Hash Tables

15-121 Fall 2020
Margaret Reid-Miller

Today

e Sets and Maps review

 Hash Tables

 Next time
 hashCodes

 Priority Queues

Fall 2020 15121 (Reid-Miller)

List

e Sequence of elements
* |Indexed starting at 0... (an index)
e A list can have duplicates.

Fall 2020 15121 (Reid-Miller)

Set

(sometimes called a bag)

A set is “bag” of objects
 No duplicates with respectto .equals()
 Membership

Operations | want to be fast:
 Does the set contain this element?
_ Tom Sue
 Add this element to the set
e Remove an element from the set Sally Fred

Dave 4’///

Fall 2020 15121 (Reid-Miller) 4

Map

(also called dictionary or associative array)

A map is a table of (key,value) pairs.
* Indexed by key (must be unique).

 Many keys can “map” to the same value.

Section

Operations | want to be fast: ::r:‘e
e Get Tom's section Frod
e Set Dave’s sectionto B Dave

e Remove Fred from the class Sally

Fall 2020 15121 (Reid-Miller)

A

B
A
C

TreeSet /| TreeMap

e TreeSet IS a class that implements a sorted Set.
e TreeMap IS a class that implements a sorted Map.

Advantages:

e The TreeSet /TreeMap can be traversed (using an
iterator) in order.

e Subsets/submaps based on a range of values can be
generated easily from a TreeSet/TreeMap.

Disadvantages:

e Contains, insert, and remove operations on the treeMap
take O(log N) time for sets with N elements.

Use a TreeMap only when you need the keys in order

Fall 2020 15121 (Reid-Miller)

Both TreeSet & TreeMap use a balanced binary
search tree called a “red-black tree".

Red-Black balanced binary search trees:
e The height of a red-black tree is guaranteed to be 2 log n.

e Every time you add or remove an element, the tree may be
restructured to maintain balance.

e The runtime to rebalance the tree is worst case O(log n).

Thus

e Operations contains/add/remove for Sets and
get/set/remove for map have worst-case O(log n)
runtime.

Fall 2020 15121 (Reid-Miller) 7

Worst case O(log n) time!

Great! We're done!

The course is over! Yay!

Unless...

Fall 2020 15121 (Reid-Miller)

e Can we do better than worst-case O(log n)?
e What would be better?
O(1)
 What data structure do we know that usually gives
O(1) time?
arrays

e E.g., Suppose we want to maintain a set of students,
where a student object has a 9-digit id and a student
name.

e How can we use the student id to find a student in an
array?

Fall 2020 15121 (Reid-Miller)

Really Big Array (?)

Use the student id as the index into a really big array:
contains: O(1), add: O(1), remove: O(1). Yay!!!

0
1

151212018 - |[id: 151-21-2018
name: Dave

999999999

Problem: Memory hog: The range of student id values
Is independent on the number of students
(size of the set).

Fall 2020 15121 (Reid-Miller) 10

Moderate Size Array (better)

Key Idea: Use the key to compute an index into a
moderate size array.

e Want: contains, add, remove: O(1), memory: O(n)
Example: Use last two digits of the student id

1

18 < |id: 151-21-2020
name: Dave

99

e Problem: Two or more students might have the

same last two digits.
Fall 2020 15121 (Reid-Miller) 11

Hash Table

« Hash Table — An array that refers to elements in
set/map

 Hash Function — A function that maps a key to an index
iIn hash table

e hash(key) -> index

e Butif you want to allow for any set of student id values,
then we have to deal with the fundamental problem of

collisions.
e Collision: when some keys map to the same index:

X # Y, but hash(x) = hash(y).

Fall 2020 15121 (Reid-Miller) 12

all possible keys

B

e Can we prevent collisions when we don’t know in
advance which keys will be used in the set?

* No. Since the number of possible keys is much
greater than the size of the hash table, there must
be two keys that map to the same index.

* Any set that contains those two keys will have a
collision.

Collisions

 Pigeonhole Principle: If you put more than n items
Into n bins, then at least one bin contains more than

one item.

Fall 2020 15121 (Reid-Miller) 13

The Birthday Paradox

 How likely are two keys going to hash to the same
index? Surprisingly likely!

e Probability that none of n people have the same
birthday:
p’ = 1*(364/365)*(363/365)*...*((365- n +1)/365)
e Probability at least two people have the same
birthdayisp=1-p’

When n =23, p =0.5.
Whenn=30,p=0.7

Whenn=50,p=0.97 1!l

Fall 2020 15121 (Reid-Miller)

14

Hash Function

Desired properties of a hash function:
1. The hash function should be fast to compute: O(1)

2. Limited number of collisions:

e Given two keys, the probability they hash to the same
index is low.

 When table has many keys they should be “evenly”
distributed.

