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Abstract

The paper describes an approach to automati-
cally annotate a Hindi Treebank using Pan-
inian dependency framework. The annotator is
a rule based system and the rules use certain
syntactic cues available in a sentence. This
automated annotation scheme aims at facilitat-
ing manual annotation by reducing time and
effort of manual annotators. Also, the aim of
automatic annotation, among other things, is to
increase the efficiency of a broad coverage
constraint based Hindi parser. We also evalu-
ate this tool and show its accuracy and cover-
age.

1 Introduction

This paper describes a rule based effort designed
to automatically annotate a Hindi treebank in an
efficient and robust manner. There is a need for
creating a large treebank for carrying out various
tasks in NLP for Hindi and other Indian lan-
guages. The lack of such tree banks has been a
major bottleneck in the development of good
natural language tools and applications for Indian
languages. Treebanks have been successfully
created for various other languages like English
(Marcus et. al, 1993), German (Brants and Skut,
1998), Czech (Hajicova, 1998), Portuguese
(Bick, 2007), etc.

The automatic annotation done here is based
on the Paninian grammatical model (Begum et.
al, 2008; Bharati et. al, 1995) which is a depend-
ency grammar (Kiparsky and Staal, 1969). De-
pendency frameworks have been employed for
languages like Dutch (van der Beek et. al, 2002),
Italian (Bosco and Lambardo, 2004), Czech (Ha-
jicova, 1998), etc. It has been argued that de-
pendency frameworks are well suited for mor-
phologically rich and relatively free word order
languages (Hudson, 1984; Mel'Cuk, 1988).

Automatic annotation tools have been built for
languages like German (Brants and Skut, 1998),
Portuguese (Bick, 2007), etc. Our aim in building
such a rule based tool for automated annotation®
is:

1. To facilitate the process of annotation for the
manual annotators.

2. To correct and fine grain the output of a
broad coverage constraint based parser.

3. To explore the extent and performance of a
purely rule based system? in the field of
parsing.

The system works on the rules formulated by
exploiting certain syntactic cues such as post-
positions, TAM (tense, aspect and modality) la-
bels, POS (part of speech) labels, etc. In fact, the
mapping of a karaka® with post-positions is
pretty strong. There have been some previous
attempts in exploring this mapping between a
karaka and post-position. One such work (Be-
gum et al., 2008) worked with 1400 sentences. It
was found that some karaka labels bear striking
correspondence with certain post positions which
has since proved critical in designing a rule
based system. The results of the above experi-
ment have been shown in Table 1.1.

The size of the Hindi treebank used for development and
testing the tool is small in size.

*Note that since this is an ongoing work, the observations
and results pertaining to purely rule-based parsing are in no
way final.

*The elements modifying the verb participate in the action
specified by the verb. These participant relations with the
verb are called karakas. For a detailed analysis see Bharati
et al. (1995). Many relations mentioned in this paper are
described in Begum et al. (2008). For the complete tagset
description, see
http://ltrc.iiit.ac.in/MachineTrans/publications/technicalRep
orts/tr032/treebank.pdf
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Kr’V kA se para meM ne ko
k1 53 5 0 0 344 127
k2 174 70 5 5 0 280
k3 0 51 0 0 0 0
k4 0 9 0 0 0 77
k5 1 97 0 0 0 0
k7 1 4 38 141 0 0
kip 45 11 72 302 0 0
k7t 13 12 6 31 0 7
Table 1.1.

As can be seen, the experiment clearly shows
that the dependency relation ‘k1’ bears a strong
mapping with the post position ‘ne’. Similarly,

k7(p/t) overwhelmingly map to ‘meM’.

Our paper explores various ways to extend the
experiment described above. The paper is ar-
ranged as follows; Section 2 briefly explains the
annotation scheme. In Section 3 we describe the
approach and the algorithm used. Section 4 de-
scribes the experiments conducted and their re-
sults. We discuss the results and show the error
analysis in Section 5. Section 6 finally concludes
the paper.

2 Annotation Scheme

As mentioned in Section 1, the annotation
scheme used is based on the Paninian depend-
ency framework. The reason for working under a
dependency framework is the rich morphology
and the relatively free word order of Indian lan-
guages. This framework defines the relations
between a verb and its participants as karakas. A
karaka is defined as a participant in an action.
The karaka relations are syntactico-semantic” in
nature.

