
A high recall error identification tool for Hindi Treebank Validation

Bharat Ram Ambati, Mridul Gupta, Samar Husain and Dipti Misra Sharma
Language Technologies Research Centre, International Institute of Information Technology

Hyderabad, INDIA – 500032
E-mail: ambati@research.iiit.ac.in, mridulgupta@students.iiit.ac.in, {samar, dipti}@mail.iiit.ac.in

Abstract
This paper describes the development of a hybrid tool for a semi-automated process for validation of treebank annotation at various
levels. The tool is developed for error detection at the part-of-speech, chunk and dependency levels of a Hindi treebank, currently
under development. The tool aims to identify as many errors as possible at these levels to achieve consistency in the task of annotation.
Consistency in treebank annotation is a must for making data as error-free as possible and for providing quality assurance. The tool is
aimed at ensuring consistency and to make manual validation cost effective. We discuss a rule based and a hybrid approach (statistical
methods combined with rule-based methods) by which a high-recall system can be developed and used to identify errors in the
treebank. We report some results of using the tool on a sample of data extracted from the Hindi treebank. We also argue how the tool
can prove useful in improving the annotation guidelines which would in turn, better the quality of annotation in subsequent iterations.

1. Introduction
For effective processing of text, tools at different
conceptual levels, say from letter/syllable level to
discourse level are needed. Output of these tools can then
be used in different NLP applications beginning with spell
checkers to machine translation. These tools could be
completely rule-based, completely statistical or a
combination of both, i.e., hybrid systems. In quite a few
cases, manually annotated gold standard data is required
to build such tools. The annotated data, as one would
expect, should be error free. Hence, the importance of
validation of data and error correction cannot be
undermined. On the other hand, annotation in itself is a
time-consuming task. Thus, it is only desirable that the
task of validation of data is fast without compromising
quality. But doing validation of data completely manually
would again be time consuming, as the validators have to
look at each word in the annotated corpus. To make the
task of validation easy and cost effective, we need tools
that can supplement validators’ task with a view of
making the overall task fast without compromising
reliability. With the help of such tools, validator can
directly go to error instances and correct them. Therefore
we need the tool to have high recall. It is easy to see that a
human validator can directly reject un-intuitive errors
(false positives) without much effort; one can therefore
compromise on precision.
The proposed tool has been used for validating the
dependency representation of a multi-layered and multi-
representational treebank for Hindi (Bhatt et al., 2009).
The tool identifies errors in the Hindi annotated data at
POS, chunk and dependency levels. Additionally, the
identification of errors can help resolve ambiguous cases
and thus improve the guidelines for annotation. Improved
guidelines will directly make the task of annotation more
consistent.
The paper is divided as follows. The first section is about
introducing the work. Section 2 gives a brief overview of
the Hindi dependency treebank. A survey of some of the
previous efforts on automated validation is done in

section 3. In section 4, we describe our approach in detail
with examples. Results are reported in section 5. General
discussion and directions for future work follow in section
6. We conclude our paper in section 7.

2. Hindi Dependency Treebank
A multi-layered and multi-representational treebank for
Hindi (Bhatt et al., 2009; Xia et al., 2009) is being
developed. The treebank will have dependency,
verb-argument (PropBank, Palmer et al., 2005) and
phrase structure (PS) representation. Automatic
conversion from dependency structure (DS) to phrase
structure (PS) is being worked out. Hence, it is important
to have a high quality version of the dependency treebank
to ensure efficient conversion from DS to PS
representation. The focus of the current paper is to
describe the methodology employed to detect errors in the
DS representation. The dependency treebank contains
information encoded at the morpho-syntactic
(morphological, part-of-speech and chunk information)
and syntactico-semantic (dependency) levels. Each
sentence is represented in SSF format (Bharati et al.,
2007). POS and chunk information is encoded following a
set of guidelines (Bharati et al., 2006). The guidelines for
the dependency framework (Bharati et al., 2009) have
been adapted from computational Paninian grammar
(CPG) (Bharati et al., 1995). For Indian languages, like
Hindi, Paninian dependency scheme has been shown to be
effective by Begum et al. (2008).

