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Abstract 

The paper describes an approach to automati-
cally annotate a Hindi Treebank using Pan-
inian dependency framework. The annotator is 
a rule based system and the rules use certain 
syntactic cues available in a sentence. This 
automated annotation scheme aims at facilitat-
ing manual annotation by reducing time and 
effort of manual annotators. Also, the aim of 
automatic annotation, among other things, is to 
increase the efficiency of a broad coverage 
constraint based Hindi parser. We also evalu-
ate this tool and show its accuracy and cover-
age. 

1 Introduction 

This paper describes a rule based effort designed 
to automatically annotate a Hindi treebank in an 
efficient and robust manner. There is a need for 
creating a large treebank for carrying out various 
tasks in NLP for Hindi and other Indian lan-
guages.  The lack of such tree banks has been a 
major bottleneck in the development of good 
natural language tools and applications for Indian 
languages. Treebanks have been successfully 
created for various other languages like English 
(Marcus et. al, 1993), German (Brants and Skut, 
1998), Czech (Hajicova, 1998), Portuguese 
(Bick, 2007), etc. 

The automatic annotation done here is based 
on the Paninian grammatical model (Begum et. 
al, 2008; Bharati et. al, 1995) which is a depend-
ency grammar (Kiparsky and Staal, 1969). De-
pendency frameworks have been employed for 
languages like Dutch (van der Beek et. al, 2002), 
Italian (Bosco and Lambardo, 2004), Czech (Ha-
jicova, 1998), etc. It has been argued that de-
pendency frameworks are well suited for mor-
phologically rich and relatively free word order 
languages (Hudson, 1984; Mel'Cuk, 1988). 

Automatic annotation tools have been built for 
languages like German (Brants and Skut, 1998), 
Portuguese (Bick, 2007), etc. Our aim in building 
such a rule based tool for automated annotation1 
is: 

 
1. To facilitate the process of annotation for the 

manual annotators. 
2. To correct and fine grain the output of a 

broad coverage constraint based parser. 
3. To explore the extent and performance of a 

purely rule based system2 in the field of 
parsing. 

 
The system works on the rules formulated by 

exploiting certain syntactic cues such as post-
positions, TAM (tense, aspect and modality) la-
bels, POS (part of speech) labels, etc. In fact, the 
mapping of a karaka3 with post-positions is 
pretty strong. There have been some previous 
attempts in exploring this mapping between a 
karaka and post-position. One such work (Be-
gum et al., 2008) worked with 1400 sentences. It 
was found that some karaka labels bear striking 
correspondence with certain post positions which 
has since proved critical in designing a rule 
based system. The results of the above experi-
ment have been shown in Table 1.1. 

 
1The size of the Hindi treebank used for development and 
testing the tool is small in size. 
2Note that since this is an ongoing work, the observations 
and results pertaining to purely rule-based parsing are in no 
way final. 
3The elements modifying the verb participate in the action 
specified by the verb. These participant relations with the 
verb are called karakas. For a detailed analysis see Bharati 
et al. (1995). Many relations mentioned in this paper are 
described in Begum et al. (2008). For the complete tagset 
description, see 
http://ltrc.iiit.ac.in/MachineTrans/publications/technicalRep
orts/tr032/treebank.pdf  
 
 



Table 1.1. 
 

As can be seen, the experiment clearly shows 
that the dependency relation ‘k1’ bears a strong 
mapping with the post position ‘ne’. Similarly, 

k7(p/t)  overwhelmingly map to ‘meM’. 
Our paper explores various ways to extend the 

experiment described above. The paper is ar-
ranged as follows; Section 2 briefly explains the 
annotation scheme. In Section 3 we describe the 
approach and the algorithm used. Section 4 de-
scribes the experiments conducted and their re-
sults. We discuss the results and show the error 
analysis in Section 5. Section 6 finally concludes 
the paper. 

 
2 Annotation Scheme 

 
As mentioned in Section 1, the annotation 
scheme used is based on the Paninian depend-
ency framework. The reason for working under a 
dependency framework is the rich morphology 
and the relatively free word order of Indian lan-
guages. This framework defines the relations 
between a verb and its participants as karakas. A 
karaka is defined as a participant in an action. 
The karaka relations are syntactico-semantic4 in 
nature. 