There are six basic karakas and some other
non-karaka relations. In total the annotation
scheme has about 28 labels (Begum et al., 2008).
The six karakas are:

kl - karta, k2 — karma, k3 — karana, k4 —
sampradaan, k5 — apaadaan and k7 — adhikaran.

Some of the non-karaka labels are r6 (posses-
sive), rh (purpose), rt (cause), etc.

As mentioned earlier, we plan to identify these
dependency relations using different robust strat-
egies incorporated in a rule based system.

1 (karta) and k2 (karma) are syntactico-semantic labels
which have some properties of both grammatical roles and
thematic roles. k1 for example, behaves similar to subject
and agent.

3 Approach

The approach mainly focuses on building a sys-
tem which uses some set of rules for each de-
pendency relation to annotate the corpus. We
mark only the inter-chunk® dependency labels.
Intra-chunk dependencies are not marked by the
automatic annotation tool.

3.1 Corpus Description

The sentences for the task of annotation were
obtained from the Hyderabad Dependency Tree-
bank (HyDT) (Begum et al., 2008). The sen-
tences were in the SSF format (Bharati et. al,
2005). In all there were 2053 Hindi sentences.
The corpus had 41803 words and 6244 unique
tokens. The average length of a sentence was
20.05.

This corpus was divided into a development
data set and a testing data. Development data
contained 1741 sentences and testing 312. Refer-
ence data was also used for evaluating the tool.
The reference data had all the dependency labels
marked.

3.2 Rules for Marking Dependency Relations

3.21 Relations marked

We mark only those dependency relations that
have frequency higher than a certain threshold®.
However, this set excludes relations like pof’
and ccof® even though they are above the thresh-
old value. A “pof’ relation generally occurs in the
case of complex verb, coming up with rules to
identify a complex verb in Hindi is rather diffi-
cult. “‘ccof’ also cannot be easily marked as its
identification is more structural than lexical.
Moreover, our aim is not to emulate the func-
tions of a broad coverage parser entirely. These
unmarked relations are best left to be marked by
a parser, or in the case of manual annotation, by
the manual annotators. In all we mark 15 de-
pendency relations.

®In the treebank chunk head appear as nodes. A chunk is a
set of adjacent words which are in dependency relation with
each other, and are connected to the rest of the words by a
single incoming arc to the chunk.

%The threshold set was 15.

"pof: part of

8ccof: conjuct of



3.2.2 Rule Format
Based on the experiments done and statistics col-
lected as well as on the basis of certain linguistic
cues, as described above, rules for identifying the
dependency relations were formed.

Each rule follows a specific format. A rule is
an 8-tuple containing eight fields, these are:

Modified Group i.e., the parent chunk,
Modified Constraints,

Modifier Group, i.e., the child chunk,
Modifier Category,

Relation,

Dependence of the relation on another
relation,

7. Multiplicity of the relation,

8. Weight of the rule.

oL E

Modified Modifier
Constraints  Constraints Dependence  Weight
Modified  Modifier Relation Multiplicity
Group Group
Figure 3.1.

The 6" field (dependence) signifies the de-
pendence of one relation on the other i.e., the
presence of an already marked relation within the
clause boundary (Clause boundary is explained
in Section 3.4.1). Multiplicity indicates the pos-
sible number of occurrences of a dependency
relation within a clause boundary.

A non-negative weight is associated with each
rule. Higher the rule weight, higher its priority
over other rules. But, a ‘0’ weight indicates that
the priority of the rule over other rules for the
same relation does not matter. These weights
have been assigned to the rules after conducting
some experiments. In these experiments we
found that some rules are very robust and hence
were assigned weights in the decreasing order of
their robustness. An example of a rule is stated
below:

VG tam=ko NP vib®=ko reln=k1 dep=X mult=1 weight=4

The above rule states that there is a modifier
chunk NP that possesses the post position or vib-

Svib: vibhakti. ‘vibhakti’ is a generic term for preposition,
post-position and suffix.

hakti ‘ko’. This chunk must modify a verb group.
The modified verb group has a constraint that its
TAM must belong to the list of TAMs associated
with the ‘ko’ post-position. If these constraints
are satisfied, then the modifier-modified relation
is k1. This rule is independent of other rules and
the multiplicity of the dependency relation is at
most 1. It carries a weight equal to 4. Another
example is given below.