3. Related Work
Validation and correction tools are an important part for
making treebanks error-free and consistent. Significant
efforts have been made in this direction to develop such
tools. One such approach for treebank error detection was
employed by Dickinson and Meurers (2003; 2005) where
they find out ‘variations’ in syntactic annotation. They use
certain statistical patterns (n-grams) derived from large
annotated corpora such as the Penn treebank (Marcus et
al., 1993) to detect anomalies in treebanks. Their work
includes anomaly detection in continuous and

discontinuous structural annotation. Adapting from a
generalized approach on discontinuous structural
annotation, this work was extended to detect errors at the
dependency level in treebanks (Boyd et al., 2008). Some
other earlier noteworthy methods employed for error
detection in syntactic annotation (mainly POS and chunk),
are by Eskin (2000) and van Halteren (2000). Other
examples of detection of annotation errors in treebanks
include (Kaljurand, 2004; Kordoni, 2003).

4. Approach
Our aim is to identify errors in POS, chunk and
dependency annotated data. To identify the errors at each
level of annotation we use both rules and statistics. We
take 40k words manually annotated and validated data as
development data. We used this development data to
frame rules as well as to take decisions based on statistics.
We followed a two-fold approach. The first part of
approach involves detection of errors purely by
rule-based methods. In the second part of the approach we
use frequency-based measure to determine the possible
errors and then prune out the false positives to improve
precision by using some rules.

4.1 Rule-Based approach
In this approach, we use generic rules to identify the
errors. Particular tags (POS/chunk/dependency) demand
some particular patterns and vice-versa. This is the main
idea in framing the generic rules. For example, if the
POS-tag is “SYM 1

We used the annotation guidelines (Bharati et al., 2006,
2009) as an initial step to frame the rules. The guidelines,
apart from providing description of the tags, give many
pointers for annotators, in the form of linguistic cues to
identify the tags, exceptional cases, common confusing
and error-prone cases. More rules were later formulated
using the development data. Further, we extracted
mismatches in the annotated and validated sets of the
development data. These mismatches are basically errors
made by annotators which were corrected by validators.
Analysis of these mismatches helped in framing
additional rules. The nature of the rules varies for
different type of annotation, as the context required is
different for different types of annotation. For example,
POS tagging rules are based on current lexical item, POS
tags of previous words etc., whereas in case of
dependency tags, rules are framed on features of current
node, its parent, siblings, children and sometimes even a
complete tree/sub-tree.

” then the lexical item should not
contain any character in the unicode range of Hindi or
digits. Similarly, if the lexical item is a digit, then the
POS tag should be QC (POS tag for cardinals). Similar
rules can be framed at chunk and dependency levels also.

Figure 1, shows a sample output of the tool identifying the
POS tag errors. In the example sentence depicted in the
figure, “Ram gave three books to Sita”, the rule that, a

1 SYM: POS tag for a punctuation marker, see Bharati et al.,
2006 for complete details.

number should have its POS tag either a ‘QC2’, or a ‘QF3

’
(refer, Bharati et al., 2006) comes in handy while
detecting the error. Therefore, the word “3” which had
been erroneously tagged as a demonstrative (DEM) in the
sentence, is identified as an error which can be then
promptly corrected by the human validator.

Figure 1: Error detection by rule-based approach at POS
level. The erroneous case is shown by the pointer ‘◄◄’

in the sentence above.

Error detection at the dependency level is illustrated with
the help of example sentence in Figure 2 below. The
sentence is “Ram is a good boy.”

“Ram is a good boy”

Figure 2: Error detection by rule-based approach at the
dependency level. The erroneous case is shown by the

pointer ‘◄◄’ in the tree.

There are some dependency labels that are dependent on
the presence of particular labels in a sentence. Following
from this rule in the sentence above, a ‘k1s’ should be
marked only when a ‘k1’ is present in the same sentential
clause. Hence, an error is detected in the dependency tree.
The number of actual errors detected using such rules is
high on precision but low on recall value. In order to
detect a wider coverage of errors we need to employ other
techniques. These measures are described in the following
subsection.

