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Abstract 
This paper describes the development of a hybrid tool for a semi-automated process for validation of treebank annotation at various 
levels. The tool is developed for error detection at the part-of-speech, chunk and dependency levels of a Hindi treebank, currently 
under development. The tool aims to identify as many errors as possible at these levels to achieve consistency in the task of annotation. 
Consistency in treebank annotation is a must for making data as error-free as possible and for providing quality assurance. The tool is 
aimed at ensuring consistency and to make manual validation cost effective. We discuss a rule based and a hybrid approach (statistical 
methods combined with rule-based methods) by which a high-recall system can be developed and used to identify errors in the 
treebank. We report some results of using the tool on a sample of data extracted from the Hindi treebank. We also argue how the tool 
can prove useful in improving the annotation guidelines which would in turn, better the quality of annotation in subsequent iterations. 
 

1. Introduction 
For effective processing of text, tools at different 
conceptual levels, say from letter/syllable level to 
discourse level are needed. Output of these tools can then 
be used in different NLP applications beginning with spell 
checkers to machine translation. These tools could be 
completely rule-based, completely statistical or a 
combination of both, i.e., hybrid systems. In quite a few 
cases, manually annotated gold standard data is required 
to build such tools. The annotated data, as one would 
expect, should be error free. Hence, the importance of 
validation of data and error correction cannot be 
undermined. On the other hand, annotation in itself is a 
time-consuming task. Thus, it is only desirable that the 
task of validation of data is fast without compromising 
quality. But doing validation of data completely manually 
would again be time consuming, as the validators have to 
look at each word in the annotated corpus.  To make the 
task of validation easy and cost effective, we need tools 
that can supplement validators’ task with a view of 
making the overall task fast without compromising 
reliability. With the help of such tools, validator can 
directly go to error instances and correct them. Therefore 
we need the tool to have high recall. It is easy to see that a 
human validator can directly reject un-intuitive errors 
(false positives) without much effort; one can therefore 
compromise on precision. 
The proposed tool has been used for validating the 
dependency representation of a multi-layered and multi- 
representational treebank for Hindi (Bhatt et al., 2009). 
The tool identifies errors in the Hindi annotated data at 
POS, chunk and dependency levels. Additionally, the 
identification of errors can help resolve ambiguous cases 
and thus improve the guidelines for annotation. Improved 
guidelines will directly make the task of annotation more 
consistent. 
The paper is divided as follows. The first section is about 
introducing the work. Section 2 gives a brief overview of 
the Hindi dependency treebank. A survey of some of the 
previous efforts on automated validation is done in 

section 3. In section 4, we describe our approach in detail 
with examples. Results are reported in section 5. General 
discussion and directions for future work follow in section 
6. We conclude our paper in section 7. 

2. Hindi Dependency Treebank  
A multi-layered and multi-representational treebank for 
Hindi (Bhatt et al., 2009; Xia et al., 2009) is being 
developed. The treebank will have dependency, 
verb-argument (PropBank, Palmer et al., 2005) and 
phrase structure (PS) representation. Automatic 
conversion from dependency structure (DS) to phrase 
structure (PS) is being worked out. Hence, it is important 
to have a high quality version of the dependency treebank 
to ensure efficient conversion from DS to PS 
representation. The focus of the current paper is to 
describe the methodology employed to detect errors in the 
DS representation. The dependency treebank contains 
information encoded at the morpho-syntactic 
(morphological, part-of-speech and chunk information) 
and syntactico-semantic (dependency) levels. Each 
sentence is represented in SSF format (Bharati et al., 
2007). POS and chunk information is encoded following a 
set of guidelines (Bharati et al., 2006). The guidelines for 
the dependency framework (Bharati et al., 2009) have 
been adapted from computational Paninian grammar 
(CPG) (Bharati et al., 1995). For Indian languages, like 
Hindi, Paninian dependency scheme has been shown to be 
effective by Begum et al. (2008).  