VG tam=X NP vib=ko reln=k2 dep=k1 mult=1 weight=0

The above rule is read similar to the previous
example of the rule. The difference here is in the
modified constraint (2" field). Unlike the rule
we saw earlier, there are no constraints for TAM
(denoted by an “X’) and the modifier-modified
relation (k2) depends on another relation (6"
field). This means that a k1’ should have al-
ready been marked before we can apply this rule
successfully.

All the rules are placed in a rule file. The au-
tomated annotator (henceforth annotator, unless
otherwise specified) applies each and every rule
by scanning the rule file from top to bottom in a
sequential manner.

3.3 Categorization of Rules

The rules can be categorized based on the fol-

lowing two criteria:

1. Functionality: The rules that have been
formed explore the possibility of certain de-
pendency relation existing between two
nodes in a context.

2. Effectiveness: There are some rules, which
we define as robust (or strong and effective).
Section 4.3 explains the experiments on
these rules in detail.

3.4 Algorithm

The algorithm used by the annotator is a multiple
iterative process. It takes one chunk of the input
sentence at a time, and then applies rules from
the rule file one by one. The rules are in the form
of a tuple mentioned in Section 3.2. The algo-
rithm works on certain assumptions and heuris-
tics which are described in the following sec-
tions.



3.4.1 Assumptions and Heuristics

Linguistic Attributes or Features: The rules
made are dependent on certain linguistic attrib-
utes. Some of these attributes include:
Post-positions,
TAM,
Category of a lexical item,
List of verbs, nouns belonging to a par-
ticular class,
5. POS tags of lexical items.

el NS

Clause Boundary: Hindi is a verb final lan-
guage. Based on this assumption, the annotator
divides the SSF sentence into certain boundaries,
termed as clause boundaries, before marking the
dependency relations. The sentence has one or
more clause(s) and a boundary is imposed on
each clause that possesses a VGF (a verb group
chunk) with a finite verb as its head. Note that, in
case the final clause in a sentence does not pos-
sess any finite VGF, a boundary is imposed on it.
This verb group with a finite verb becomes the
boundary and recurring occurrences of such VGs
are formed into different boundaries. This im-
plies that in the Hindi, any verb (generally the
root of the complete dependency tree), seeks its
children or dependency relations towards its left.
The whole sentence is scanned from left to right
on the basis of a clause boundary. Of course,
there are instances where such definition of a
clause will fail. Making the clause boundary
identifier more sophisticated will be taken up in
the future.

Correct Input: The input representation for
our annotator is a sentence in SSF. The sentence
is POS tagged and chunked (Bharati et al., 2006).
We assume that the sentence has been POS
tagged and chunked correctly. The input has no
dependency labels marked.

3.4.2  Steps of the Algorithm

The algorithm can be explained with the help of
an example sentence. This explains how the an-
notator works using the rule file. The example
sentence is as follows:

(1) [ ((koD)ne ((rAma kI))ne ((cliZa))ne
‘someone’  ‘ram’s’ ‘thing’

((Ie lewA))ver J]_1 [[ ((waba BI))ne
‘take’ ‘then’” ‘EMPH’

((use))ne ((QussA))ne ((NahIM AwWA

‘him>  ‘anger’ not’ ‘came’

WA))ver]] 2.
‘was’

“Ram did not get angry even if someone took his
thing.”

The sentence is in wx'® notation. This sen-
tence contains two clause boundaries, which
have been labeled as _1 and _2 respectively. This
sentence is fed as input to the tool. The tool iter-
ates over all the chunks in a sequential order to
mark the dependency labels. For each chunk it
looks for all the rules which might possibly be
applicable. Sometimes, this linearity might get
violated because of the rule prioritization.

First of all, the first NP chunk ‘kol’ gets
marked as k1 with its parent chunk being the first
VGF (finite verb group) ‘le lewA’ i.e., the first
verb within the clause boundary. This rule states
that the first occurrence of a ‘0’ case marked
noun chunk is labeled as k1. The rule can be seen
in Figure 3.2.

In the next iteration the second chunk gets
marked as r6 with its parent being the next noun
chunk i.e., “cljZa’, as the constraints of the rule
for r6 are satisfied by this chunk. The third chunk
is marked as k2. The rule states that k2 would
only be marked when a k1 has already been
marked within the clause boundary.