There are six basic karakas and some other 
non-karaka relations. In total the annotation 
scheme has about 28 labels (Begum et al., 2008). 
The six karakas are: 

k1 – karta, k2 – karma, k3 – karana, k4 – 
sampradaan, k5 – apaadaan and k7 – adhikaran. 

Some of the non-karaka labels are r6 (posses-
sive), rh (purpose), rt (cause), etc. 

As mentioned earlier, we plan to identify these 
dependency relations using different robust strat-
egies incorporated in a rule based system. 

 
 

                                                           

                                                          

4k1 (karta) and k2 (karma) are syntactico-semantic labels 
which have some properties of both grammatical roles and 
thematic roles. k1 for example, behaves similar to subject 
and agent.  

3 Approach 
 

The approach mainly focuses on building a sys-
tem which uses some set of rules for each de-
pendency relation to annotate the corpus. We 
mark only the inter-chunk5 dependency labels. 
Intra-chunk dependencies are not marked by the 
automatic annotation tool. 
 
3.1 Corpus Description 
 
The sentences for the task of annotation were 
obtained from the Hyderabad Dependency Tree-
bank (HyDT) (Begum et al., 2008). The sen-
tences were in the SSF format (Bharati et. al, 
2005). In all there were 2053 Hindi sentences. 
The corpus had 41803 words and 6244 unique 
tokens. The average length of a sentence was 
20.05.  

This corpus was divided into a development 
data set and a testing data. Development data 
contained 1741 sentences and testing 312. Refer-
ence data was also used for evaluating the tool. 
The reference data had all the dependency labels 
marked.  
 
3.2 Rules for Marking Dependency Relations 
 
3.2.1 Relations marked 
 
We mark only those dependency relations that 
have frequency higher than a certain threshold6. 
However, this set excludes relations like pof7 
and ccof8 even though they are above the thresh-
old value. A ‘pof’ relation generally occurs in the 
case of complex verb, coming up with rules to 
identify a complex verb in Hindi is rather diffi-
cult. ‘ccof’ also cannot be easily marked as its 
identification is more structural than lexical. 
Moreover, our aim is not to emulate the func-
tions of a broad coverage parser entirely. These 
unmarked relations are best left to be marked by 
a parser, or in the case of manual annotation, by 
the manual annotators. In all we mark 15 de-
pendency relations. 
 
 
 

 
5In the treebank chunk head appear as nodes. A chunk is a 
set of adjacent words which are in dependency relation with 
each other, and are connected to the rest of the words by a 
single incoming arc to the chunk.  
6The threshold set was 15. 
7pof: part of  
8ccof: conjuct of 

Kr/V kA se para meM ne ko 
k1 53 5 0 0 344 127
k2 174 70 5 5 0 280
k3 0 51 0 0 0 0 
k4 0 9 0 0 0 77 
k5 1 97 0 0 0 0 
k7 1 4 38 141 0 0 
k7p 45 11 72 302 0 0 
k7t 13 12 6 31 0 7 



3.2.2 Rule Format 
 
Based on the experiments done and statistics col-
lected as well as on the basis of certain linguistic 
cues, as described above, rules for identifying the 
dependency relations were formed.  

Each rule follows a specific format. A rule is 
an 8-tuple containing eight fields, these are: 

 
1. Modified Group i.e., the parent chunk, 
2. Modified Constraints, 
3. Modifier Group, i.e., the child chunk, 
4. Modifier Category, 
5. Relation, 
6. Dependence of the relation on another 

relation, 
7. Multiplicity of the relation, 
8. Weight of the rule. 

 
       Modified          Modifier                          
       Constraints      Constraints        Dependence       Weight 
 
 
 
 
 
 
Modified      Modifier            Relation            Multiplicity 
Group    Group   

Figure 3.1. 
 

The 6th field (dependence) signifies the de-
pendence of one relation on the other i.e., the 
presence of an already marked relation within the 
clause boundary (Clause boundary is explained 
in Section 3.4.1). Multiplicity indicates the pos-
sible number of occurrences of a dependency 
relation within a clause boundary. 

