
Inheritance & Abstract Classes

15-121 Fall 2020
Margaret Reid-Miller

Today

Hw7 is due Wednesday, Nov 4 at 11:55pm.

Today:
• Inheritance
• Abstract Classes
• (Clone)

15-121 (Reid-Miller) 2Fall 2020

Object Oriented Programming
Inheritance

15-121 (Reid-Miller) 3Fall 2020

Inheritance enables defining a new
class based on an existing class.

• The key idea is to refine an existing class to derive a
new class, by adding new fields, and adding new
methods or redefining existing methods.

• It enables code reuse because the new class inherits
the all the fields and methods of the existing class.

• The original class is called the superclass and the
class based on the superclass class is called the
subclass.

15-121 (Reid-Miller) 4Fall 2020

Inheritance

• Every class inherits (implicitly) from the Object
class in Java.

• Every class is-a Object

• There are no fields in Object, but there are
methods such as equals and toString.

• All classes are arranged in a hierarchy (a tree)
with Object at the top of the hierarchy.

15-121 (Reid-Miller) 5Fall 2020

Superclasses & Subclasses
Object

Shape

Circle Polygon

Triangle Rectangle

Square

is-a

Can inherit from only one class.

15-121 (Reid-Miller) 6Fall 2020

is-a

Java's inheritance keywords

• A class that extends another class is a
subclass that inherits all fields and methods
(but not constructors) of the superclass.

• The subclass has direct access to all fields that
are public and protected.

• The subclass can override the definitions of
inherited methods with new implementations
(using the same signature) and can access
overridden methods using the super keyword.

15-121 (Reid-Miller) 7Fall 2020

Example: A superclass

public class BankAccount {
private double balance;

public BankAccount() {...}
public BankAccount(double initBalance) {...}
public void deposit(double amount) {...}
public void withdraw(double amount) {...}
public double getBalance() {...}
public String toString() {...}

}

automatically inherits
from Object if no other
superclass is specified

15-121 (Reid-Miller) 8Fall 2020

Example: A subclass

public class SavingsAccount extends BankAccount
{

private double interestRate;

• The subclass need only define the fields and methods that
distinguishes the subclass from the superclass.

• E.g., SavingsAccount inherits the balance field and
methods from BankAccount.

• It does not inherit constructors, though.
15-121 (Reid-Miller) 9Fall 2020

SavingsAccount class

Inheritance: extends
• Fields of a subclass comes for two sources:

• It inherits all the fields of all its ancestor classes.
• It can define additional fields of its own.

• That is, objects of the subclass may store more data
than objects of the superclass.

• Methods of a subclass can be defined as follows:
• inherits from ancestor classes automatically,
• override (redefine) inherited methods,
• add instructions to inherited methods,
• define new methods, possibly overloading

inherited methods.
15-121 (Reid-Miller) 10Fall 2020

In the constructor, super() calls the
constructor of the superclass

public SavingsAccount(double initBalance,
double initRate) {

super(initBalance);
interestRate = initRate;

}

public SavingsAccount(double initRate) {
super();
interestRate = initRate;

}

15-121 (Reid-Miller) 11Fall 2020

must be first statement

the superclass initializes balance

You can define new methods in a
subclass.

public void addInterest() {
deposit(getBalance()*interestRate);

}

15-121 (Reid-Miller) 12Fall 2020

SavingsAccount class

Use public method to get
balance from super class.

Field and Method visibility
• Classes (and their parts) have visibility modifiers:

• public: accessible to everyone
• protected: inside package, inside class, inside

subclass
• package-private (default, no modifier used):

inside package, inside class
• private: accessible only within the class

15-121 (Reid-Miller) 13Fall 2020

SavingsAccount

A subclass can access a field in an
ancestor class that is protected.

In BankAccount:
protected double balance;

In SavingsAccount:
public void addInterest() {

deposit(balance*interestRate);
}

15-121 (Reid-Miller) 14Fall 2020

Overriding a method redefines an
inherited method.
• If an inherited method does not do what the subclass

needs, the subclass can redefine it.

