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Today

• Office Hours: Thursday afternoon (time to be 
announce on Piazza)

• Big O
• Amortized runtime
• ArrayLists
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How do we determine how 
efficient (fast) and algorithm is?

Key Idea:

The running time of an algorithm depends on 
the size of the problem it's solving.
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Big O: Formal Definition
• Let T(n) – the number of operations performed in an 

algorithm as a function of n.
• T(n) ∈O(f(n)) if and only if there exists two constants, 

n0 > 0 and c > 0 and a function f(n) such that for all    
n > n0, cf(n)≥ T(n).
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How long does it take to 
- say "California" and then
- fly to California

The time to fly to California (roughly 6 hours) 
dominates the time to say "California", so we 
ignore the time to say "California".
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Big-O notation

Let n be the size of the problem (input):

Time(n) = 4n + 9 = O(n)
Time(n) = 2n2 – 4n + 1 = O(n2)
Time(n) = log3(n) = O(log n)
Time(n) = 3n = O(3n),   not O(2n)! 

There is no c that satisfies c.2n ≥ 3n for 
arbitrarily large n.
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More on Big O 
• Big O gives us an upper-bound approximation on the 

complexity of a computation.

• That is, think of Big O as “<=”
• n + 1000 is O(n), but it’s also O(n2) and O(n3).  We 

try to keep the bound as tight as possible, though, 
so we say n + 1000 is O(n).
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Big-O when algorithm is A then B
• Suppose an algorithm is do

A followed by B.  
• Then the overall complexity of the algorithm is 

max (O(A), O(B)).
Examples:

O(log n) + O(n) = 
O(n log n) + O(n) = 
O(n log n) + O(n2) = 
O(2n) + O(n2) = 
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O(n)
O(n log n)
O(n2)

O(2n)



Big-O when algorithm is A 
encloses B

• E.g., Nested loops: A is the outer loop B is the inner 

loop, or A calls B repeatedly

• Then the overall complexity of the algorithm is 

O(A) * O(B), 

where O(A) excludes the complexity of B.

Examples:

O(n) * O(log n) = 

O(n log n) * O(n) = 

O(n) * O(1) = 
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O(n log n)

O(n2 log n)

O(n)



How do we grow the contacts array 
when it is full?
We create a new array that is larger than the contacts 
array and copy all the elements to the new array.

Sometimes, the cost to add a single Person is O(1) 
because there is room in contacts.

But sometime the cost to add a single person is O(n), 
n = numContacts, because we need to expand the 
array and copy n elements.

What is the worst case runtime for calling        
add(name, number) n times, when we start with an 
array of length 1?
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Number of copies to grow an array to length 
n starting with an array of length 1.
Grow by 1 each time:

The array is full when 
1, 2, 3, 4, 5, 6, … elements in the array

After adding n elements we copied
1 + 2 + 3 + 4 + …(n-1) = n(n-1)/2 = O(n2) elements

Grow by 100 each time:
The array is full when

100, 200, 300, 400, 500, … elements in the array

After we have added n = 100*k elements we copied
100 + 200 + 300 + … + 100(k-1) elements 

= 100k (k-1)/2 
= n (n/100 – 1)/2 = O(n2 )
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Growing by a constant 
does O(n2) copies



By doubling the array length, adding n 
elements does O(n) copies.
The array is full when we have

1, 2, 4, 8, 16, 32, … elements

After we have added 32 elements we copy
1 + 2 + 4 + 8 + … + 16 = 31 elements to a larger array

After we have added 64 elements we copy
1 + 2 + 4 + 8 + … + 16 + 32 = 63  elements to a larger array

After adding n elements,
we have copied a total of O(n) elements to a larger array!
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What is the worst-case run time for 
adding n Persons to a ContactList?
Therefore, the worst-case runtime for n calls to 
add() is O(n).

We, therefore, say that the amortized worst-case 
runtime for a single call to add() is O(1).

Definition: Amortized worst-case runtime is the 
expected runtime per operation of a worst-case 
sequence of n operations.

(This is not the same as Average runtime, which 
is runtime of a single operation averaged over 
all distinct inputs.)
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ArrayLists
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Abstract Data Types vs 
Data Structures

• Abstract Data Type: An ADT is a formal description of 
the behavior (semantics) of a type. 
1. The representation/organization of the data is 

hidden. 
2. Specifies the operations that can be applied to the 

underlying data independent of any particular 
implementation. (Defines the interface of the ADT.)

• Data Structure: A data structure is a concrete 
representation/organization of data and algorithms in a 
specific implementation of a ADT.
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The ArrayList Class
• For Java folks, an ArrayList is like an array, but:

• It’s a class, so we construct it and call methods on it.
• It’s resizable.  It grows as we add elements and shrinks 

as we remove them.

• For Python folks, an ArrayList is like a Python list, but:
• We do not use subscript notation.