Similarly, after the iterations within the first
clause boundary are finished, the tool iterates
over the next clause boundary and marks the first
chunk as k7t with its parent being the first verb
in the clause boundary which is ((nahiIM AwA
WA)). The head (underlined word) of this noun
chunk is a time expression and hence the relation
k7t. Likewise, the second noun chunk ‘use’ is
marked as k1. This is marked as k1 because the
rules states that the first occurrence of a noun
chunk having a ‘ko’ post-position is to be
marked as k1. This chunk has an implicit post
position ‘ko’ (dative case) and thus is marked as
k1.

The next noun chunk ‘gussA’ although being
a ‘pof’ is marked k2. The rule for k2 for a ‘0’
post position is perfectly applicable to this
chunk. We do not mark any ‘pof’ relation

9 this notation, capitalization roughly means aspiration
for consonants and longer length for vowels. In addition, "w'
represents “t' as in French entre and "x' means something
similar to “d' in French de, hence the name of the notation.
For mapping with Devnagari see,
http://Itrc.iiit.ac.in/MachineTrans/research/tb/map.pdf
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,{ VE tam=X NP vib=0 drelld dep=X mult=] weight=1 [

/ Y6 am=X NP vh-lo drel-Kl dep-X mulr-] weight-0 [

[ VG tam=X NP vibsko drelek2 dep=kl mult=]l weight=0 ’

| VG am=X NP vih=se drel-i3 dep=X mule-] weight=0 [

| VG listkd_se NP vib=ko drel=kd dep=X mult=] weight=0 [

W NP fam=X NP vib=Kl drel=r6 dep=X mult=>1 weight=0 |

\l VG list=time NP vih=0 drel=k7t dep=X mult=>1 weight=0 [

VG tam=X NP vib=k& s&Wa drel=ras dep=X mult=]
weight=0

N VG tami=X NP vib=0 dvel k}dcp kl wmult=]l weight=0

Figure 3.2.

(cf. section 3.2.1) in a sentence and so the chunk
gets marked as k2. Figure 3.2 shows the com-
plete iteration and the selection of rules clearly.

4 Experiments and Evaluation

Experiments were conducted using the annotator
to

1. define the scope of automatic annotation.

2. find out the accuracy of the process of auto-
mated annotation

3. judge the extent to which this tool would
help the manual annotators in annotating the
treebank.

4.1 Baseline

Before establishing the baseline we need to know
the fact that a post-position may be overloaded
when it comes to its mapping with different ka-
rakas and non-karakas. For example, ‘ko’ maps
to k1, k2, k4. ‘se” maps to k3, k5 as well as rh.
Hence, it makes the task of automatic annotation
a non-trivial task. It is important, therefore, to
come up with appropriate rules for marking de-
pendency labels correctly.

A Dbaseline was established to determine the
minimum threshold value of precision and recall
of various dependency relations. The baseline
consists of only those rules for which a depend-
ency relation has the highest frequency of occur-
rence with its corresponding post-position. The

baseline was evaluated on the test data set of 312
sentences. The baseline results are given in Table
4.1.

Table 4.1 shows the labeled accuracy® (LA)
and labeled attachment accuracy® (LAA) values
of precision and recall for the relations marked
for the baseline.

Rela- Precision Recall
tion LA LAA LA LAA
k1l 54.7% 50.1% 53.1% 48.9%
k2 491%  43.4% 19.9% 17.6%
k3 9.3% 9.3% 50.0% 50%
k4 - - - -
k5 - - - -
k7 86.1% 83.0% 42.7% 41.2%
kls - - - -
ré 82.1% 785% 79.0% 75.5%
rh 100% 100% 15.7% 15.7%
rd 66.6% 66.6% 25.0% 25.0%
rt 69.5% 60.8% 84.2% 73.7%
ras 66.6% 66.7% 75.0% 75.0%
adv 67.3% 63.4% 56.4% 53.2%
vmod  89.6% 75.8% 38.2% 38.2%
nmod 23.2% 21.9% 27.4% 25.8%
Table 4.1.

11| abeled Accuracy (LA) values for a relation only con-
sider the edge label without considering its attachment with
head.

12 | abeled Attachment Accuracy (LAA) values for a rela-
tion consider both attachment and edge label.