3. Related Work 
Validation and correction tools are an important part for 
making treebanks error-free and consistent. Significant 
efforts have been made in this direction to develop such 
tools. One such approach for treebank error detection was 
employed by Dickinson and Meurers (2003; 2005) where 
they find out ‘variations’ in syntactic annotation. They use 
certain statistical patterns (n-grams) derived from large 
annotated corpora such as the Penn treebank (Marcus et 
al., 1993) to detect anomalies in treebanks. Their work 
includes anomaly detection in continuous and 



discontinuous structural annotation. Adapting from a 
generalized approach on discontinuous structural 
annotation, this work was extended to detect errors at the 
dependency level in treebanks (Boyd et al., 2008). Some 
other earlier noteworthy methods employed for error 
detection in syntactic annotation (mainly POS and chunk), 
are by Eskin (2000) and van Halteren (2000). Other 
examples of detection of annotation errors in treebanks 
include (Kaljurand, 2004; Kordoni, 2003). 

4. Approach 
Our aim is to identify errors in POS, chunk and 
dependency annotated data. To identify the errors at each 
level of annotation we use both rules and statistics. We 
take 40k words manually annotated and validated data as 
development data. We used this development data to 
frame rules as well as to take decisions based on statistics. 
We followed a two-fold approach. The first part of 
approach involves detection of errors purely by 
rule-based methods. In the second part of the approach we 
use frequency-based measure to determine the possible 
errors and then prune out the false positives to improve 
precision by using some rules. 

4.1 Rule-Based approach 
In this approach, we use generic rules to identify the 
errors. Particular tags (POS/chunk/dependency) demand 
some particular patterns and vice-versa. This is the main 
idea in framing the generic rules. For example, if the 
POS-tag is “SYM 1

We used the annotation guidelines (Bharati et al., 2006, 
2009) as an initial step to frame the rules. The guidelines, 
apart from providing description of the tags, give many 
pointers for annotators, in the form of linguistic cues to 
identify the tags, exceptional cases, common confusing 
and error-prone cases. More rules were later formulated 
using the development data. Further, we extracted 
mismatches in the annotated and validated sets of the 
development data. These mismatches are basically errors 
made by annotators which were corrected by validators. 
Analysis of these mismatches helped in framing 
additional rules. The nature of the rules varies for 
different type of annotation, as the context required is 
different for different types of annotation. For example, 
POS tagging rules are based on current lexical item, POS 
tags of previous words etc., whereas in case of 
dependency tags, rules are framed on features of current 
node, its parent, siblings, children and sometimes even a 
complete tree/sub-tree. 

” then the lexical item should not 
contain any character in the unicode range of Hindi or 
digits. Similarly, if the lexical item is a digit, then the 
POS tag should be QC (POS tag for cardinals). Similar 
rules can be framed at chunk and dependency levels also. 

Figure 1, shows a sample output of the tool identifying the 
POS tag errors. In the example sentence depicted in the 
figure, “Ram gave three books to Sita”, the rule that, a 

                                                        
1 SYM: POS tag for a punctuation marker, see Bharati et al., 
2006 for complete details.  

number should have its POS tag either a ‘QC2’, or a ‘QF3

 

’ 
(refer, Bharati et al., 2006) comes in handy while 
detecting the error. Therefore, the word “3” which had 
been erroneously tagged as a demonstrative (DEM) in the 
sentence, is identified as an error which can be then 
promptly corrected by the human validator. 

Figure 1: Error detection by rule-based approach at POS 
level. The erroneous case is shown by the pointer ‘◄◄’ 

in the sentence above. 
 
Error detection at the dependency level is illustrated with 
the help of example sentence in Figure 2 below. The 
sentence is “Ram is a good boy.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
“Ram is a good boy” 

Figure 2: Error detection by rule-based approach at the 
dependency level. The erroneous case is shown by the 

pointer ‘◄◄’ in the tree. 
 

There are some dependency labels that are dependent on 
the presence of particular labels in a sentence. Following 
from this rule in the sentence above, a ‘k1s’ should be 
marked only when a ‘k1’ is present in the same sentential 
clause. Hence, an error is detected in the dependency tree.  
The number of actual errors detected using such rules is 
high on precision but low on recall value. In order to 
detect a wider coverage of errors we need to employ other 
techniques. These measures are described in the following 
subsection.