• A method overrides the inherited method if it has the
same signature and return type as the parent’s
definition.

• An object of the superclass will have the superclass
method definition.

• An object of a subclass will have the subclass
method definition; the superclass’ definition of the
method is not visible to the object of a subclass.

15-121 (Reid-Miller) 15Fall 2020

Use super. to call the superclass
method that is overridden.

• A savings account subtracts a fee of $10 for withdrawals
over $1000.

• We need to override the withdraw method and provide a
new implementation that is appropriate.

public void withdraw(double amount) {

if (amount > 1000.0)
super.withdraw(amount + 10.0);

else
super.withdraw(amount);

}

same
signature

15-121 (Reid-Miller) 16Fall 2020

SavingsAccount class

call to superclass method

What happens if you forget to use super?

Exercise: Write a toString method for the
SavingsAccount class. Take advantage of
code reuse!

Fall 2020 15-121 (Reid-Miller) 17

Inheritance: extends
• Fields of a subclass comes for two sources:

• It inherits all the fields of all its ancestor classes.
• It can define additional fields of its own.

• That is, objects of the subclass may store more data
than objects of the superclass.

• Methods of a subclass can be defined as follows:
• inherits from ancestor classes automatically,
• override (redefine) inherited methods,
• add instructions to inherited methods,
• define new methods, possibly overloading

inherited methods.
15-121 (Reid-Miller) 18Fall 2020

You should override the methods
inherited from Object class.

These methods typically do not work properly for our specific
subclasses so we must override them.

public boolean equals(Object obj) {
SavingsAccount other = (SavingsAccount)obj;

return
this.interestRate == other.interestRate

&& this.balance == other.balance;
}

(assumes balance is protected in the BankAccount class)

15-121 (Reid-Miller) 19Fall 2020

SavingsAccount class

Casting an Object type error

In the equals method, we used the following cast:
SavingsAccount other = (SavingsAccount)obj;

What if obj is not a SavingsAccount?
A ClassCastException is thrown at runtime.

We can use the instanceof operator to check the
object's actual type during runtime to avoid the exception.

15-121 (Reid-Miller) 20Fall 2020

Use instanceof to prevent a
runtime exception.

public boolean equals(Object obj) {
if (obj instanceof SavingsAccount) {
SavingsAccount other = (SavingsAccount)obj;
return

this.interestRate == other.interestRate
&& this.balance == other.balance;

}
return false; // obj is not a SavingsAccount

}

15-121 (Reid-Miller) 21Fall 2020

an operator

SavingsAccount class

You should override these 3 Object
class methods

• public boolean equals(Object obj)
Compares this object with the specified object by
comparing the references only.

• public String toString()
Returns the class name + "@" + the hexadecimal
representation of the object's hashcode.

• public int hashCode()
Calculates the hashcode of this object based on
its reference only.

15-121 (Reid-Miller) 22Fall 2020

Object class

Polymorphism:
Which method is called depends on the
actual object type not its declared type.

BankAccount acct;
acct = new BankAccount(15121.0);
acct.withdraw(2000.0);
System.out.println(acct.getBalance());

acct = new SavingsAccount(15121.0);
acct.withdraw(2000.0);
System.out.println(acct.getBalance());

The same statement, but are calls to two different methods.
Determined at runtime.

15-121 (Reid-Miller) 23Fall 2020

Interfaces (review)

A Java interface (not a GUI) is a means for defining
specifications for behaviors that are common across
classes that are not directly related by inheritance.

public interface Comparable<T> {
int compareTo(T obj);

}

An interface cannot be instantiated directly:
Comparable<String> s = new Comparable<String>();

abstract method(s)

15-121 (Reid-Miller) 24Fall 2020

WRONG!

Any class that implement an interface
must provide implementations for the
methods specified.

public class BankAccount
implements Comparable<BankAccount> {

...

public int compareTo(BankAccount other) {
... // provide implementation

}
}

15-121 (Reid-Miller) 25Fall 2020

Inheritance vs Implements

How many classes can a class extend?
• 1 exactly. Why "exactly" one?
• Every class inherits from the Object class

How many interfaces can a class implement?
• Zero or more.
• Provides a form of multiple inheritance.