It can be seen that k7, r6 and vmod have a
higher threshold value for the baseline. This is
due to the fact that these relations have a very
strong mapping with their corresponding post-
positions. This set of rules formed is pretty ro-
bust. On the other hand, relations like k3 and
nmod do not have such a correspondence with
the post-positions. Thus, their baseline values are
on the lower side. Recall for these relations is
also low.

As compared to the results for LA, the results
for LAA are lower. This is understandable as the
attachment of a relation with its parent is not al-
ways correct.

Note that we do not have any baseline rules
for relations like k4, k5 and k1s. This is because
baseline rules for other relations have the same
post-position as that of these relations. For ex-
ample, the relations k3 and k5 have the same
post position ‘se’ for which they record their
highest respective occurrences. But, k3 was cho-
sen for the baseline rule as the number of occur-
rences for k3 with the post position ‘se” exceeds
than that of k5.

4.2 Evaluation of Test Data

After establishing the baseline, experiments were
conducted to test the rules described in section
3.2. These rules were tested on the test data set.

Table 4.2 shows the LA and LAA for the
evaluation experiment.

Rela- Precision Recall

tion LA LAA LA LAA
k1l 66.0% 57.7% 65.1% 57.6%
k2 31.3% 28.3% 27.8% 25.1%
k3 13.0% 13.0% 64.2% 64.2%
k4 40.6% 40.6% 54.1% 54.1%
k5 444% 44.4% 21.0% 21.0%
k7(p/t) 80.8% 77.2% 61.0% 58.4%
kis 51.0% 51.0% 185% 18.5%
ré 82.1% 78.7% 89.6% 85.8%
rh 100% 100% 15.7% 15.7%
rd 66.7% 66.6% 25.0% 25.0%
rt 69.5% 60.8% 84.2% 73.7%
ras 66.6% 22.2% 75.0% 25.0%
adv 67.3% 63.4% 56.4% 53.2%
vmod 89.6% 75.8% 45.2% 38.2%
nmod 232% 21.9% 27.4% 25.8%

Table 4.2.

Note that, the results for k7 have been calcu-
lated considering all k7’s, k7p/t’s together as

k7. This is true for every result we present hen-
ceforth. The results are higher than that of the
baseline which is shown in Table 4.1. Relations
like k1 showed significant improvement in preci-
sion and recall. Recall value of r6 also went up.
However, k2 recorded a lower precision than the
baseline. This may be attributed to the fact that
the baseline rule for k2 was formed for the post
position ‘ko’. But while evaluating the accuracy
of the tool k1 and k2 both had rules for the post
position ‘ko’.

The tool marked a total of 1654 dependency
instances. Out of these, 1016 were correctly
marked. This amounts to an overall LA precision
of 61.4%. The overall recall stands at 55.3%.
Among the relations that record a higher value of
precision are k7(p/t), r6, vmod, rh and rd. In fact,
relations like r6 have an even higher recall value.
This goes to show that rules for relations like r6
have broad coverage in addition to them being
robust. It can be seen that the relations like r6, rh,
rd, rt and vmod have higher baseline values and
thus remain unchanged when the rules for these
relations are tested on the test data.

The table shows significant improvement for
relations like k1 as compared to the baseline. The
overall precision of the tool when run on the test
data set for the results for LAA is 56.4%, which
is lower than the overall precision of correctly
marked dependency labels. The results for LAA
also take into account correct attachment with
their respective parent chunks along with the la-
bel. As can be seen, the recall is also expectedly
lower at 51% than that of LA.

Note here the sharp fall (almost 15%) in the
precision value of vmod considering head at-
tachment as opposed to vmod without head at-
tachment. This happens because, while attaching
the relation with its parent verb, the finiteness
and non-finiteness is not considered. This, in
some cases results in erroneous attachment with
its parent verb.

4.3 Ease of Annotation

We took the rules which we describe as ‘robust’
and calculated the precision and recall values of
these rules. These rules have been termed ‘ro-
bust’ because for these rules high accuracy. The
results of these rules are shown in Table 4.3.

1317 thus becomes a generic label for location. It entails
location in time, place and location elsewhere.