A non-negative weight is associated with each 
rule. Higher the rule weight, higher its priority 
over other rules. But, a ‘0’ weight indicates that 
the priority of the rule over other rules for the 
same relation does not matter. These weights 
have been assigned to the rules after conducting 
some experiments. In these experiments we 
found that some rules are very robust and hence 
were assigned weights in the decreasing order of 
their robustness. An example of a rule is stated 
below: 

 
VG  tam=ko  NP  vib9=ko  reln=k1 dep=X  mult=1  weight=4 
 

The above rule states that there is a modifier 
chunk NP that possesses the post position or vib-

                                                           
9vib: vibhakti. ‘vibhakti’ is a generic term for preposition, 
post-position and suffix. 

hakti ‘ko’. This chunk must modify a verb group. 
The modified verb group has a constraint that its 
TAM must belong to the list of TAMs associated 
with the ‘ko’ post-position. If these constraints 
are satisfied, then the modifier-modified relation 
is k1. This rule is independent of other rules and 
the multiplicity of the dependency relation is at 
most 1. It carries a weight equal to 4. Another 
example is given below. 
 
VG  tam=X  NP  vib=ko  reln=k2  dep=k1  mult=1  weight=0 
 

The above rule is read similar to the previous 
example of the rule. The difference here is in the 
modified constraint (2nd field). Unlike the rule 
we saw earlier, there are no constraints for TAM 
(denoted by an ‘X’) and the modifier-modified 
relation (k2) depends on another relation (6th 
field). This means that a ‘k1’ should have al-
ready been marked before we can apply this rule 
successfully. 

All the rules are placed in a rule file. The au-
tomated annotator (henceforth annotator, unless 
otherwise specified) applies each and every rule 
by scanning the rule file from top to bottom in a 
sequential manner. 
 
3.3 Categorization of Rules 

 
The rules can be categorized based on the fol-
lowing two criteria: 
1. Functionality: The rules that have been 

formed explore the possibility of certain de-
pendency relation existing between two 
nodes in a context. 

2. Effectiveness: There are some rules, which 
we define as robust (or strong and effective). 
Section 4.3 explains the experiments on 
these rules in detail. 
 

3.4 Algorithm 
 

The algorithm used by the annotator is a multiple 
iterative process. It takes one chunk of the input 
sentence at a time, and then applies rules from 
the rule file one by one. The rules are in the form 
of a tuple mentioned in Section 3.2. The algo-
rithm works on certain assumptions and heuris-
tics which are described in the following sec-
tions. 
 
 
 
 
 



3.4.1 Assumptions and Heuristics  
 

Linguistic Attributes or Features: The rules 
made are dependent on certain linguistic attrib-
utes. Some of these attributes include: 

1. Post-positions, 
2. TAM,  
3. Category of a lexical item, 
4. List of verbs, nouns belonging to a par-

ticular class, 
5. POS tags of lexical items.  
 

Clause Boundary: Hindi is a verb final lan-
guage. Based on this assumption, the annotator 
divides the SSF sentence into certain boundaries, 
termed as clause boundaries, before marking the 
dependency relations. The sentence has one or 
more clause(s) and a boundary is imposed on 
each clause that possesses a VGF (a verb group 
chunk) with a finite verb as its head. Note that, in 
case the final clause in a sentence does not pos-
sess any finite VGF, a boundary is imposed on it. 
This verb group with a finite verb becomes the 
boundary and recurring occurrences of such VGs 
are formed into different boundaries. This im-
plies that in the Hindi, any verb (generally the 
root of the complete dependency tree), seeks its 
children or dependency relations towards its left. 
The whole sentence is scanned from left to right 
on the basis of a clause boundary. Of course, 
there are instances where such definition of a 
clause will fail. Making the clause boundary 
identifier more sophisticated will be taken up in 
the future. 

Correct Input: The input representation for 
our annotator is a sentence in SSF. The sentence 
is POS tagged and chunked (Bharati et al., 2006). 
We assume that the sentence has been POS 
tagged and chunked correctly. The input has no 
dependency labels marked. 
 
3.4.2 Steps of the Algorithm 
 
The algorithm can be explained with the help of 
an example sentence. This explains how the an-
notator works using the rule file. The example 
sentence is as follows: 
 
(1)  [[ ((koI))NP  ((rAma kI))NP  ((cIjZa))NP 
       ‘someone’     ‘ram’s’ ‘thing’ 
 
       ((le lewA))VGF ]]_1 [[ ((waba BI))NP  
          ‘take’                      ‘then’ ‘EMPH’     
 
        ((use))NP ((gussA))NP ((nahIM AwA  

         ‘him’     ‘anger’          ‘not’   ‘came’ 
 
          WA))VGF ]]_2 . 
          ‘was’ 
 
“Ram did not get angry even if someone took his 
thing.” 
 