                                                        
2 QC: POS tag for words denoting a cardinal number 
3 QF: POS tag for words denoting quantifiers 

raama 
‘Ram’ ERG 

  hei        
 ‘is’ 

ladakaa 
‘boy’ 

       ►► k2 k1s 

acchaa 
‘boy’ 

nmod 

Identification of Errors using Rules 
 
1 raama ‘Ram’ NNP 
2 ne  ‘ERG’ PSP 
3 sitaa  ‘Sita’  NNP 
4 ko  ‘DAT’ PSP 
5 3   ‘3’  DEM   ◄◄    
6 kitaabein ‘books’ NN 
7 diiM  ‘gave’ VM 
 

“Ram gave three books to Sita.” 



     
Figure 3: Error detection in inter-chunk dependencies by hybrid approach. 

 

4.2 Hybrid Approach 
Hybrid approach comprises of two modules. (1) the 
statistical module and, (2) Rule-based post-processing 
module. Statistical module tries to identify as many errors 
as possible. The goal of the statistical module is to achieve 
a high recall. Following this, we run a rule-based 
post-processing module on the output of the statistical 
module. The aim of this module is to increase precision of 
the system. With this approach we intend to detect the 
errors with high recall and reasonable precision. 

4.2.1. Statistical Module 
Statistically, low frequency is a sign of possible error. We 
calculate the frequencies of pattern and tag pairs, where 
tag can be either of POS or chunk or dependency. These 
patterns are annotation specific. For POS, word level 
patterns are considered. For chunks, lexical items and the 
POS tags of the sequence of words within the chunk are 
considered. For inter-chunk dependencies, chunk tag, 
lexical item and POS tag sequence within the chunk of 
child and parent are considered as the pattern. As both 
label and attachment are important for dependency 
analysis, our patterns contain child as well as parent 
features. 
Once we get the frequencies at each level, we keep some 
threshold on the frequency and all the pairs less than that 
threshold are considered as possible errors. This threshold 
is decided after experiments with the development data 
and it can vary with annotation level. For all the pairs 
greater than the threshold, if a pattern has multiple tags, 
then there might be a possibility of error. So, for such 
pairs, if the frequency of a pair is less than certain 
percentage of the total instances of that pattern, then it is 
considered as a possible error. 

The above approach is fine at POS level. But, when it 
comes to chunk and dependency levels, sparsity creates 
problems. Probability of occurrence of the same pattern is 
very low due to which a lot of valid instances get 
identified as errors. To resolve this, instead of original 
patterns, we find similarity between patterns and merge 
similar patterns. Again, the measure of similarity varies 
with annotation type. On these merged patterns, we apply 
the above approach to detect the errors.  

4.2.2. Rule-based post-processing Module 
The approach explained above about finding similarity 
patterns reduces the instances of correct patterns being 
identified as errors but not completely remove it. To 
further reduce the negative effect of sparsity on these 
merged patterns, we use certain robust rules to remove 
correct patterns from the errors list. So, a robust rule is 
capable of overriding a low frequency based pattern 
induction and can remove such pattern from the final 
selection. 

4.2.3. Description of hybrid approach 
Figure 3, shows the complete approach taking inter-chunk 
dependency as an example.  
There are 6 pairs (pattern + tag) where all the patterns are 
different as shown in 3(a). As the frequency is low, all the 
6 patterns are identified as errors. After finding similarity 
between patterns and merging similar patterns, 6 pairs get 
reduced to 3. This is shown in 3(b). The arrows 
connecting the patterns in (a) with (b) show the merging 
process. Similarity criterion used here is as follows:  
For both child and parent chunks, consider POS type of 
the head of the chunk and lexical item and POS tags of the 

(a) (c) 

(b) 



functional words.  
Out of 3 pairs in (b), 2 pairs are identified as errors based 
on statistics. After applying the following rule, 
If the child is an adverbial chunk (RBP) and the parent is 
a verbal chunk (VGF), then the dependency label can be 
“adv”.  
the number of errors reduced from two to one. 

5. Results and Analysis 
We evaluated the performance of our system using a 
65k-token (2694 sentences) manually annotated and 
validated sample of data derived from the Hindi 
dependency treebank. We divided the data into 40k, 10k 
and 15k for training, development and testing respectively. 
For the rule-based system, training and development data 
was used to frame the rules. In the case of hybrid approach, 
we used training data to train the models and development 
data to tune the parameters like threshold values. Rules 
meant for pruning false positives were also framed using 
this data. 
We ran the rule-based tool on the test data. Details of the 
type and number of errors identified by the rule based 
system are presented in Table 1. Using our rule-based 
system we detected 75%, 62.5% and 25.86% of errors at 
POS, chunk and dependency levels respectively. 
Currently in the treebank, dependency annotation is done 
at inter-chunk level only. So, dependency errors only 
represent inter-chunk dependency errors. 