15-121 (Reid-Miller) 26Fall 2020

Java class hierarchy can have
Abstract classes

• An abstract class can have abstract methods like
interfaces, but can also have fields.

• Abstract classes can have constructors that initialize
the fields defined in the abstract class.

• Abstract classes can also have concrete
(implemented) methods.

• An abstract class cannot be instantiated directly.

15-121 (Reid-Miller) 27Fall 2020

Abstract Class Example

public abstract class Vehicle {
private int speed;
private String manufacturer;
...
public int getSpeed { return speed; }
public String getManufacturer

{ return manufacturer; }
public abstract double toll();
...

}

15-121 (Reid-Miller) 28Fall 2020

A subclass of an abstract class must
implement the abstract methods

public class Truck extends Vehicle {
private int numWheels;
...
public double toll() {
return 10.0 * numWheels;

}
...

}

15-121 (Reid-Miller) 29Fall 2020

You cannot instantiate a Vehicle (it's abstract) but
you can a Truck (it’s concrete).

A variable can be declared with
its interface or its supertypes

Interfaces:

String s = new String("Pittsburgh");
Comparable<String> s2 = new String("Erie");

Abstract or super classes:

Truck myTruck = new Truck("Good Humor");
Vehicle myRide = new Truck("Ryder");
BankAccount bob = new SavingsAccount(1000.0);

15-121 (Reid-Miller) 30Fall 2020

Comparison

Actual Class Abstract Class Interface

Instances can be created Y N N

Can define fields and methods Y Y N

Can define constants Y Y Y

Number of these a class can extend 0 or 1 0 or 1 0

Number of these a class can implement 0 0 any number

Can extend another class Y Y N

Can declare abstract methods N Y Y

Can declare variables of this type Y Y Y

15-121 (Reid-Miller) 31Fall 2020

Copying data

public class Person {
String name;
int number;
CalendarDate birthday;

}

Person p1 = new Person("Roethlisberger", 7,
new CalendarDate(3, 2, 1982));

15-121 (Reid-Miller) 32Fall 2020

Copying data

Person p2 = p1;

p1

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

15-121 (Reid-Miller) 33Fall 2020

Cloning: Shallow Copy

public Object clone() {
Object newObj

= new Person(name, number, birthday);
return newObj;

}

15-121 (Reid-Miller) 34Fall 2020

Person class:

Cloning: Shallow Copy
Person p2 = (Person)p1.clone();

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

name

7number

birthday

p1

15-121 (Reid-Miller) 35Fall 2020

copies references only

Cloning: Deep Copy

@ Override
public Object clone() {

try {
Person newPerson = (Person)super.clone();
newPerson.birthday =

(CalendarDate)birthday.clone();
return newPerson;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

Object has a clone method
that performs the shallow copy.

CalendarDate must also
have a clone method.

15-121 (Reid-Miller) 36Fall 2020

Person class:

Cloning: Deep Copy

@ Override
public Object clone() {

try {
CalendarDate newDate =

(CalendarDate)super.clone();
return newDate;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

15-121 (Reid-Miller) 37Fall 2020

CalendarDate class

Cloning: Deep Copy

The method Object.clone will generate a
CloneNotSupportedException if it is called in a class
that does not implement the Cloneable interface.
Therefore:
public class Person implements Cloneable {

...
}
public class CalendarDate implements Cloneable {

...
}

15-121 (Reid-Miller) 38Fall 2020

Cloning: Deep Copy

Person p2 = (Person)p1.clone();

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

name

7number

birthday

3month

2day

1982year

p1

15-121 (Reid-Miller) 39Fall 2020

Strings are
immutable

Cloning: Deep Copy

p2.setName("Big Ben");

p1

p2

name

7number

birthday

"Roethlisberger"

3month

2day

1982year

name

7number

birthday

3month

2day

1982year

"Big Ben"15-121 (Reid-Miller) 40Fall 2020

