If key is a String (or any Object):

key.hashCode() % tablesize

Fall 2020 15121 (Reid-Miller) 15

Handling Collisions
1. Open Addressing (topic for 15-451)
2. Separate chaining – Each index of array contains all

the elements that hash to that index (called a bucket)

What data structure should we use to maintain a bucket?

• Often a linked list because:
• Buckets are small (few collisions)
• Linked lists easy to implement
• Many buckets can be empty and empty linked lists

take no storage
• No additional constraints such as Comparable

Fall 2020 15121 (Reid-Miller) 16

Separate Chaining using a linked list

Fall 2020 15121 (Reid-Miller) 17

10

…10
Dave

…65
Tom

…65
Sue

65

null
null

null

null
null

Set operations using Separate Chaining

contains(obj):
• Find the index in the array using the hash function on
obj

• Check if any element in the bucket equals obj
add(obj):
• Find the index using the hash function on obj
• If no element in the bucket equals obj, add obj to the

bucket
remove(obj):
• Find the index using the hash function on obj
• Remove obj from bucket, if it exists

Fall 2020 15121 (Reid-Miller) 18

Runtime
What is the worst-case runtime for contains, add,
remove?

O(n) – all the keys hash to the same index

What is the best-case runtime?

O(1) – only a few keys map to any one index
What is the expected runtime?

O(1) – assuming the hash function is good, and
the hash table is not too full

Fall 2020 15121 (Reid-Miller) 19

Load Factor
Load Factor: (number of elements) / (length of array)

What is the expected size of a bucket?

The load factor

What is a good load factor?

A small constant so that the linked list stay short,
even the longest ones.
Java uses a default value of 0.75

Can the load factor be larger than 1?

Fall 2020 15121 (Reid-Miller) 20

Yes

Space vs Time
What if we keep adding elements and the load factor
increases?
• The probability of a collision increases.

• Linked lists can get long and runtimes go up.

• Even worse, the longest list linked list may be much

larger than the average length.

Space vs time trade-off:
• Decrease array size

• more collisions – slower contains, add, remove

• Increase array size

• fewer collisions – faster contains, add, remove

Fall 2020 15121 (Reid-Miller) 21

Rehashing
If the load factor gets too big what can we do?

Create a larger table.

Can we just copy the elements to a new larger table?
NO! We need to reinsert each element of the old
table in the new table using a new hash function.

How much bigger should we create the array?
Approximately twice the size (adds only O(1)
amortize time)

Fall 2020 15121 (Reid-Miller) 22

Hashing in Java

Every Java object inherits from the Object class:
boolean equals(Object obj)
String toString()
int hashCode()

How can you use these methods to implement hashing?
Step 1. Use the hashCode method of the object to get a
(random-like) integer of it. (For a map use the hashCode
of the key.)

What range of values can it return?
-2.1 billion to 2.1 billion

Fall 2020 15121 (Reid-Miller) 23

Hashing in Java
Step 2: To get an index in the range of the array take
modulus of the hash with the length of the array. Mod
will spread all possible hashCode values evenly.

Math.abs(obj.hashcode() % (array.length));

Why do we need to take the absolute value?

Step 3: Use .equals to determine if an element is in
the bucket at that index.

Fall 2020 15121 (Reid-Miller) 24

Sets in the Java API

Collection

AbstractCollection Set

AbstractSet SortedSet

HashSet TreeSet

extends
implements

A
A
A

Interface
Abstract Class
Concrete Class

Fall 2020 15121 (Reid-Miller) 27

Maps in the Java API

Map

AbstractMap SortedMap

HashMap TreeMap

extends
implements

A
A
A

Interface
Abstract Class
Concrete Class

Fall 2020 15121 (Reid-Miller) 28

HashSet is a class that
implements a set

The elements of the set are stored using a hash table.
• elements' class must override equals() and

hashCode() (more about this soon).

Advantages:
• The HashSet supports search, insert, and remove

operations in O(1) expected time.

Disadvantages:
• Traversals cannot be done in a meaningful way with a

HashSet.

If the order of the elements is unimportant, use a HashSet.

It's fast.

Fall 2020 15121 (Reid-Miller) 30

HashSet Example

Set<Integer> a = new HashSet<Integer>();
Set<Integer> b = new HashSet<Integer>(10);
a.add(1);
a.add(5);
b.add(1);
b.add(9);
b.add(0);
a.addAll(b);
for (Integer i : a)

System.out.println(i);

Iterator used here accesses
each element of set in no
particular order since the set
is implemented with a hash table.
(More about this soon.)

Fall 2020 15121 (Reid-Miller) 31

Initial capacity

HashMap is a class that
implements a map

• The (key,value) pairs of the map are stored using a hash
table. Again, keys must override hashcode()
(more about this soon).

• Advantages:
• The HashMap supports search, insert, and remove

operations in O(1) expected time.
• Disadvantages:

• Traversals (using an iterator) cannot be done in a
meaningful way with a HashMap.

If key order is unimportant, use a HashMap. It's fast.
Fall 2020 15121 (Reid-Miller) 34

HashMap Example

Map<String, String> tvShowMap
= new HashMap<String, String>();

tvShowMap.put("The Simpsons", "FOX");
tvshowMap.put("Grey's Anatomy", "ABC");
tvshowMap.put("How I Met Your Mother", "CBS");
...
System.out.println("The Simpsons is on " +

tvShowMap.get("The Simpsons"));

System.out.println("CSI changes networks!");
String oldNetwork = tvShowMap.put("CSI","NBC");

Fall 2020 15121 (Reid-Miller) 35

Key Value

K1 V1

K2 V2

K3 V3

K4 V4

