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Today

Hw7 is due Wednesday, Nov 4 at 11:55pm.

Today:
• Inheritance
• Abstract Classes
• (Clone)
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Object Oriented Programming 
Inheritance
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Inheritance enables defining a new 
class based on an existing class.

• The key idea is to refine an existing class to derive a 
new class, by adding new fields, and adding new 
methods or redefining existing methods.

• It enables code reuse because the new class inherits
the all the fields and methods of the existing class.

• The original class is called the superclass and the 
class based on the superclass class is called the 
subclass.
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Inheritance

• Every class inherits (implicitly) from the Object
class in Java.

• Every class is-a Object

• There are no fields in Object, but there are 
methods such as equals and toString.

• All classes are arranged in a hierarchy (a tree) 
with Object at the top of the hierarchy.
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Superclasses & Subclasses
Object

Shape

Circle Polygon

Triangle Rectangle

Square

is-a

Can inherit from only one class.
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is-a



Java's inheritance keywords

• A class that extends another class is a 
subclass that inherits all fields and methods 
(but not constructors) of the superclass.

• The subclass has direct access to all fields that 
are public and protected.

• The subclass can override the definitions of 
inherited methods with new implementations 
(using the same signature) and can access 
overridden methods using the super keyword.
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Example: A superclass

public class BankAccount {
private double balance;

public BankAccount() {...}
public BankAccount(double initBalance) {...}
public void deposit(double amount) {...}
public void withdraw(double amount) {...}
public double getBalance() {...}
public String toString() {...}

}

automatically inherits
from Object if no other
superclass is specified
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Example: A subclass

public class SavingsAccount extends BankAccount
{

private double interestRate;

• The subclass need only define the fields and methods that 
distinguishes the subclass from the superclass.

• E.g., SavingsAccount inherits the balance field and 
methods from BankAccount.

• It does not inherit constructors, though.
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SavingsAccount class



Inheritance: extends
• Fields of a subclass comes for two sources:

• It inherits all the fields of all its ancestor classes. 
• It can define additional fields of its own. 

• That is, objects of the subclass may store more data 
than objects of the superclass.

• Methods of a subclass can be defined as follows:
• inherits from ancestor classes automatically,
• override (redefine) inherited methods, 
• add instructions to inherited methods,  
• define new methods, possibly overloading 

inherited methods.
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In the constructor, super() calls the 
constructor of the superclass

public SavingsAccount(double initBalance, 
double initRate) {

super(initBalance); 
interestRate = initRate;

}

public SavingsAccount(double initRate) {
super();
interestRate = initRate;

}
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must be first statement

the superclass initializes balance



You can define new methods in a 
subclass.

public void addInterest() {
deposit(getBalance()*interestRate);

}
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SavingsAccount class

Use public  method to get 
balance from super class.



Field and Method visibility
• Classes (and their parts) have visibility modifiers:

• public: accessible to everyone
• protected: inside package, inside class, inside 

subclass
• package-private (default, no modifier used): 

inside package, inside class
• private: accessible only within the class
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SavingsAccount



A subclass can access a field in an 
ancestor class that is protected.

In BankAccount:
protected double balance;

In SavingsAccount:
public void addInterest() {

deposit(balance*interestRate);
}
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Overriding a method redefines an 
inherited method.
• If an inherited method does not do what the subclass 

needs, the subclass can redefine it.

• A method overrides the inherited method if it has the 
same signature and return type as the parent’s 
definition.

• An object of the superclass will have the superclass 
method definition.

• An object of a subclass will have the subclass 
method definition; the superclass’ definition of the 
method is not visible to the object of a subclass.
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Use super. to call the superclass 
method that is overridden.

• A savings account subtracts a fee of $10 for withdrawals 
over $1000.

• We need to override the withdraw method and provide a 
new implementation that is appropriate.

public void withdraw(double amount) {

if (amount > 1000.0)
super.withdraw(amount + 10.0);

else
super.withdraw(amount);

}

same
signature 
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SavingsAccount class

call to superclass method 

What happens if you forget to use super?



Exercise: Write a toString method for the 
SavingsAccount class.  Take advantage of 
code reuse!
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Inheritance: extends
• Fields of a subclass comes for two sources:

• It inherits all the fields of all its ancestor classes. 
• It can define additional fields of its own. 

• That is, objects of the subclass may store more data 
than objects of the superclass.

• Methods of a subclass can be defined as follows:
• inherits from ancestor classes automatically,
• override (redefine) inherited methods, 
• add instructions to inherited methods,  
• define new methods, possibly overloading 

inherited methods.
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You should override the methods 
inherited from Object class.

These methods typically do not work properly for our specific 
subclasses so we must override them.

public boolean equals(Object obj) {
SavingsAccount other = (SavingsAccount)obj;

return 
this.interestRate == other.interestRate

&& this.balance == other.balance;
}

(assumes balance is protected in the BankAccount class)
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SavingsAccount class



Casting an Object type error

In the equals method, we used the following cast:
SavingsAccount other = (SavingsAccount)obj;

What if obj is not a SavingsAccount?
A ClassCastException is thrown at runtime.

