
Introduction to Binary Trees

15-121 Fall 2020
Margaret Reid-Miller

15-121 (Reid-Miller)Fall 2020 1



Exam 2 is next Thursday, November 12

Topics:
• Writing methods for classes that implement Lists.
• Methods using Lists w/ ArrayList or LinkedLists
• Recursion – call tree, trace, implement
• Interfaces
• Stacks & Queues (implementations, using them)
• Evaluate post-fix expressions (not implementation)
• Big-O

Fall 2020 15-121 (Reid-Miller) 2



Today

• Quiz 7 graded
• Autolab
• solutions to homework written and labs
• homework feedback

Today
• Introduction to Binary Trees
• Binary Tree Traversals

15-121 (Reid-Miller) 3Fall 2020



• We use what keyword to create a subclass?

• A subclass can have direct access to a field of an 
ancestor class with which visibility modifiers?

• Can you override a superclass constructor?

• How do you call the superclass constructor?

• Can you call it anywhere in the subclass constructor?

Fall 2020 15-121 (Reid-Miller) 4

extends

public or protected

No

super()

No, must be the first statement



Trees

15-121 (Reid-Miller)Fall 2020 5



A binary tree is a 
nonlinear data structure

• A binary tree is either 
• empty or 
• has a root node and left- and right-subtrees 

that are also binary trees.

• The top node of a tree is called the root.
• Any node in a binary tree has at most 2 children.
• Any node (except the root) in a binary tree has 

exactly one parent node.

15-121 (Reid-Miller)Fall 2020 6



Tree Terminology

A

GFED

CB

root

leaf

internal

15-121 (Reid-Miller)Fall 2020 7



Tree Terminology

A

GFED

CB

parent

right-child

left-child

siblings

15-121 (Reid-Miller)Fall 2020 8



Tree Terminology

A

GFED

CB

root

left-subtree
right-subtree

15-121 (Reid-Miller)Fall 2020 9



Example: Expression Trees

*

+ -

/

2

5

6

37

(6 / 2 + 5) * (7 - 3) 

15-121 (Reid-Miller)Fall 2020 10



Example: Huffman Tree 
(data compression)

C D

xB

y A
0

0

0

1

1

1

A 45%

B 30%

C 20%

D 5%

A 1

B 00

C 010

D 011

1001010100 = ABACAB

15-121 (Reid-Miller)Fall 2020 11

frequency codeword

To decode: traverse tree
if 0 go left, 
if 1 go right

To encode: replace 
letter with codeword

Build the Huffman tree bottom 
up, lowest frequencies first



Example: Binary Search Trees

84

41 96

24

37

50

13

98

15-121 (Reid-Miller)Fall 2020 12



Implementing a binary tree

• Use an array to store the nodes?
- useful for mainly complete binary trees
(more on this soon)

• Use a variant of a linked list where each data element 
is stored in a node with links to the left and right 
children of that node.

• Instead of a head reference, we will use a root 
reference to the root node of the tree.

15-121 (Reid-Miller)Fall 2020 13



Binary Tree Node 
public class BTNode<E> {

private E data;
private BTNode<E> left;
private BTNode<E> right;

public BTNode(E d) 
{ data = d; left = null; right = null; }

public E getData() { return data; }
public BTNode<E> getLeft() { return left; }
public BTNode<E> getRight() { return right; }

public void setData(E d) { data = d; }
public void setLeft(BTNode<E> lt) { left = lt; }
public void setRight(BTNode<E> rt) { right = rt; }

}

data

15-121 (Reid-Miller)Fall 2020 14



Size of a binary tree

• How many nodes are in this tree?

Fall 2020 15-121 (Reid-Miller) 18

5 
nodes 11 

nodes

5 + 11 + 1 nodes

The size of a tree T is
BASE CASE

0, if T is empty

RECURSIVE CASE

1 + size of left(T) 
+ size of right(T)



size() - number of nodes in t
public static int size(BTNode<String> t) {

if (t == null)
return 0;

else
return 1 + size(t.getLeft())

+ size(t.getRight())
}

15-121 (Reid-Miller)Fall 2020 19

A

D

CB

t size(t)
null 0
B 1
D 1
C 2
A 4



Maximum in a non-empty binary tree

Think recursively:

Fall 2020 15-121 (Reid-Miller) 20

max

Left max

Right

The max of a tree T is

BASE CASE

root, if T is a leaf

RECURSIVE CASE

max (root, max of left(T) 

+ max of right(T)



max() – maximum in t
//precondition: t is not empty
//returns the maximum value in t
public static int max(BTNode<Integer> t) {

if (t.getLeft() == null && t.getRight() == null)
return t.getData();

else if (t.getLeft() == null)
return Math.max(t.getData(), max(t.getRight()));

else if (t.getRight() == null)
return Math.max(t.getData(), max(t.getLeft()));

else 
return Math.max(t.getData(), 

max(t.getLeft()),
max(t.getRight())));

}
15-121 (Reid-Miller)Fall 2020 21

Math.max(



max() – maximum in t
//precondition: t is not empty
//returns the maximum value in t
public static int max(BTNode<Integer> t) {

int max = t.getData();

if (t.getLeft() != null){
int left = max(t.getLeft()); 
if (left > max) max = left;

}
if (t.getRight() != null) {

int right = max(t.getRight());
if (right > max) max = right;

}
return max;

}
15-121 (Reid-Miller)Fall 2020 22

Alternate solution



Three ways to traversing a 
binary tree recursively.

• Preorder traversal
1. Visit the root.
2. Preorder traversal of the left subtree.
3. Preorder traversal of the right subtree.

• Inorder traversal
1. Inorder traversal of the left subtree.
2. Visit the root.
3. Inorder traversal of the right subtree.

• Postorder traversal
1. Postorder traversal of the left subtree.
2. Postorder traversal of the right subtree.
3. Visit the root.

15-121 (Reid-Miller)Fall 2020 23



Preorder = root, left, right

What is preorder of A's left 
subtree?

What is preorder of A's 
right subtree?

What is preorder of whole 
tree?

Fall 2020 15-121 (Reid-Miller) 24

A

GFED

CBBDE

CFG

A BDE CFG



Return string of a 
Preorder Traversal

// Returns the elements of t as a string using 
// pre-order traversal
public static String preorder(BTNode<String> t){

String result = "";
if (t != null) {

result += t.getData() + " ";
result += preorder(t.getLeft()) + " ";
result += preorder(t.getRight()) + " ";

}
return result;

}

15-121 (Reid-Miller)Fall 2020 25



Binary Tree 
Traversals

A

GF

C

D E

B

PREORDER

INORDER DBEAFCG

POSTORDER DEBFGCA

15-121 (Reid-Miller)Fall 2020 26

ABDECFG