2 QC: POS tag for words denoting a cardinal number
3 QF: POS tag for words denoting quantifiers

raama
‘Ram’ ERG

 hei
 ‘is’

ladakaa
‘boy’

 ►► k2 k1s

acchaa
‘boy’

nmod

Identification of Errors using Rules

1 raama ‘Ram’ NNP
2 ne ‘ERG’ PSP
3 sitaa ‘Sita’ NNP
4 ko ‘DAT’ PSP
5 3 ‘3’ DEM ◄◄
6 kitaabein ‘books’ NN
7 diiM ‘gave’ VM

“Ram gave three books to Sita.”

Figure 3: Error detection in inter-chunk dependencies by hybrid approach.

4.2 Hybrid Approach
Hybrid approach comprises of two modules. (1) the
statistical module and, (2) Rule-based post-processing
module. Statistical module tries to identify as many errors
as possible. The goal of the statistical module is to achieve
a high recall. Following this, we run a rule-based
post-processing module on the output of the statistical
module. The aim of this module is to increase precision of
the system. With this approach we intend to detect the
errors with high recall and reasonable precision.

4.2.1. Statistical Module
Statistically, low frequency is a sign of possible error. We
calculate the frequencies of pattern and tag pairs, where
tag can be either of POS or chunk or dependency. These
patterns are annotation specific. For POS, word level
patterns are considered. For chunks, lexical items and the
POS tags of the sequence of words within the chunk are
considered. For inter-chunk dependencies, chunk tag,
lexical item and POS tag sequence within the chunk of
child and parent are considered as the pattern. As both
label and attachment are important for dependency
analysis, our patterns contain child as well as parent
features.
Once we get the frequencies at each level, we keep some
threshold on the frequency and all the pairs less than that
threshold are considered as possible errors. This threshold
is decided after experiments with the development data
and it can vary with annotation level. For all the pairs
greater than the threshold, if a pattern has multiple tags,
then there might be a possibility of error. So, for such
pairs, if the frequency of a pair is less than certain
percentage of the total instances of that pattern, then it is
considered as a possible error.

The above approach is fine at POS level. But, when it
comes to chunk and dependency levels, sparsity creates
problems. Probability of occurrence of the same pattern is
very low due to which a lot of valid instances get
identified as errors. To resolve this, instead of original
patterns, we find similarity between patterns and merge
similar patterns. Again, the measure of similarity varies
with annotation type. On these merged patterns, we apply
the above approach to detect the errors.

4.2.2. Rule-based post-processing Module
The approach explained above about finding similarity
patterns reduces the instances of correct patterns being
identified as errors but not completely remove it. To
further reduce the negative effect of sparsity on these
merged patterns, we use certain robust rules to remove
correct patterns from the errors list. So, a robust rule is
capable of overriding a low frequency based pattern
induction and can remove such pattern from the final
selection.

4.2.3. Description of hybrid approach
Figure 3, shows the complete approach taking inter-chunk
dependency as an example.
There are 6 pairs (pattern + tag) where all the patterns are
different as shown in 3(a). As the frequency is low, all the
6 patterns are identified as errors. After finding similarity
between patterns and merging similar patterns, 6 pairs get
reduced to 3. This is shown in 3(b). The arrows
connecting the patterns in (a) with (b) show the merging
process. Similarity criterion used here is as follows:
For both child and parent chunks, consider POS type of
the head of the chunk and lexical item and POS tags of the

(a) (c)

(b)

functional words.
Out of 3 pairs in (b), 2 pairs are identified as errors based
on statistics. After applying the following rule,
If the child is an adverbial chunk (RBP) and the parent is
a verbal chunk (VGF), then the dependency label can be
“adv”.
the number of errors reduced from two to one.

5. Results and Analysis
We evaluated the performance of our system using a
65k-token (2694 sentences) manually annotated and
validated sample of data derived from the Hindi
dependency treebank. We divided the data into 40k, 10k
and 15k for training, development and testing respectively.
For the rule-based system, training and development data
was used to frame the rules. In the case of hybrid approach,
we used training data to train the models and development
data to tune the parameters like threshold values. Rules
meant for pruning false positives were also framed using
this data.
We ran the rule-based tool on the test data. Details of the
type and number of errors identified by the rule based
system are presented in Table 1. Using our rule-based
system we detected 75%, 62.5% and 25.86% of errors at
POS, chunk and dependency levels respectively.
Currently in the treebank, dependency annotation is done
at inter-chunk level only. So, dependency errors only
represent inter-chunk dependency errors.