• ArrayLists (like arrays) are homogeneous.
ArrayList <String> names = new ArrayList<String>();
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ArrayList methods
boolean add(E obj) 

Appends obj to end of this list; returns true
void add(int index, E obj)    (0 <= index <= size)

Inserts obj at position index 
void clear()

Removes all the elements from this list.
boolean contains(Object obj) 

Returns true if this list contains obj.
E get(int index)

Returns the element at position index (0 <= index < size)
int indexOf(Object obj)

Returns the index of the first occurrence of obj in this list,
or returns -1 if this list does not contain obj
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java.util.ArrayList<E>



ArrayList methods
boolean isEmpty() 

Returns true if the list is empty and false otherwise
E remove(int index) (0 <= index < size)

Removes element at position index;
Returns the element formerly at position index.

boolean remove(Object obj)
Removes the first occurrence of obj, if present;
Returns true if this list contained obj, false otherwise.

E set(int index, E obj)       (0 <= index < size)
Replaces element at position index with obj;  
Returns the element formerly at position index.

int size()
Returns the number of elements in the list.
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java.util.ArrayList<E>



ArrayList complexity

int size()
add(E obj) 
add(int index, E obj)
get(int index)
set(int index, E obj)

contains(Object obj) 
remove(int index)
remove(Object obj)
indexOf(Object obj)
clear()
isEmpty()  
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Worst Best
O(1)
O(1)*
O(n)     O(1)*
O(1)
O(1)

O(n)     O(1)
O(n)     O(1)
O(n)
O(n)     O(1)
O(1)
O(1) *amortized       



ArrayList demo
import java.util.ArrayList;
ArrayList<String> names = new ArrayList<String>();

names.add(“Margaret”);

names.add(“Dave”);

names.get(1);

names.set(0, “Mark”);

names.add(1, “Tom”);

names.remove(1);
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// Margaret

// Margaret Dave

// returns Dave

// Mark Dave

// Mark Tom Dave

// Mark Dave



Wrapper Classes
• ArrayLists can only store references to objects, not 

primitive values.
• All primitive types have a corresponding object type 

(wrapper class).
• Example: Integer, Double, Boolean,…

Integer x = new Integer(62);
Integer y = new Integer(“12”);
int n = y.intValue();
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ArrayLists with Integer
ArrayList<Integer> intList = 

new ArrayList<Integer>();

intList.add(new Integer(3));
int n = intList.get(0).intValue();

YUCK!

Fall 2020 15-121 (Reid-Miller) 25



Java does conversion between 
primitive and wrapper types

ArrayList<Integer> intList = 
new ArrayList<Integer>();

intList.add(3); // converts int to Integer
int n = intList.get(0); // converts Integer to int

• Like mixing primitive types, based on the types of literals, 
parameters and variables, Java converts between primitive 
and wrapper types.
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Auto-boxing
Integer a = i++;    // auto-boxing
Integer b = j + 2;
int k = a + b;      // auto-unboxing
System.out.println(

a.toString() + b.toString()); // concat
System.out.println(a + b);    // unboxed add

Warning: 
if (list.get(0) == list.get(1))

Does not auto-unbox! It compares the references to Integer 
objects. 
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Example: count
// Returns the number of names in the given list 
// with the given number of letters
public static int count( names,

int numLetters) {
int count = 0;
for (int i = 0; i < ; i++) {

if ( ) {
count++;

}
}
return count;

}

Fall 2020 15-121 (Reid-Miller) 28

ArrayList<String>

names.size()
names.get(i).length() == numLetters



Example: getNamesOfLength
// Returns a list of names in the given list 
// that have the given number of letters
public static getNamesOfLength(

ArrayList<String> names, int numLetters) {
result;

result = ;
for (int i = 0; i < ; i++) {

if (names.get(i).length() == numLetters) {
;

}
}
return result;

}
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ArrayList<String>

names.size()

result.add(names.get(i))

ArrayList<String>
new ArrayList<String>()



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {
for (int i = 0; i < names.size(); i++) {

if (names.get(i).length() == numLetters) {
names.remove(i);

}
}

}

Oops! When doesn’t this code work correctly?
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It won’t remove 2 consecutive names.



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {

for (int i = 0; i < names.size(); i++) {
if (names.get(i).length() == numLetters) {

names.remove(i);
i--;

}
}

}
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Solution 1:
Decrement i after each removal. Ugly



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {

int i = 0;
while (i < names.size()) {

if (names.get(i).length() == numLetters)
names.remove(i);

else 
i++;     

}
}
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Solution 2:
Increment only when don’t remove.



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {

for (int i = names.size()-1; i >= 0; i--) {
if (names.get(i).length() == numLetters) {

names.remove(i);
}

}
}
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Solution 3:
Loop backward. Move only the    
elements you are keeping. Sweet.



Exercises

Rewrite contactList class using an ArrayList
instead of an array.  What fields do need?  What fields 
can you drop?
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