The sentence is in wx10 notation. This sen-
tence contains two clause boundaries, which 
have been labeled as _1 and _2 respectively. This 
sentence is fed as input to the tool. The tool iter-
ates over all the chunks in a sequential order to 
mark the dependency labels. For each chunk it 
looks for all the rules which might possibly be 
applicable. Sometimes, this linearity might get 
violated because of the rule prioritization. 

First of all, the first NP chunk ‘koI’ gets 
marked as k1 with its parent chunk being the first 
VGF (finite verb group) ‘le lewA’ i.e., the first 
verb within the clause boundary. This rule states 
that the first occurrence of a ‘0’ case marked 
noun chunk is labeled as k1. The rule can be seen 
in Figure 3.2. 

In the next iteration the second chunk gets 
marked as r6 with its parent being the next noun 
chunk i.e., ‘cIjZa’, as the constraints of the rule 
for r6 are satisfied by this chunk. The third chunk 
is marked as k2. The rule states that k2 would 
only be marked when a k1 has already been 
marked within the clause boundary. 

Similarly, after the iterations within the first 
clause boundary are finished, the tool iterates 
over the next clause boundary and marks the first 
chunk as k7t with its parent being the first verb 
in the clause boundary which is ((nahIM AwA 
WA)). The head (underlined word) of this noun 
chunk is a time expression and hence the relation 
k7t. Likewise, the second noun chunk ‘use’ is 
marked as k1. This is marked as k1 because the 
rules states that the first occurrence of a noun 
chunk having a ‘ko’ post-position is to be 
marked as k1. This chunk has an implicit post 
position ‘ko’ (dative case) and thus is marked as 
k1. 

The next noun chunk ‘gussA’ although being 
a ‘pof’ is marked k2. The rule for k2 for a ‘0’ 
post position is perfectly applicable to this 
chunk. We do not mark any ‘pof’ relation

                                                           
10In this notation, capitalization roughly means aspiration 
for consonants and longer length for vowels. In addition, `w' 
represents `t' as in French entre and `x' means something 
similar to `d' in French de, hence the name of the notation. 
For mapping with Devnagari see, 
http://ltrc.iiit.ac.in/MachineTrans/research/tb/map.pdf 



 

Figure 3.2. 
 

 (cf. section 3.2.1) in a sentence and so the chunk 
gets marked as k2. Figure 3.2 shows the com-
plete iteration and the selection of rules clearly. 
 
4 Experiments and Evaluation 
 
Experiments were conducted using the annotator 
to 
 
1. define the scope of automatic annotation. 
2. find out the accuracy of the process of auto-

mated annotation 
3. judge the extent to which this tool would 

help the manual annotators in annotating the 
treebank. 
 

4.1 Baseline 
 
Before establishing the baseline we need to know 
the fact that a post-position may be overloaded 
when it comes to its mapping with different ka-
rakas and non-karakas. For example, ‘ko’ maps 
to k1, k2, k4. ‘se’ maps to k3, k5 as well as rh. 
Hence, it makes the task of automatic annotation 
a non-trivial task. It is important, therefore, to 
come up with appropriate rules for marking de-
pendency labels correctly. 

A baseline was established to determine the 
minimum threshold value of precision and recall 
of various dependency relations. The baseline 
consists of only those rules for which a depend-
ency relation has the highest frequency of occur-
rence with its corresponding post-position. The 

baseline was evaluated on the test data set of 312 
sentences. The baseline results are given in Table 
4.1. 

Table 4.1 shows the labeled accuracy11 (LA) 
and labeled attachment accuracy12 (LAA) values 
of precision and recall for the relations marked 
for the baseline. 
 
Rela-
tion 

Precision 
LA LAA  

Recall 
LA LAA  

k1 54.7% 50.1% 53.1% 48.9% 
k2 49.1% 43.4% 19.9% 17.6% 
k3 9.3% 9.3% 50.0% 50% 
k4 - - - - 
k5 - - - - 
k7 86.1% 83.0% 42.7% 41.2% 
k1s - - - - 
r6 82.1% 78.5% 79.0% 75.5% 
rh 100% 100% 15.7% 15.7% 
rd 66.6% 66.6% 25.0% 25.0% 
rt 69.5% 60.8% 84.2% 73.7% 

ras 66.6% 66.7% 75.0% 75.0% 
adv 67.3% 63.4% 56.4% 53.2% 

vmod 89.6% 75.8% 38.2% 38.2% 
nmod 23.2% 21.9% 27.4% 25.8% 

Table 4.1. 
 

