Big O & ArrayList

15-121 Fall 2020
Margaret Reid-Miller



Today

o Office Hours: Thursday afternoon (time to be
announce on Piazza)

« BigO
e Amortized runtime
* ArrayLists

Fall 2020 15-121 (Reid-Miller)



How do we determine how
efficient (fast) and algorithm is?

Key ldea:

The running time of an algorithm depends on
the size of the problem it's solving.

Fall 2020 15-121 (Reid-Miller)



Big O: Formal Definition

e Let T(n)—the number of operations performed in an
algorithm as a function of n.

 T(n) € O(f(n)) if and only if there exists two constants,
ny > 0 and ¢ > 0 and a function f(n) such that for all
n > ng, cf(n) = T(n).

4 cf(n)

Fall 2020 15-121 (Reid-Miller) 4



How long does it take to
- say "California" and then
- fly to California

The time to fly to California (roughly 6 hours)
dominates the time to say "California"”, so we
ignore the time to say "California".

Fall 2020 15-121 (Reid-Miller)



Big-O notation

Let n be the size of the problem (input):

Time(n) =4n+ 9 =0(n)

Time(n) =2n?2—-4n+ 1 = O(n?)

Time(n) = logs(n) = O(log n)

Time(n) = 3"=0(3"), not O(2")!
There is no c that satisfies ¢c2" > 3" for
arbitrarily large n.

Fall 2020 15-121 (Reid-Miller)



More on Big O

e Big O gives us an upper-bound approximation on the
complexity of a computation.

e Thatis, think of Big O as “<=~

 n+ 1000 is O(n), but it's also O(n?) and O(n3). We
try to keep the bound as tight as possible, though,
so we say n + 1000 is O(n).

Fall 2020 15-121 (Reid-Miller) 9



Big-O when algorithm is A then B

e Suppose an algorithm is do
A followed by B.
e Then the overall complexity of the algorithm is
max (O(A), O(B)).
Examples:
O(log n) + O(n) = O(n)
O(n log n) + O(n) = O(n log n)
O(n log n) + O(n2) = O(n?)
O(2") + O(n?) = O(2")

Fall 2020 15-121 (Reid-Miller)

11



Big-O when algorithm is A

encloses B
e E.g., Nested loops: A is the outer loop B is the inner
loop, or A calls B repeatedly
e Then the overall complexity of the algorithm is
O(A) ™ O(B),
where O(A) excludes the complexity of B.
Examples:
O(n) * O(log n) = O(n log n)
O(n log n) * O(n) = O(n? log n)
O(n) * O(1) = O(n)

Fall 2020 15-121 (Reid-Miller)

12



How do we grow the contacts array

when it is full?

We create a new array that is larger than the contacts
array and copy all the elements to the new array.

Sometimes, the cost to add a single Person is O(1)
because there is room in contacts.

But sometime the cost to add a single person is O(n),
N = numContacts, because we need to expand the

array and copy n elements.

What is the worst case runtime for calling
add (name, number) n times, when we start with an

array of length 17

Fall 2020 15-121 (Reid-Miller)



Number of copies to grow an array to length
n starting with an array of length 1.

Grow by 1 each time:
The array is full when
1,2,3,4, 5,0, ... elements in the array

After adding n elements we copied
1+2+3+4+ ...(n-1) =n(n-1)/2 = O(n?) elements

Grow by 100 each time:

The array is full when
100, 200, 300, 400, 500, ... elements in the array

After we have added n = 100*k elements we copied
100 + 200 + 300 + ... + 100(k-1) elements
= 100k (k-1)/2

=1 (N/100 — 1)/2 = O(n? ) Growing by a constant

does O(n?) copies
Fall 2020 15-121 (Reid-Miller) 14



By doubling the array length, adding n
elements does O(n) copies.