Type of
Error

Total
instances

Total
Errors

Recall of the tool

POS
Errors

13922 16 12/16 = 75%

Chunk
Errors

7113 24 15/24 = 62.5%

Dependency
Errors

7113 843 218/843 = 25.86%

Table 1: Error Detection using rule-based system at

different levels.

At POS and chunk levels, as the number of errors is low
which can be identified based on some standard rules,
rule-based system performs quite well. We also tried the
hybrid approach, but the number of false positives is so
high that the hybrid approach is practically of no use at
POS and chunk levels.
But at dependency level, as more complex linguistic
information is being annotated, the chance of making
errors is more. As the number of errors is large we need
tools to detect the errors so that the validation process
becomes faster. With the rule based system we were able
to identify only 25.86% of the dependency errors. We then
tried out the hybrid based approach. Using this approach,
we were able to identify 18.74% of the dependency errors.
When we combined the outputs of both the rule-based and
hybrid approaches, we could identify 40.33% of the errors
at the dependency level. Results are shown in Table 2.

Approach Total

Errors
System
output

Correct
Errors

Recall

Rule Based
Approach

843 218 218 25.86%

Hybrid
Approach

843

2546 158 18.74%

Combining
both the
Approaches

843

2728 340 40.33%

Table 2: Recall of error detection using different

approaches.

6. Discussion and Future Work
One basic difference between our approach and the other
previous approaches is that we use a combination of a
rule-based system and a hybrid system to detect errors.
Most of the previous approaches work well with large
corpora in which the frequency of occurrence of words is
very high. Hence, none of them account for data sparsity.
Our work is focused on detecting errors during the
process of annotation. This means that the size that we
worked on is not very large and hence we need to take
care of the problems that accrue from sparsity. We employ
a combination of a rule-based approach with a hybrid
approach for error detection. Moreover, unlike earlier
efforts, our work focuses on reduction of validation time
and effort during treebank construction. So, our focus is
on high recall with reasonable precision.
The tool is constantly being improved. We are planning to
improve the rules of both the rule-based error detection
system and the rule-based post-processing module of the
hybrid approach. We also plan to experiment with
different similarity criteria to improve the recall.
One limitation of our hybrid approach is that we can't give
richer context due to the problem of sparsity. To find
whether the dependency label is correct or not, apart from
node and its parent information, sibling and child
information is also helpful. Current state-of-the-art
dependency parsers use these features for dependency
labeling (McDonald et al., 2006; Ambati et al., 2009).
Finding similarity between patterns and merging similar
patterns would not help when we wish to take a much
richer context. For this purpose, we also plan to explore a
probability based hybrid approach. Instead of counts, we
plan to use probabilities to detect the errors. We hope to
achieve much better recall with the probability based
hybrid approach.
This tool can also help in improving the guidelines which
subsequently improves the annotation. While correcting
the errors if the validator comes across some ambiguous
decisions or some common errors or comes up with new
decisions, guidelines can be modified accordingly to
reflect the changes. Data annotated based on new
guidelines will reduce the occurrence of these errors and
eventually the quality of annotation of individual as well
as entire data will improve. Figure 4, shows the complete
cycle of this process.

Figure 4: Cycle for improving guidelines for annotation.

7. Conclusion
In this paper, we proposed a new tool which uses both
rule-based and hybrid systems to detect errors during the
process of treebank annotation. We tested it on Hindi
dependency treebank and were able to detect 75%, 62.5%
and 40.33% of errors in POS, chunk and dependency
annotation respectively. For detecting POS and chunk
errors, we used the rule-based system. For dependency
errors, we used the combination of both rule-based and
hybrid systems. The proposed approach works reasonably
well for relatively smaller annotated datasets.

8. Acknowledgements
We would like to thank Rafiya Begum for helping us
during the validation process. The work reported in this
paper is supported by the NSF grant (Award Number:
CNS 0751202; CFDA Number: 47.070).