                                                           
11 Labeled Accuracy (LA) values for a relation only con-
sider the edge label without considering its attachment with 
head. 
12 Labeled Attachment Accuracy (LAA) values for a rela-
tion consider both attachment and edge label. 
 



It can be seen that k7, r6 and vmod have a 
higher threshold value for the baseline. This is 
due to the fact that these relations have a very 
strong mapping with their corresponding post-
positions. This set of rules formed is pretty ro-
bust. On the other hand, relations like k3 and 
nmod do not have such a correspondence with 
the post-positions. Thus, their baseline values are 
on the lower side. Recall for these relations is 
also low. 

As compared to the results for LA, the results 
for LAA are lower. This is understandable as the 
attachment of a relation with its parent is not al-
ways correct. 

Note that we do not have any baseline rules 
for relations like k4, k5 and k1s. This is because 
baseline rules for other relations have the same 
post-position as that of these relations. For ex-
ample, the relations k3 and k5 have the same 
post position ‘se’ for which they record their 
highest respective occurrences. But, k3 was cho-
sen for the baseline rule as the number of occur-
rences for k3 with the post position ‘se’ exceeds 
than that of k5. 
 
4.2 Evaluation of Test Data 
 
After establishing the baseline, experiments were 
conducted to test the rules described in section 
3.2. These rules were tested on the test data set. 

Table 4.2 shows the LA and LAA for the 
evaluation experiment. 

 
Rela-
tion 

Precision 
LA LAA  

Recall 
LA LAA  

k1 66.0% 57.7% 65.1% 57.6% 
k2 31.3% 28.3% 27.8% 25.1% 
k3 13.0% 13.0% 64.2% 64.2% 
k4 40.6% 40.6% 54.1% 54.1% 
k5 44.4% 44.4% 21.0% 21.0% 

k7(p/t) 80.8% 77.2% 61.0% 58.4% 
k1s 51.0% 51.0% 18.5% 18.5% 
r6 82.1% 78.7% 89.6% 85.8% 
rh 100% 100% 15.7% 15.7% 
rd 66.7% 66.6% 25.0% 25.0% 
rt 69.5% 60.8% 84.2% 73.7% 

ras 66.6% 22.2% 75.0% 25.0% 
adv 67.3% 63.4% 56.4% 53.2% 

vmod 89.6% 75.8% 45.2% 38.2% 
nmod 23.2% 21.9% 27.4% 25.8% 

Table 4.2. 
. 
 Note that, the results for k7 have been calcu-

lated considering all k7’s, k7p/t’s together as 

k713. This is true for every result we present hen-
ceforth. The results are higher than that of the 
baseline which is shown in Table 4.1. Relations 
like k1 showed significant improvement in preci-
sion and recall. Recall value of r6 also went up. 
However, k2 recorded a lower precision than the 
baseline. This may be attributed to the fact that 
the baseline rule for k2 was formed for the post 
position ‘ko’. But while evaluating the accuracy 
of the tool k1 and k2 both had rules for the post 
position ‘ko’. 

The tool marked a total of 1654 dependency 
instances. Out of these, 1016 were correctly 
marked. This amounts to an overall LA precision 
of 61.4%. The overall recall stands at 55.3%. 
Among the relations that record a higher value of 
precision are k7(p/t), r6, vmod, rh and rd. In fact, 
relations like r6 have an even higher recall value. 
This goes to show that rules for relations like r6 
have broad coverage in addition to them being 
robust. It can be seen that the relations like r6, rh, 
rd, rt and vmod have higher baseline values and 
thus remain unchanged when the rules for these 
relations are tested on the test data.  

The table shows significant improvement for 
relations like k1 as compared to the baseline. The 
overall precision of the tool when run on the test 
data set for the results for LAA is 56.4%, which 
is lower than the overall precision of correctly 
marked dependency labels. The results for LAA 
also take into account correct attachment with 
their respective parent chunks along with the la-
bel. As can be seen, the recall is also expectedly 
lower at 51% than that of LA. 