The array is full when we have
1,2,4, 8, 16, 32, ... elements

After we have added 32 elements we copy
1+2+4+8+ ... +16 =31 elements to a larger array

After we have added 64 elements we copy
1+2+4+8+ ...+ 16+ 32 =063 elements to a larger array

After adding n elements,
we have copied a total of O(n) elements to a larger array!

Fall 2020 15-121 (Reid-Miller) 15



What is the worst-case run time for
adding n Persons to a ContactList?

Therefore, the worst-case runtime for n calls to
add () is O(n).

We, therefore, say that the amortized worst-case
runtime for a single call to add () is O(1).

Definition: Amortized worst-case runtime is the
expected runtime per operation of a worst-case
sequence of n operations.

(This is not the same as Average runtime, which
Is runtime of a single operation averaged over
all distinct inputs.)

Fall 2020 15-121 (Reid-Miller) 16



ArraylLists

Fall 2020 15-121 (Reid-Miller)

17



Abstract Data Types vs

Data Structures

e Abstract Data Type: An ADT is a formal description of
the behavior (semantics) of a type.

1. The representation/organization of the data is
hidden.

2. Specifies the operations that can be applied to the
underlying data independent of any particular
implementation. (Defines the interface of the ADT.)

e Data Structure: A data structure is a concrete
representation/organization of data and algorithms in a
specific implementation of a ADT.

Fall 2020 15-121 (Reid-Miller) 18



The ArrayList Class

e For Java folks, an ArrayList is like an array, but:
e |t's a class, so we construct it and call methods on it.

e It's resizable. It grows as we add elements and shrinks
as we remove them.

e For Python folks, an ArrayList is like a Python list, but:
 We do not use subscript notation.

* ArraylLists (like arrays) are homogeneous.
ArrayList <String> names = new ArrayList<String>();

Fall 2020 15-121 (Reid-Miller) 19



java.util.ArrayList<E>
ArrayList methods

boolean add(E obj)
Appends obj to end of this list; returns true
void add(int index, E obj) (0 <= index <= size)
Inserts obj at position index
void clear()
Removes all the elements from this list.
boolean contains(Object obj)
Returns true if this list contains ob]j.

E get(int index)
Returns the element at position index (0 <= index < size)
int indexOf (Object obj)

Returns the index of the first occurrence of obj in this list,
or returns -1 if this list does not contain ob7j

Fall 2020 15-121 (Reid-Miller) 20



java.util.ArrayList<E>

ArrayList methods

boolean isEmpty ()
Returns true if the list is empty and false otherwise

E remove(int index) (0 <= index < size)
Removes element at position index;
Returns the element formerly at position index.

boolean remove(Object obj)
Removes the first occurrence of obj, if present;
Returns true if this list contained obj, false otherwise.
E set(int index, E obj) (0 <= index < size)
Replaces element at position index with ob7j;
Returns the element formerly at position index.
int size()
Returns the number of elements in the list.

Fall 2020 15-121 (Reid-Miller) 21



ArrayList complexity

Worst Best
int size() O(1)
add(E obj) O(1)*
add(int index, E obj) ©O() O()*
get(int index) O(1)
set(int index, E obj) O(1)
contains(Object obj) O(n) O(1)
remove (int index) O(n) O()
remove (Object obj) O(n)
indexOf (Object obj) O(n) O()
clear () O(1)
isEmpty () O(1) *amortized

Fall 2020 15-121 (Reid-Miller) 22



ArrayList demo

import java.util.ArrayList;

ArrayList<String> names = new ArrayList<String>();

names.

names.

names.

names.

names.

names.

Fall 2020

add (“Margaret”); //
add (“Dave”); //
get(1l); //
set(0, “Mark”); //
add(1l, “Tom”); //
remove(1l); //

15-121 (Reid-Miller)

Margaret
Margaret Dave
returns Dave
Mark Dave
Mark Tom Dave

Mark Dave

23



Wrapper Classes

e ArrayLists can only store references to objects, not
primitive values.

e All primitive types have a corresponding object type
(wrapper class).

e Example: Integer, Double, Boolean,...
Integer x = new Integer(62);

Integer y = new Integer(“12");

int n = y.intValue();

Fall 2020 15-121 (Reid-Miller) 24



Array

intLi

int n

Fall 2020

ArrayLists with Integer

List<Integer> intList =

new ArrayList<Integer>();

st.add(new Integer(3));
= intList.get(0).intValue();
YUCK!