We can use the instanceof operator to check the 
object's actual type during runtime to avoid the exception.
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Use instanceof to prevent a 
runtime exception.

public boolean equals(Object obj) {
if (obj instanceof SavingsAccount) {
SavingsAccount other = (SavingsAccount)obj;
return 

this.interestRate == other.interestRate
&& this.balance == other.balance;

}
return false;  // obj is not a SavingsAccount

}
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an operator

SavingsAccount class



You should override these 3 Object
class methods

• public boolean equals(Object obj)
Compares this object with the specified object by 
comparing the references only.

• public String toString()
Returns the class name + "@" + the hexadecimal 
representation of the object's hashcode.

• public int hashCode()
Calculates the hashcode of this object based on 
its reference only.
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Object class



Polymorphism: 
Which method is called depends on the 
actual object type not its declared type.

BankAccount acct;
acct = new BankAccount(15121.0);
acct.withdraw(2000.0);
System.out.println(acct.getBalance());

acct = new SavingsAccount(15121.0);
acct.withdraw(2000.0);
System.out.println(acct.getBalance());

The same statement, but are calls to two different methods. 
Determined at runtime.
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Interfaces (review)

A Java interface (not a GUI) is a means for defining 
specifications for behaviors that are common across 
classes that are not directly related by inheritance.

public interface Comparable<T> {
int compareTo(T obj);

}

An interface cannot be instantiated directly:
Comparable<String> s = new Comparable<String>(); 

abstract method(s)
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WRONG!



Any class that implement an interface 
must provide implementations for the 
methods specified.

public class BankAccount
implements Comparable<BankAccount> {

...

public int compareTo(BankAccount other) {
...  // provide implementation

}
}
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Inheritance vs Implements

How many classes can a class extend? 
• 1 exactly. Why "exactly" one? 
• Every class inherits from the Object class

How many interfaces can a class implement? 
• Zero or more. 
• Provides a form of multiple inheritance.
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Java class hierarchy can have 
Abstract classes

• An abstract class can have abstract methods like 
interfaces, but can also have fields.

• Abstract classes can have constructors that initialize 
the fields defined in the abstract class.

• Abstract classes can also have concrete
(implemented) methods.

• An abstract class cannot be instantiated directly.

15-121 (Reid-Miller) 27Fall 2020



Abstract Class Example

public abstract class Vehicle {
private int speed;
private String manufacturer;
...
public int getSpeed { return speed; }
public String getManufacturer

{ return manufacturer; }
public abstract double toll();
...

}
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A subclass of an abstract class must 
implement the abstract methods

public class Truck extends Vehicle {
private int numWheels;
...
public double toll() {
return 10.0 * numWheels;

}
...

}
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You cannot  instantiate a Vehicle (it's abstract) but 
you can a Truck (it’s concrete).



A variable can be declared with
its interface or its supertypes

Interfaces:

String s = new String("Pittsburgh");
Comparable<String> s2 = new String("Erie");

Abstract or super classes:

Truck myTruck = new Truck("Good Humor");
Vehicle myRide = new Truck("Ryder");
BankAccount bob = new SavingsAccount(1000.0);
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Comparison

Actual Class Abstract Class Interface

Instances can be created Y N N

Can define fields and methods Y Y N

Can define constants Y Y Y

Number of these a class can extend 0 or 1 0 or 1 0

Number of these a class can implement 0 0 any number

Can extend another class Y Y N

Can declare abstract methods N Y Y

Can declare variables of this type Y Y Y
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Copying data

public class Person {
String name;
int number;
CalendarDate birthday;

}

Person p1 = new Person("Roethlisberger", 7, 
new CalendarDate(3, 2, 1982));

15-121 (Reid-Miller) 32Fall 2020



Copying data

Person p2 = p1;

p1

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year
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Cloning: Shallow Copy

public Object clone() {
Object newObj

= new Person(name, number, birthday);
return newObj;

}
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Person class:



Cloning: Shallow Copy
Person p2 = (Person)p1.clone();

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

name

7number

birthday

p1
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copies references only 



Cloning: Deep Copy

@ Override
public Object clone() {

try {
Person newPerson = (Person)super.clone(); 
newPerson.birthday = 

(CalendarDate)birthday.clone();
return newPerson;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

Object has a clone method
that performs the shallow copy.

CalendarDate must also
have a clone method.
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Person class:



Cloning: Deep Copy

@ Override
public Object clone() {

try {
CalendarDate newDate = 

(CalendarDate)super.clone(); 
return newDate;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}
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CalendarDate class



Cloning: Deep Copy

The method Object.clone will generate a 
CloneNotSupportedException if it is called in a class 
that does not implement the Cloneable interface.
Therefore:
public class Person implements Cloneable {

...
}
public class CalendarDate implements Cloneable {

...
}
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Cloning: Deep Copy

Person p2 = (Person)p1.clone();

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

name

7number

birthday

3month

2day

1982year

p1
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Strings are
immutable



Cloning: Deep Copy

p2.setName("Big Ben");

p1

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

name

7number

birthday

3month

2day

1982year
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