Note here the sharp fall (almost 15%) in the 
precision value of vmod considering head at-
tachment as opposed to vmod without head at-
tachment. This happens because, while attaching 
the relation with its parent verb, the finiteness 
and non-finiteness is not considered. This, in 
some cases results in erroneous attachment with 
its parent verb. 

 
4.3 Ease of Annotation 

 
We took the rules which we describe as ‘robust’ 
and calculated the precision and recall values of 
these rules. These rules have been termed ‘ro-
bust’ because for these rules high accuracy. The 
results of these rules are shown in Table 4.3. 

 

                                                           
13 k7 thus becomes a generic label for location. It entails 
location in time, place and location elsewhere. 



Rela-
tion 

Precision 
LA LAA  

Recall 
LA LAA  

k1 91.5% 67.6% 13.8% 10.3% 
k7(p/t) 80.8% 77.2% 61.1% 58.4% 

r6 82.1% 78.7% 89.6% 85.8% 
rh 100% 100% 15.7% 15.7% 
rd 66.6% 66.6% 25.0% 25.0% 
rt 69.5% 60.8% 84.2% 73.7% 

adv 67.3% 63.4% 56.4% 53.2% 
vmod 89.6% 75.8% 45.2% 38.2% 

Table 4.3. 
 
As can be seen the precision for k1, without 

checking head attachment, goes up to 91.5%. 
However, there is also a steep fall in its recall 
value. This shows that although the rule is very 
strong, it has less coverage. 

Results for LAA have also been shown in Ta-
ble 4.3. It is shown that LAA precision for k1 as 
compared to that of LA has gone up but recall 
has come down. However, there is a steep fall in 
the precision of k1 (about 24%) with head at-
tachment as compared to that of k1. 

It can be seen that some of the rules formu-
lated are robust which would in turn aid manual 
annotators to annotate a large sized corpus reduc-
ing time and effort. This is one of the objectives 
for building the system which has been high-
lighted in Section 1. With a higher precision 
value, this tool would facilitate the process of 
annotation.  

 
5 General Discussion 
 
It was noted there were quite a few conflicts that 
the tool had to confront while marking the de-
pendency labels. These conflicts resulted in er-
rors. These errors have been analyzed in the fol-
lowing section. 
 
5.1 Error Analysis 
 
Error analysis was done on the development data 
set as it makes the tool unbiased. The size of the 
development data has been mentioned in section 
3.1. The results for the development data are 
shown in Table 5.1.  
 
Rela-
tion 

Precision 
LA LAA  

Recall 
LA LAA  

k1 66.7% 58.5% 68.3% 59.6% 
k2 37.4% 35.1% 32.2% 30.2% 
k3 20.9% 19.6% 66.7% 62.5% 
k4 44.7% 43.2% 57.3% 55.3% 

k5 43.1% 37.9% 27.1% 23.9% 
k7(p/t) 84.1% 77.3% 52.6% 60.0% 

k1s 39.8% 38.2% 16.0% 15.4% 
r6 82.1% 78.5% 82.7% 79.0% 
rh 93.7% 75.0% 21.1% 16.9% 
rd 90.9% 81.8% 25.0% 45.0% 
rt 92.0% 88.6% 69.8% 67.2% 

ras 71.7% 26.4% 67.8% 25.0% 
adv 49.3% 42.7% 46.2% 40.0% 

vmod 95.0% 83.2% 43.1% 37.7% 
nmod 18.4% 17.2% 18.5% 17.4% 

Table 5.1. 
 
Overall LA precision for running the tool on 

the development data set is 63.3%, with a total of 
7859 relations marked, out of which, 4975 de-
pendency instances are correctly marked. The 
recall stands at 56.2%. We describe the results 
for LAA later in section 5.1.6. 

The fact that the tool when run on the devel-
opment data set records a higher value for preci-
sion and recall than that for the test data set can 
be interpreted easily. Since the rules were formed 
after analyzing the development data set, the re-
sults are bound to be slightly higher than that of 
the test data. Moreover, the number of sentences 
in the development data set being much greater 
than the test data set, also results in a better cov-
erage for the rules. 

Below, we show the error analysis for incor-
rect labels marked for relations k1, k2, k3, k4, 
k5. There were also cases where the tool failed to 
mark any dependency relation for a chunk. This 
happened because the chunk failed to satisfy all 
the required constraints of the rules. 