15-121 (Reid-Miller)

25



Java does conversion between
primitive and wrapper types

ArrayList<Integer> intList =

new ArrayList<Integer>();

intList.add(3); // converts int to Integer
int n intList.get(0); // converts Integer to int

e Like mixing primitive types, based on the types of literals,
parameters and variables, Java converts between primitive
and wrapper types.

Fall 2020 15-121 (Reid-Miller) 26



Auto-boxing

Integer a = i++; // auto-boxing
Integer b = j + 2;
int k = a + b; // auto-unboxing
System.out.println(

a.toString() + b.toString()); // concat

System.out.println(a + b); // unboxed add
Warning:
if (list.get(0) == list.get(1l))

Does not auto-unbox! It compares the references to Integer
objects.

Fall 2020 15-121 (Reid-Miller) 27



Example: count

// Returns the number of names in the given list
// with the given number of letters

public static int count(_ArrayList<String> names,

int numLetters) {

int count = 0;
for (int i = 0; i < _names.size() ; i++) {
if (names.get(i).length() == numlLetters) {
count++;
}
}

return count;

}

Fall 2020 15-121 (Reid-Miller) 28



Example: getNamesOfLength

// Returns a list of names in the given list
// that have the given number of letters

public static ArrayList<String> getNamesOfLength

ArrayList<String> names, int numLetters) {
ArrayList<String> result;

result = new ArrayList<String>();

for (int i = 0; i < names.size() ; i++) {

if (names.get(i).length() == numLetters) {
result.add(names.get(1i))

°
4

}

return result;
}

Fall 2020 15-121 (Reid-Miller) 29



Example: removeNamesOfLength

// Removes all names in the given list
// that have the given number of letters

public static void removeNamesOfLength(
ArrayList<String> names, int numLetters) {
for (int 1 = 0; 1 < names.size(); 1i++) {
if (names.get(i).length() == numLetters) {

names.remove(1l);

}
Oops! When doesn'’t this code work correctly?

It won't remove 2 consecutive names.

Fall 2020 15-121 (Reid-Miller) 30



Example: removeNamesOfLength

// Removes all names in the given list
// that have the given number of letters

public static void removeNamesOfLength(
ArrayList<String> names, int numLetters) {

for (int i = 0; 1 < names.size(); 1i++) {
if (names.get(i).length() == numLetters) {
names.remove(1l);
i--;
} g
) Solution 1:
} Decrement i after each removal. Ugly

Fall 2020 15-121 (Reid-Miller) 31



Example: removeNamesOfLength

// Removes all names in the given list
// that have the given number of letters

public static void removeNamesOfLength(
ArrayList<String> names, int numLetters) {

int 1 = 0;
while (1 < names.size()) {
if (names.get(i).length() == numLetters)

names.remove(1l);
else
1¥¥i <« Solution 2:

; Increment only when don’t remove.
}

Fall 2020 15-121 (Reid-Miller) 32



Example: removeNamesOfLength

// Removes all names in the given list
// that have the given number of letters

public static void removeNamesOfLength(
ArrayList<String> names, int numLetters) {

for (int i = names.size()-1; i >= 0; i--) {
if (names.get(i).length() == numLetters) {

names.remove(1l);

Solution 3:
Loop backward. Move only the
elements you are keeping. Sweet.

Fall 2020 15-121 (Reid-Miller) 33



Exercises

Rewrite contactList class using an ArrayList
instead of an array. What fields do need? What fields
can you drop?

Fall 2020 15-121 (Reid-Miller)

34



