
Big O & ArrayList

15-121 Fall 2020
Margaret Reid-Miller



Today

• Office Hours: Thursday afternoon (time to be 
announce on Piazza)

• Big O
• Amortized runtime
• ArrayLists

Fall 2020 15-121 (Reid-Miller) 2



How do we determine how 
efficient (fast) and algorithm is?

Key Idea:

The running time of an algorithm depends on 
the size of the problem it's solving.

Fall 2020 15-121 (Reid-Miller) 3



Big O: Formal Definition
• Let T(n) – the number of operations performed in an 

algorithm as a function of n.
• T(n) ∈O(f(n)) if and only if there exists two constants, 

n0 > 0 and c > 0 and a function f(n) such that for all    
n > n0, cf(n)≥ T(n).

Fall 2020 15-121 (Reid-Miller) 4



How long does it take to 
- say "California" and then
- fly to California

The time to fly to California (roughly 6 hours) 
dominates the time to say "California", so we 
ignore the time to say "California".

Fall 2020 15-121 (Reid-Miller) 5



Big-O notation

Let n be the size of the problem (input):

Time(n) = 4n + 9 = O(n)
Time(n) = 2n2 – 4n + 1 = O(n2)
Time(n) = log3(n) = O(log n)
Time(n) = 3n = O(3n),   not O(2n)! 

There is no c that satisfies c.2n ≥ 3n for 
arbitrarily large n.

Fall 2020 15-121 (Reid-Miller) 6



More on Big O 
• Big O gives us an upper-bound approximation on the 

complexity of a computation.

• That is, think of Big O as “<=”
• n + 1000 is O(n), but it’s also O(n2) and O(n3).  We 

try to keep the bound as tight as possible, though, 
so we say n + 1000 is O(n).

Fall 2020 15-121 (Reid-Miller) 9



Big-O when algorithm is A then B
• Suppose an algorithm is do

A followed by B.  
• Then the overall complexity of the algorithm is 

max (O(A), O(B)).
Examples:

O(log n) + O(n) = 
O(n log n) + O(n) = 
O(n log n) + O(n2) = 
O(2n) + O(n2) = 

Fall 2020 15-121 (Reid-Miller) 11

O(n)
O(n log n)
O(n2)

O(2n)



Big-O when algorithm is A 
encloses B

• E.g., Nested loops: A is the outer loop B is the inner 

loop, or A calls B repeatedly

• Then the overall complexity of the algorithm is 

O(A) * O(B), 

where O(A) excludes the complexity of B.

Examples:

O(n) * O(log n) = 

O(n log n) * O(n) = 

O(n) * O(1) = 

Fall 2020 15-121 (Reid-Miller) 12

O(n log n)

O(n2 log n)

O(n)



How do we grow the contacts array 
when it is full?
We create a new array that is larger than the contacts 
array and copy all the elements to the new array.

Sometimes, the cost to add a single Person is O(1) 
because there is room in contacts.

But sometime the cost to add a single person is O(n), 
n = numContacts, because we need to expand the 
array and copy n elements.

What is the worst case runtime for calling        
add(name, number) n times, when we start with an 
array of length 1?

Fall 2020 15-121 (Reid-Miller) 13



Number of copies to grow an array to length 
n starting with an array of length 1.
Grow by 1 each time:

The array is full when 
1, 2, 3, 4, 5, 6, … elements in the array

After adding n elements we copied
1 + 2 + 3 + 4 + …(n-1) = n(n-1)/2 = O(n2) elements

Grow by 100 each time:
The array is full when

100, 200, 300, 400, 500, … elements in the array

After we have added n = 100*k elements we copied
100 + 200 + 300 + … + 100(k-1) elements 

= 100k (k-1)/2 
= n (n/100 – 1)/2 = O(n2 )

Fall 2020 15-121 (Reid-Miller) 14

Growing by a constant 
does O(n2) copies



By doubling the array length, adding n 
elements does O(n) copies.
The array is full when we have

1, 2, 4, 8, 16, 32, … elements

After we have added 32 elements we copy
1 + 2 + 4 + 8 + … + 16 = 31 elements to a larger array

After we have added 64 elements we copy
1 + 2 + 4 + 8 + … + 16 + 32 = 63  elements to a larger array

After adding n elements,
we have copied a total of O(n) elements to a larger array!

Fall 2020 15-121 (Reid-Miller) 15



What is the worst-case run time for 
adding n Persons to a ContactList?
Therefore, the worst-case runtime for n calls to 
add() is O(n).

We, therefore, say that the amortized worst-case 
runtime for a single call to add() is O(1).

Definition: Amortized worst-case runtime is the 
expected runtime per operation of a worst-case 
sequence of n operations.

(This is not the same as Average runtime, which 
is runtime of a single operation averaged over 
all distinct inputs.)

Fall 2020 15-121 (Reid-Miller) 16



ArrayLists

Fall 2020 15-121 (Reid-Miller) 17



Abstract Data Types vs 
Data Structures

• Abstract Data Type: An ADT is a formal description of 
the behavior (semantics) of a type. 
1. The representation/organization of the data is 

hidden. 
2. Specifies the operations that can be applied to the 

underlying data independent of any particular 
implementation. (Defines the interface of the ADT.)

• Data Structure: A data structure is a concrete 
representation/organization of data and algorithms in a 
specific implementation of a ADT.

Fall 2020 15-121 (Reid-Miller) 18



The ArrayList Class
• For Java folks, an ArrayList is like an array, but:

• It’s a class, so we construct it and call methods on it.
• It’s resizable.  It grows as we add elements and shrinks 

as we remove them.

• For Python folks, an ArrayList is like a Python list, but:
• We do not use subscript notation.