 
5.1.1 Error Analysis for k1 
 
Table 5.2 below shows the major conflicts the 
annotator confronted with while marking k1. 
 

.Relation k2 k4 k7(p/t) adv pof 
No. of errors 258 4 173 18 173

Table 5.2. 
 
As can be seen from the Table 5.2, k1 records 

the highest number of errors with k2 followed by 
the pof relation. k1 conflicts with k2 for ‘0’ and 
‘ko’ post positions primarily. This happened be-
cause it is difficult to distinguish between the 
semantics of a ‘k1’ chunk with that of a ‘k2’ 
chunk. Currently, the tool does not use semantic 
cues to disambiguate between the two relations. 
It was observed that a large number of instances 
of k1 have a ‘0’ post position i.e. no post posi-



tion. The disambiguation can be done by bring-
ing into account semantic features like animacy. 
Recent machine learning experiments in parsing 
Hindi have shown that such semantic features 
prove to be very helpful in disambiguating cer-
tain relations (Bharati et al., 2008). We also in-
tend to incorporate this feature in our tool. 

The reason for conflicts with k7(p/t) is similar 
to that of k2. Also, not all time and place expres-
sions which are generally k7t and k7p respec-
tively are identified by the annotation tool. We 
do not mark the pof relation hence, this results in 
a high number of errors while marking k1. 
 
5.1.2 Error Analysis for k2 
 
As can be shown in Table 5.3, the following rela-
tions have major conflicts when k2 is wrongly 
marked by the tool. 
 

Relation k1 k4 k1s pof k7(p/t)
No. of 
errors 285 42 170 190 34 

Table 5.3. 
 

As mentioned in section 5.1.1, k1 and k2 have 
a high degree of conflicts, which a rule based 
system using syntactic cues alone cannot handle. 
We need to take into account certain other fea-
tures like animacy (Section 5.1.1). Similarly, the 
relation k1s is also difficult to disambiguate from 
k2. 

Another important observation here is that 
many noun or adjectival chunks which are ‘part 
of’ a complex verb represented as ‘pof’ are also 
not marked by the tool. These ‘pof’ chunks ex-
hibit very similar surface properties with the k2 
chunks. This results in a number of conflicts be-
tween the two. However, their ambiguity may be 
resolved to a certain degree by considering their 
semantic properties as well as the relative dis-
tance of these chunks from the main verb.  

 
5.1.3 Error Analysis for k3 
 
Table 5.4 shows the major conflicts the annotator 
confronted with while marking k3. 
 

Relation k5 rh k2 adv 
No. of errors 54 15 50 24 

Table 5.4. 
 

The tool records the highest number of con-
flicts with k5. This is due to the fact that k3 and 

k5 have almost similar syntactic cues. For exam-
ple, most of the chunks which are either k3 or k5 
have the post position ‘se’. The reason for con-
flict with ‘k2’ is also the same as above. We 
however, include a verb class for those verbs 
which have a sense of separation from the source 
for marking k5.  
 
5.1.4 Error Analysis for k4 
 
Most of the errors while marking k4, are with k2 
for the ‘ko’ post-position as shown in Table 5.5. 
 

Relation k2 
No. of errors 42 

Table 5.5. 
 

The relation k4 is marked for the chunk with 
post position ‘ko’ only when its parent verb in 
question belongs to a predetermined list of re-
cipient or beneficiary verbs. But there are cases 
where the parent verb may not always semanti-
cally be a recipient or a beneficiary verb, al-
though it may be present in such a list. 

 
5.1.5 Error Analysis for k5 
 

Relation k3 k2 vmod 
No. of errors 11 5 9 

Table 5.6. 
 

k5 being syntactically very similar to k3, records 
the highest number conflicts with it. 

k5 is marked only for that chunk whose parent 
verb is a motion verb with a sense of separation 
from its source. Examples of such verbs are ‘jA’, 
‘A’, ‘gira’ etc. But in some cases, even though 
the parent verb is a motion verb it may not repre-
sent the sense of separation in a particular con-
text. As a result, k5 gets erroneously marked. 
The same reason holds true for vmod and k2 as 
well. 
 
5.1.6 Error Analysis for Incorrect Head At-

tachment 
 
The error analysis, as described above, was done 
for incorrect and unmarked dependency labels. 
We now describe the error analysis for the head 
attachment of these dependency labels. In Table 
5.1 we have also showed the LAA values for the 
dependency labels for the development data. 