 
Type of  
Error 

Total   
instances 

Total   
Errors 

Recall of the tool 

POS  
Errors 

13922 16 12/16     = 75% 

Chunk  
Errors 

7113 24 15/24     = 62.5% 

Dependency 
Errors 

7113 843 218/843 = 25.86% 

 
Table 1: Error Detection using rule-based system at 

different levels. 
 

At POS and chunk levels, as the number of errors is low 
which can be identified based on some standard rules, 
rule-based system performs quite well. We also tried the 
hybrid approach, but the number of false positives is so 
high that the hybrid approach is practically of no use at 
POS and chunk levels. 
But at dependency level, as more complex linguistic 
information is being annotated, the chance of making 
errors is more. As the number of errors is large we need 
tools to detect the errors so that the validation process 
becomes faster. With the rule based system we were able 
to identify only 25.86% of the dependency errors. We then 
tried out the hybrid based approach. Using this approach, 
we were able to identify 18.74% of the dependency errors. 
When we combined the outputs of both the rule-based and 
hybrid approaches, we could identify 40.33% of the errors 
at the dependency level. Results are shown in Table 2.  

 
Approach Total   

Errors 
System 
output 

Correct 
Errors 

Recall 

Rule Based 
Approach 

843 218 218 25.86% 

Hybrid 
Approach 

843 
 

2546 158 18.74% 

Combining 
both the 
Approaches 

843 
 

2728 340 40.33% 

 
Table 2: Recall of error detection using different 

approaches. 

6. Discussion and Future Work 
One basic difference between our approach and the other 
previous approaches is that we use a combination of a 
rule-based system and a hybrid system to detect errors. 
Most of the previous approaches work well with large 
corpora in which the frequency of occurrence of words is 
very high. Hence, none of them account for data sparsity. 
Our work is focused on detecting errors during the 
process of annotation. This means that the size that we 
worked on is not very large and hence we need to take 
care of the problems that accrue from sparsity. We employ 
a combination of a rule-based approach with a hybrid 
approach for error detection. Moreover, unlike earlier 
efforts, our work focuses on reduction of validation time 
and effort during treebank construction. So, our focus is 
on high recall with reasonable precision. 
The tool is constantly being improved. We are planning to 
improve the rules of both the rule-based error detection 
system and the rule-based post-processing module of the 
hybrid approach. We also plan to experiment with 
different similarity criteria to improve the recall. 
One limitation of our hybrid approach is that we can't give 
richer context due to the problem of sparsity. To find 
whether the dependency label is correct or not, apart from 
node and its parent information, sibling and child 
information is also helpful. Current state-of-the-art 
dependency parsers use these features for dependency 
labeling (McDonald et al., 2006; Ambati et al., 2009). 
Finding similarity between patterns and merging similar 
patterns would not help when we wish to take a much 
richer context. For this purpose, we also plan to explore a 
probability based hybrid approach. Instead of counts, we 
plan to use probabilities to detect the errors. We hope to 
achieve much better recall with the probability based 
hybrid approach. 
This tool can also help in improving the guidelines which 
subsequently improves the annotation. While correcting 
the errors if the validator comes across some ambiguous 
decisions or some common errors or comes up with new 
decisions, guidelines can be modified accordingly to 
reflect the changes. Data annotated based on new 
guidelines will reduce the occurrence of these errors and 
eventually the quality of annotation of individual as well 
as entire data will improve. Figure 4, shows the complete 
cycle of this process. 



 
Figure 4: Cycle for improving guidelines for annotation. 
 

7. Conclusion  
In this paper, we proposed a new tool which uses both 
rule-based and hybrid systems to detect errors during the 
process of treebank annotation. We tested it on Hindi 
dependency treebank and were able to detect 75%, 62.5% 
and 40.33% of errors in POS, chunk and dependency 
annotation respectively.  For detecting POS and chunk 
errors, we used the rule-based system. For dependency 
errors, we used the combination of both rule-based and 
hybrid systems. The proposed approach works reasonably 
well for relatively smaller annotated datasets. 
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