• ArrayLists (like arrays) are homogeneous.
ArrayList <String> names = new ArrayList<String>();

Fall 2020 15-121 (Reid-Miller) 19



ArrayList methods
boolean add(E obj) 

Appends obj to end of this list; returns true
void add(int index, E obj)    (0 <= index <= size)

Inserts obj at position index 
void clear()

Removes all the elements from this list.
boolean contains(Object obj) 

Returns true if this list contains obj.
E get(int index)

Returns the element at position index (0 <= index < size)
int indexOf(Object obj)

Returns the index of the first occurrence of obj in this list,
or returns -1 if this list does not contain obj

Fall 2020 15-121 (Reid-Miller) 20

java.util.ArrayList<E>



ArrayList methods
boolean isEmpty() 

Returns true if the list is empty and false otherwise
E remove(int index) (0 <= index < size)

Removes element at position index;
Returns the element formerly at position index.

boolean remove(Object obj)
Removes the first occurrence of obj, if present;
Returns true if this list contained obj, false otherwise.

E set(int index, E obj)       (0 <= index < size)
Replaces element at position index with obj;  
Returns the element formerly at position index.

int size()
Returns the number of elements in the list.

Fall 2020 15-121 (Reid-Miller) 21

java.util.ArrayList<E>



ArrayList complexity

int size()
add(E obj) 
add(int index, E obj)
get(int index)
set(int index, E obj)

contains(Object obj) 
remove(int index)
remove(Object obj)
indexOf(Object obj)
clear()
isEmpty()  

Fall 2020 15-121 (Reid-Miller) 22

Worst Best
O(1)
O(1)*
O(n)     O(1)*
O(1)
O(1)

O(n)     O(1)
O(n)     O(1)
O(n)
O(n)     O(1)
O(1)
O(1) *amortized       



ArrayList demo
import java.util.ArrayList;
ArrayList<String> names = new ArrayList<String>();

names.add(“Margaret”);

names.add(“Dave”);

names.get(1);

names.set(0, “Mark”);

names.add(1, “Tom”);

names.remove(1);

Fall 2020 15-121 (Reid-Miller) 23

// Margaret

// Margaret Dave

// returns Dave

// Mark Dave

// Mark Tom Dave

// Mark Dave



Wrapper Classes
• ArrayLists can only store references to objects, not 

primitive values.
• All primitive types have a corresponding object type 

(wrapper class).
• Example: Integer, Double, Boolean,…

Integer x = new Integer(62);
Integer y = new Integer(“12”);
int n = y.intValue();

Fall 2020 15-121 (Reid-Miller) 24



ArrayLists with Integer
ArrayList<Integer> intList = 

new ArrayList<Integer>();

intList.add(new Integer(3));
int n = intList.get(0).intValue();

YUCK!

Fall 2020 15-121 (Reid-Miller) 25



Java does conversion between 
primitive and wrapper types

ArrayList<Integer> intList = 
new ArrayList<Integer>();

intList.add(3); // converts int to Integer
int n = intList.get(0); // converts Integer to int

• Like mixing primitive types, based on the types of literals, 
parameters and variables, Java converts between primitive 
and wrapper types.

Fall 2020 15-121 (Reid-Miller) 26



Auto-boxing
Integer a = i++;    // auto-boxing
Integer b = j + 2;
int k = a + b;      // auto-unboxing
System.out.println(

a.toString() + b.toString()); // concat
System.out.println(a + b);    // unboxed add

Warning: 
if (list.get(0) == list.get(1))

Does not auto-unbox! It compares the references to Integer 
objects. 
Fall 2020 15-121 (Reid-Miller) 27



Example: count
// Returns the number of names in the given list 
// with the given number of letters
public static int count( names,

int numLetters) {
int count = 0;
for (int i = 0; i < ; i++) {

if ( ) {
count++;

}
}
return count;

}

Fall 2020 15-121 (Reid-Miller) 28

ArrayList<String>

names.size()
names.get(i).length() == numLetters



Example: getNamesOfLength
// Returns a list of names in the given list 
// that have the given number of letters
public static getNamesOfLength(

ArrayList<String> names, int numLetters) {
result;

result = ;
for (int i = 0; i < ; i++) {

if (names.get(i).length() == numLetters) {
;

}
}
return result;

}
Fall 2020 15-121 (Reid-Miller) 29

ArrayList<String>

names.size()

result.add(names.get(i))

ArrayList<String>
new ArrayList<String>()



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {
for (int i = 0; i < names.size(); i++) {

if (names.get(i).length() == numLetters) {
names.remove(i);

}
}

}

Oops! When doesn’t this code work correctly?

Fall 2020 15-121 (Reid-Miller) 30

It won’t remove 2 consecutive names.



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {

for (int i = 0; i < names.size(); i++) {
if (names.get(i).length() == numLetters) {

names.remove(i);
i--;

}
}

}

Fall 2020 15-121 (Reid-Miller) 31

Solution 1:
Decrement i after each removal. Ugly



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {

int i = 0;
while (i < names.size()) {

if (names.get(i).length() == numLetters)
names.remove(i);

else 
i++;     

}
}
Fall 2020 15-121 (Reid-Miller) 32

Solution 2:
Increment only when don’t remove.



Example: removeNamesOfLength
// Removes all names in the given list 
// that have the given number of letters
public static void removeNamesOfLength(

ArrayList<String> names, int numLetters) {

for (int i = names.size()-1; i >= 0; i--) {
if (names.get(i).length() == numLetters) {

names.remove(i);
}

}
}

Fall 2020 15-121 (Reid-Miller) 33

Solution 3:
Loop backward. Move only the    
elements you are keeping. Sweet.



Exercises

Rewrite contactList class using an ArrayList
instead of an array.  What fields do need?  What fields 
can you drop?

Fall 2020 15-121 (Reid-Miller) 34