9. References
Ambati, B.R., Gadde, P., Jindal, K. (2009). Experiments

in Indian Language Dependency Parsing. In
Proceedings of the ICON09 NLP Tools Contest: Indian
Language Dependency Parsing, pp. 32-37.

Begum, R., Husain, S., Dhwaj, A., Sharma, D.M., Bai, L.,
Sangal. R. (2008). Dependency annotation scheme for
Indian languages. In Proceedings of IJCNLP-2008.

Bharati, A., Chaitanya, V., Sangal, R. (1995). Natural
Language Processing: A Paninian Perspective,
Prentice-Hall of India, New Delhi, pp. 65-106.

Bharati, A., Sangal, R., Sharma, D.M., Bai, L. (2006).
AnnCorra: Annotating Corpora Guidelines for POS
and Chunk Annotation for Indian Languages. Technical
Report (TR-LTRC-31), Language Technologies
Research Centre, IIIT-Hyderabad.
http://ltrc.iiit.ac.in/MachineTrans/publications/technic
alReports/tr031/posguidelines.pdf

Bharati, A., Sangal, R., Sharma, D.M., Bai, L. (2009).
AnnCorra: TreeBanks for Indian Languages,
Guidelines for Annotating Hindi TreeBank.
http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guid
elines/DS-guidelines-ver2-28-05-09.pdf

Bharati, A., Sangal, R., Sharma, D.M. (2007). SSF: Shakti
Standard Format Guide. Technical Report,
TR-LTRC-33, Language Technologies Research
Centre, IIIT-Hyderabad, India.

http://ltrc.iiit.ac.in/MachineTrans/publications/technic
alReports/tr033/SSF.pdf

Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O.,

Sharma, D.M., Xia, F. (2009). Multi-Representational
and Multi-Layered Treebank for Hindi/Urdu. In Proc.
of the Third Linguistic Annotation Workshop at 47th
ACL and 4th IJCNLP.

Boyd, A., Dickinson, M., Meurers, D. (2008). On
Detecting Errors in Dependency Treebanks. Research
on Language and Computation 6(2), pp. 113-137.

Dickinson, M., Meurers, W.D. (2003). Detecting
Inconsistencies in Treebank. In Proc. of the Second
Workshop on Treebanks and Linguistic Theories (TLT
2003).

Dickinson, M., Meurers, W.D. (2005). Detecting Errors in
Discontinuous Structural Annotation. In Proc. of the
43rd Annual Meeting of the ACL, pp. 322–329.

Eskin, E. (2000). Automatic Corpus Correction with
Anomaly Detection. In Proceedings of the First
Conference of the North American Chapter of
theAssociation for Computational Linguistics
(NAACL-00). Seattle, Washington.

van Halteren, H. (2000). The Detection of Inconsistency
in Manually Tagged Text. In Proceedings of the
2ndWorkshop on Linguistically Interpreted Corpora.
Luxembourg.

Kordoni, V. (2003). Strategies for annotation of large
corpora of multilingual spontaneous speech data. In
Proc. of Workshop on Multilingual Corpora: Linguistic
Requirements and Technical Perspectives held at
Corpus Linguistics 2003.

Kaljurand, K. (2004). Checking treebank consistency to
find annotation errors.

http://math.ut.ee/˜kaarel/NLP/Programs/Treebank/Consis
tencyChecking/.

Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.
(1993). Building a large annotated corpus of English:
the Penn treebank. Computational Linguistics, Volume
19, Issue 2, pp. 313 – 330.

McDonald, R., Lerman, K., Pereira, F. (2006).
Multilingual dependency analysis with a two-stage
discriminative parser. In Proc. of the Tenth Conference
on Computational Natural Language Learning
(CoNLL-X), pp. 216–220.

Palmer, M., Gildea, D., Kingsbury, P. (2005). The
Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics, 31(1):71-106.

Xia, F., Rambow, O., Bhatt R., Palmer, M., Sharma, D.M.
(2009). Towards a Multi-Representational Treebank. In
Proc. of the 7th International Workshop on Treebanks
and Linguistic Theories (TLT 2009), Groningen,
Netherlands.

	A high recall error identification tool for Hindi Treebank Validation

