
Sorting

15-121 Fall 2020
Margaret Reid-Miller

Today

Today
• Bucket and Radix sorts
• Sorting properties
• Java sorts

Fall 2020 15-121 (Reid-Miller) 2

Which sort algorithm is always slow?

Which sort is fast when the data is already sorted in
non-decreasing order?

Which sort is always O(n log n)?

Which sort is fast on randomly ordered data?

Fall 2020 15-121 (Reid-Miller) 3

Randomized quicksort is fast
• Fact: Quicksort has expected runtime of O(n log n)

averaged over all n! input orderings.

• Randomized quicksort: For every partition, pick a
pivot at random from the partition.

• Fact: Randomized quicksort has expected runtime of
O(n log n) for any input ordering.

• Although it is possible for randomized quicksort to have
O(n2) runtime (bad random pivots), it is highly unlikely.

• If you run it again on the same data, the expected
runtime will be O(n log n).

Fall 2020 15-121 (Reid-Miller) 4

Comparison-based Sorts
• All of the sorts we've seen so far are comparison sorts.

• The order of the elements is determined by comparing
two elements at a time.

• It has been proven that the worst-case complexity for
comparison sorts is W(n log n).
• O gives an asymptotically upper bound.
• W gives an asymptotically lower bound;
• no comparison-based sort can be faster.

• But there are sorts that can sort in O(n) time!
... they just don't use pair-wise comparisons

Fall 2020 15-121 (Reid-Miller) 6

Sorting playing cards
• Given a deck of n playing cards, give an algorithm to

put all the red cards before all the black cards.
1. Deal all the cards into two piles, a red pile and a

black pile
2. Put each red card one at a time and then put

each black card one at a time into a single pile.
• What is the run time of this algorithm?

1. O(n) to deal the card into 2 piles.
2. O(n) to collect the cards from the piles.
Overall, O(n)

Fall 2020 15-121 (Reid-Miller) 7

Sorting playing cards
• Can we do the same to sort n playing cards by suit?

• How about sorting by rank?

• Could we use the same idea to sort n values in the
range 1 to 100?

• Given a value, how can we add it to a pile in O(1) time?

Fall 2020 15-121 (Reid-Miller) 8

Bucket Sort

• Given an array of n elements that contain
only b unique values (b < n). Let's call all them
n1, n2, ..., nb such that n1 < n2 < ... < nb.

• Create an array of k "buckets", one for each
unique value.

• For each value in the array, move it into its
corresponding bucket.

• Copy the data values from each bucket, n1 to nb,
back into the array to sort the data.

Fall 2020 15-121 (Reid-Miller) 9

Bucket Sort Example

51 41 42 31 43 32 52

32

43

52

31

42 41

51

buckets are
linked lists

32 31 43 42 41 52 51

insert each
element at head
of its bucket

remove each
element from head
of its bucket

Fall 2020 15-121 (Reid-Miller) 10

Bucket Sort is fast but limited use
• If we have n values and b buckets

• We can put them into buckets in O(n) time.
• We can collect them back in O(n+b) time;

(We have to loop over all b buckets)

• However, we usually only use bucket sort when
n >> b, so the runtime is O(n).

• Limitations?

• Finite number of possible values. (Not a
limitation of comparison-based sorts.)

• Given a value, must be able to determine its
bucket index in O(1) time.

Fall 2020 15-121 (Reid-Miller) 11

• A sort is stable if two elements with the same
value maintain their same relative order before
and after the sort is performed.

• Benefit: If you sort students by name and then sort
again by sections, you get a list that is sorted by
section, but alphabetical within each section.

Stable Sorts

x x

x x
After
stable
sort:

Fall 2020 15-121 (Reid-Miller) 12

Is Bucket Sort Stable?

51 41 42 31 43 32 52

31

41

51

32

42 43

52

buckets are
linked lists

31 32 41 42 43 51 52

insert each
element at head
of its bucket

remove each
element from head
of its bucket

Fall 2020 15-121 (Reid-Miller) 13

Sorting 3-digit integers
• Suppose we wanted to sort 3-digit integers.
• How many buckets would we need?

• 1000 buckets?
• Do we really need 1000 buckets?

• Could we sort one digit at a time?
• Sort by the hundreds digit and within each

hundreds sort the tens digit and within those the
ones digit.

• End up with 1000 mini sorts, though
• Radix sort is a variant of this idea.

Fall 2020 15-121 (Reid-Miller) 14

Radix Sort Algorithm

• For integers use 10 buckets (0-9);
• Sort integers by least significant digit (ones

digit) using bucket sort.
• Then sort by the next least significant digit

(tens digit) using bucket sort.
• And so on until run out of digits.

• We never use more buckets than we have
digits or symbols

Fall 2020 15-121 (Reid-Miller) 15

Radix Sort example
840 840 840 840 840 140 140
593 140 140 140 140 143 143
893 170 170 143 143 170 170
193 593 170 176 176
576 593 893 170 576 193 193
140 893 193 576 176 576
176 193 593 176 593 576 593
593 593 143 893 593 593
170 143 576 593 193 593 840
143 176 893 593 893

576 193 840
176 593 893

10 buckets 10 buckets 10 buckets

Fall 2020 15-121 (Reid-Miller) 16

Radix sort is O(n) as long as k & b
are small, which limits its use

• If radix sort uses bucket sort, what must be true
about bucket sort?
• Bucket sort must be stable.

• What is the runtime of radix sort?
• Each pass requires O(n+b) time, b buckets
• We make one pass for each of k digits
• Overall runtime is O(k * (n+b))

Fall 2020 15-121 (Reid-Miller) 17

Complexity Summary
Sort Worst Average Best

Selection

Insertion

Tree

Merge

Quick

Bucket

Radix

Fall 2020 15-121 (Reid-Miller) 18

Properties Summary
Sort In-place Adaptive Stable

Selection

Insertion

Tree

Merge

Quick

Bucket

Radix

Fall 2020 15-121 (Reid-Miller) 19

Java sorts in "natural order"
• In Arrays class:

public static void sort(Object[] items)
• All objects must Comparable (compareTo).
• Implemented with a modified merge sort in O(n log n)

– Adapted from sort used in Python (Tim’s sort)
• Sort is stable

• In Collections class:
public static <T extends Comparable<T>> void

sort(List<T> list)
• Same conditions as above
• Copies elements into an array and uses Arrays.sort

Fall 2020 15-121 (Reid-Miller) 20

Java sorts with other orderings
Also in Arrays class:
public static <T> void

sort(T[] items, Comparator<? super T> comp)
• Another version allows a sort using a Comparator so

ordering can be done on some other property other than
the items' natural ordering.

• For example: You might order strings not alphabetically,
but instead by string length.

• comp must be an object of type T or a subclass of type T
where T implements the Comparator interface.

Fall 2020 15-121 (Reid-Miller) 21

Example: Sort with Comparator

public class StringLengthCmptr
implements Comparator<String> {

public int compare(String s1, String s2) {
return s1.length() - s2.length();

}
}

Example:
Assume s is an array of strings.

Arrays.sort(s);
Arrays.sort(s, new StringLengthCmptr());

uses String's
compareTo to sort s

uses StringLengthCmptr's
compare to sort s

Fall 2020 15-121 (Reid-Miller) 22