Rela- Precision Recall

tion LA LAA LA LAA
k1 915% 67.6% 13.8% 10.3%
k7(p/t) 80.8% 77.2% 61.1% 58.4%
ré 82.1% 78.7% 89.6% 85.8%
rh 100% 100% 15.7% 15.7%
rd 66.6% 66.6% 25.0% 25.0%
rt 69.5% 60.8% 84.2% 73.7%
adv 67.3% 63.4% 56.4% 53.2%
vmod 89.6% 758% 452% 38.2%

Table 4.3.

As can be seen the precision for k1, without
checking head attachment, goes up to 91.5%.
However, there is also a steep fall in its recall
value. This shows that although the rule is very
strong, it has less coverage.

Results for LAA have also been shown in Ta-
ble 4.3. It is shown that LAA precision for k1 as
compared to that of LA has gone up but recall
has come down. However, there is a steep fall in
the precision of k1 (about 24%) with head at-
tachment as compared to that of k1.

It can be seen that some of the rules formu-
lated are robust which would in turn aid manual
annotators to annotate a large sized corpus reduc-
ing time and effort. This is one of the objectives
for building the system which has been high-
lighted in Section 1. With a higher precision
value, this tool would facilitate the process of
annotation.

5 General Discussion

It was noted there were quite a few conflicts that
the tool had to confront while marking the de-
pendency labels. These conflicts resulted in er-
rors. These errors have been analyzed in the fol-
lowing section.

5.1 Error Analysis

Error analysis was done on the development data
set as it makes the tool unbiased. The size of the
development data has been mentioned in section
3.1. The results for the development data are
shown in Table 5.1.

Rela- Precision Recall

tion LA LAA LA LAA
k1l 66.7% 58.5% 68.3% 59.6%
k2 374% 351% 322% 30.2%
k3 20.9% 19.6% 66.7% 62.5%
k4 447% 43.2% 57.3% 55.3%

k5 431% 37.9% 27.1% 23.9%
k7(p/t) 84.1% 77.3% 52.6% 60.0%
kls 39.8% 38.2% 16.0% 15.4%
ré 82.1% 785% 82.7% 79.0%
rh 93.7% 75.0% 21.1% 16.9%
rd 90.9% 81.8% 25.0% 45.0%
rt 92.0% 88.6% 69.8% 67.2%
ras 71.7% 26.4% 67.8% 25.0%
adv 49.3% 42.7% 46.2% 40.0%
vmod 95.0% 83.2% 43.1% 37.7%
nmod 18.4% 17.2% 185% 17.4%
Table 5.1.

Overall LA precision for running the tool on
the development data set is 63.3%, with a total of
7859 relations marked, out of which, 4975 de-
pendency instances are correctly marked. The
recall stands at 56.2%. We describe the results
for LAA later in section 5.1.6.

The fact that the tool when run on the devel-
opment data set records a higher value for preci-
sion and recall than that for the test data set can
be interpreted easily. Since the rules were formed
after analyzing the development data set, the re-
sults are bound to be slightly higher than that of
the test data. Moreover, the number of sentences
in the development data set being much greater
than the test data set, also results in a better cov-
erage for the rules.

Below, we show the error analysis for incor-
rect labels marked for relations k1, k2, k3, k4,
k5. There were also cases where the tool failed to
mark any dependency relation for a chunk. This
happened because the chunk failed to satisfy all
the required constraints of the rules.

5.1.1 Error Analysis for k1
Table 5.2 below shows the major conflicts the
annotator confronted with while marking k1.

.Relation k2 k4 Kk7(p/t) adv pof

No. of errors 258 4 173 18 173

Table 5.2.

As can be seen from the Table 5.2, k1 records
the highest number of errors with k2 followed by
the pof relation. k1 conflicts with k2 for *0” and
‘ko’ post positions primarily. This happened be-
cause it is difficult to distinguish between the
semantics of a ‘k1’ chunk with that of a ‘k2’
chunk. Currently, the tool does not use semantic
cues to disambiguate between the two relations.
It was observed that a large number of instances
of k1 have a ‘0’ post position i.e. no post posi-



tion. The disambiguation can be done by bring-
ing into account semantic features like animacy.
Recent machine learning experiments in parsing
Hindi have shown that such semantic features
prove to be very helpful in disambiguating cer-
tain relations (Bharati et al., 2008). We also in-
tend to incorporate this feature in our tool.

The reason for conflicts with k7(p/t) is similar
to that of k2. Also, not all time and place expres-
sions which are generally k7t and k7p respec-
tively are identified by the annotation tool. We
do not mark the pof relation hence, this results in
a high number of errors while marking k1.