Again, the results for checking accuracy of 
dependency labels marked along with correct 



attachment with their corresponding parent are 
lower than the corresponding values for LA as 
shown in Table 5.1. The overall LAA precision 
stands at 57.6%. 4531 relations are correctly 
marked including their attachment with parent. 
Recall comes around 51.2%.  

 We have not taken into account the finiteness 
and non-finiteness of a parent chunk which hap-
pens to be a verb group while attaching the child 
with its parent. This could be the reason for 
lower accuracy for the head attachment. For rela-
tions like r6 and nmod whose parent chunk is 
generally not a verb group, the heuristic that its 
parent would be towards the immediate right of 
the chunk does not always hold true. This could 
also be the reason for lower accuracy. 
 
6 Comparison with Parser 
 
We compared our annotator with a broad 
coverage constraint based parser for Hindi 
(Bharati et al., 2002). For comparison, only the 
rules which were robust were considered for the 
annotator. The results for robust rules have been 
shown in Table 4.3. Our results were compared 
with the first parse given by the parser for a 
sentence. We consider only the first parse for 
comparison with the annotator. The results of the 
comparison are shown in Tables 6.1 and 6.2. 

Table 6.1 shows the LA values of the output 
of the parser compared with the LA values after 
running the annotator as a post-processing tool 
for the parser. We have shown only the precision 
values of the relations as the annotator intends to 
fine tune and improve the results of the first 
parse of the parser rather than provide higher 
coverage or recall. Table 6.1 shows improved 
results for all the relations after running the 
annotator over the first parse output. 

 

Relation Precision 
of Parser 

Precision after Post 
Processing 

k1 39.8% 54.8% 
k7(p/t) 48.4% 71.5% 

r6 81.6% 82.2% 
rh 75.0% 85.7% 
rd - 14 66.6% 
rt - 69.5% 

adv 0 68.6% 
vmod 4.2% 7.3% 

Table 6.1. 

                                                           
14A hyphen (‘-‘) against a relation indicates that the parser 
gave no output i.e., the first parse did not show the relation 
under consideration. 

It is evident from the table that for relations 
like adv, the parser failed to mark even one 
instance correctly for the first parse. But, the 
annotator corrects this anomaly and records a 
high value of precision for the same of 68.6%. 
For relations like rh and rd, the parser gave no 
output in the first parse. This is also corrected by 
the annotator. However, the annotator records 
only a marginal increase in the precision value 
for vmod. This is due to that fact that the parser 
marks a lot of vmod relations. Thus, the overall 
precision for vmod, after running the annotator, 
is low even though the annotator has a high 
precision for vmod (see Table 4.3).  

Table 6.2 shows the LAA results after running 
the annotator as a post processing tool for the 
first parse of the broad coverage parser. Again, 
the recall values have not been shown.  

 

Relation Precision 
of Parser 

Precision after Post 
Processing 

k1 37.1% 46.6% 
k7(p/t) 42.1% 67.3% 

r6 77.5% 78.5% 
rh 25.0% 57.1% 
rd - 66.6% 
rt - 60.8% 

adv 0 64.7% 
vmod 3.9% 6.2% 

Table 6.2. 
 

As can be seen from Table 6.2, it is evident 
that the annotator helps in improving the output 
of the first parse of the parser. It also improves 
the head attachment accuracy for the dependency 
labels shown in the table. Hence, this initial 
experiment shows that the annotator would prove 
helpful in fine tuning and improving the results 
of the parser. 

 
7 Conclusion and Future Work 
 
In this paper we showed how a rule based system 
has been built for automatic annotation for a 
Hindi Tree Bank. We also explained the rule 
format and the algorithm used by the annotation 
tool. The performance of such a system was also 
discussed. We showed how the system would 
facilitate manual annotation. We also showed 
results of the experiments conducted and in the 
end issues related to these experiments were dis-
cussed as part of error analysis.  

Based on the issues discussed in section 5, we 
intend to exploit certain linguistic cues as de-
scribed in section 5.1 to reduce the errors, while 



marking dependency relations in future. Also, we 
intend to take into consideration the finiteness 
and non-finiteness of the parent verb to reduce 
errors while attaching the child head with its par-
ent.  
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