Examples of hash functions:

 If the key is an integer:
key % tablesize

e If key is a String (or any Object):
key.hashCode () % tablesize

Fall 2020 15121 (Reid-Miller) 15

Handling Collisions

1. Open Addressing (topic for 15-451)

2. Separate chaining — Each index of array contains all
the elements that hash to that index (called a bucket)

What data structure should we use to maintain a bucket?
e Often a linked list because:

e Buckets are small (few collisions)

e Linked lists easy to implement

e Many buckets can be empty and empty linked lists
take no storage

e No additional constraints such as Comparable

Fall 2020 15121 (Reid-Miller) 16

Separate Chaining using a linked list

null
null
10 N — |
...10
null Dave

65 —_— —_)I/

...65 65
Tom Sue

null
null

Fall 2020 15121 (Reid-Miller)

Set operations using Separate Chaining

contains(obj):
e Find the index in the array using the hash function on
obj
e Check if any element in the bucket equals obj
add (obj):
e Find the index using the hash function on ob

 |f no element in the bucket equals obj, add obj to the
bucket

remove (obj):
e Find the index using the hash function on ob
« Remove obj from bucket, if it exists

Fall 2020 15121 (Reid-Miller) 18

Runtime

What is the worst-case runtime for contains, add,
remove?

O(n) — all the keys hash to the same index
What is the best-case runtime?

O(1) — only a few keys map to any one index
What is the expected runtime?

O(1) — assuming the hash function is good, and
the hash table is not too full

Fall 2020 15121 (Reid-Miller) 19

Load Factor

Load Factor: (number of elements) / (length of array)

What is the expected size of a bucket?

The load factor

What is a good load factor?

A small constant so that the linked list stay short,
even the longest ones.

Java uses a default value of 0.75

Can the load factor be larger than 1?7 Yes

Fall 2020 15121 (Reid-Miller) 20

Space vs Time

What if we keep adding elements and the load factor
increases?

e The probability of a collision increases.
e Linked lists can get long and runtimes go up.

 Even worse, the longest list linked list may be much
larger than the average length.

Space vs time trade-off:
e Decrease array size

 more collisions — slower contains, add, remove
e |ncrease array size

» fewer collisions — faster contains, add, remove

Fall 2020 15121 (Reid-Miller) 21

Rehashing

If the load factor gets too big what can we do?
Create a larger table.

Can we just copy the elements to a new larger table?

NO! We need to reinsert each element of the old
table in the new table using a new hash function.

How much bigger should we create the array?

Approximately twice the size (adds only O(1)
amortize time)

Fall 2020 15121 (Reid-Miller) 22

Hashing in Java

Every Java object inherits from the Object class:

boolean equals(Object obj)
String toString()
int hashCode()

How can you use these methods to implement hashing?

Step 1. Use the hashCode method of the object to get a
(random-like) integer of it. (For a map use the hashCode
of the key.)

What range of values can it return?
-2.1 billion to 2.1 billion

Fall 2020 15121 (Reid-Miller) 23

Hashing in Java

Step 2: To get an index in the range of the array take
modulus of the hash with the length of the array. Mod
will spread all possible hashCode values evenly.

Math.abs(obj.hashcode() % (array.length));
Why do we need to take the absolute value?

Step 3: Use .equals to determine if an elementis in
the bucket at that index.

Fall 2020 15121 (Reid-Miller) 24

Sets in the Java API

Collection
ZA ‘ﬁ extends
I implements
AbstractCollection Set
ZA A Interface
T ----------------------------- A | Abstract Class
' A Concrete Class
AbstractSet SortedSet
i 7
HashSet TreeSet

Fall 2020 15121 (Reid-Miller) 27

Maps in the Java API

Map
> 7 extends
. 1 T implements
AbstractMap SortedMap
Zﬁ e A| Interface
T ; A| Abstract Class
HashMap TreeMap Concrete Class

Fall 2020 15121 (Reid-Miller) 28

HashSet Is a class that
implements a set

The elements of the set are stored using a hash table.
e elements' class must override equals () and
hashCode () (more about this soon).

Advantages:

e The HashSet supports search, insert, and remove
operations in O(1) expected time.

Disadvantages:

e Traversals cannot be done in a meaningful way with a
HashSet.

If the order of the elements is unimportant, use a HashSet.
It's fast.

Fall 2020 15121 (Reid-Miller) 30

HashSet Example

Set<Integer> a = new HashSet<Integer>();
Set<Integer> b new HashSet<Integer>(10);

a.add(1);

a.add(5); Initial capacity
b.add(1);

b.add(9);

b.add(0); lterator used here accesses
a.addAll(b); each element of set in no
for (Integer i : a) particular order since the set

is implemented with a hash table.

System.out.println(i); (More about this soon.)

Fall 2020 15121 (Reid-Miller) 31

HashMap is a class that
iImplements a map

The (key,value) pairs of the map are stored using a hash
table. Again, keys must override hashcode ()

(more about this soon).

Advantages:

e The HashMap supports search, insert, and remove
operations in O(1) expected time.

Disadvantages:

e Traversals (using an iterator) cannot be done in a
meaningful way with a HashMap.

If key order is unimportant, use a HashMap. It's fast.

Fall 2020 15121 (Reid-Miller) 34

Key Value
K1 V1
HashMap Example <@ | v
K3 V3
K4 V4

Map<String, String> tvShowMap

= new HashMap<String, String>();
tvShowMap.put("The Simpsons", "FOX");
tvshowMap.put("Grey's Anatomy", "ABC");
tvshowMap.put("How I Met Your Mother", "CBS");
System.out.println("The Simpsons is on " +

tvShowMap.get("The Simpsons"));

System.out.println("CSI changes networks!");

I

String oldNetwork = tvShowMap.put("CSI","NBC");

’
Fall 2020 15121 (Reid-Miller) 35