5.1.2 Error Analysis for k2

As can be shown in Table 5.3, the following rela-
tions have major conflicts when k2 is wrongly
marked by the tool.

Relation k1 k4 kls pof K7(p/t)
No.of  oge 42 170 100 34
errors

Table 5.3.

As mentioned in section 5.1.1, k1 and k2 have
a high degree of conflicts, which a rule based
system using syntactic cues alone cannot handle.
We need to take into account certain other fea-
tures like animacy (Section 5.1.1). Similarly, the
relation k1s is also difficult to disambiguate from
k2.

Another important observation here is that
many noun or adjectival chunks which are ‘part
of’ a complex verb represented as “pof’ are also
not marked by the tool. These ‘pof’ chunks ex-
hibit very similar surface properties with the k2
chunks. This results in a number of conflicts be-
tween the two. However, their ambiguity may be
resolved to a certain degree by considering their
semantic properties as well as the relative dis-
tance of these chunks from the main verb.

5.1.3 Error Analysis for k3

Table 5.4 shows the major conflicts the annotator
confronted with while marking k3.

Relation ki rh k2 adv
No.oferrors 54 15 50 24
Table 5.4.

The tool records the highest number of con-
flicts with k5. This is due to the fact that k3 and

k5 have almost similar syntactic cues. For exam-
ple, most of the chunks which are either k3 or k5
have the post position ‘se’. The reason for con-
flict with ‘k2’ is also the same as above. We
however, include a verb class for those verbs
which have a sense of separation from the source
for marking k5.

5.1.4 Error Analysis for k4

Most of the errors while marking k4, are with k2
for the *ko’ post-position as shown in Table 5.5.

Relation k2
No. of errors 42
Table 5.5.

The relation k4 is marked for the chunk with
post position ‘ko’ only when its parent verb in
question belongs to a predetermined list of re-
cipient or beneficiary verbs. But there are cases
where the parent verb may not always semanti-
cally be a recipient or a beneficiary verb, al-
though it may be present in such a list.

5.1.5 Error Analysis for k5

Relation k3 k2 wvmod
No. of errors 11 5 9
Table 5.6.

k5 being syntactically very similar to k3, records
the highest number conflicts with it.

k5 is marked only for that chunk whose parent
verb is a motion verb with a sense of separation
from its source. Examples of such verbs are ‘jA’,
‘A’, ‘gira’ etc. But in some cases, even though
the parent verb is a motion verb it may not repre-
sent the sense of separation in a particular con-
text. As a result, k5 gets erroneously marked.
The same reason holds true for vmod and k2 as
well.
5.1.6  Error Analysis for Incorrect Head At-
tachment

The error analysis, as described above, was done
for incorrect and unmarked dependency labels.
We now describe the error analysis for the head
attachment of these dependency labels. In Table
5.1 we have also showed the LAA values for the
dependency labels for the development data.
Again, the results for checking accuracy of
dependency labels marked along with correct



attachment with their corresponding parent are
lower than the corresponding values for LA as
shown in Table 5.1. The overall LAA precision
stands at 57.6%. 4531 relations are correctly
marked including their attachment with parent.
Recall comes around 51.2%.

We have not taken into account the finiteness
and non-finiteness of a parent chunk which hap-
pens to be a verb group while attaching the child
with its parent. This could be the reason for
lower accuracy for the head attachment. For rela-
tions like r6 and nmod whose parent chunk is
generally not a verb group, the heuristic that its
parent would be towards the immediate right of
the chunk does not always hold true. This could
also be the reason for lower accuracy.

6 Comparison with Parser

We compared our annotator with a broad
coverage constraint based parser for Hindi
(Bharati et al., 2002). For comparison, only the
rules which were robust were considered for the
annotator. The results for robust rules have been
shown in Table 4.3. Our results were compared
with the first parse given by the parser for a
sentence. We consider only the first parse for
comparison with the annotator. The results of the
comparison are shown in Tables 6.1 and 6.2.

Table 6.1 shows the LA values of the output
of the parser compared with the LA values after
running the annotator as a post-processing tool
for the parser. We have shown only the precision
values of the relations as the annotator intends to
fine tune and improve the results of the first
parse of the parser rather than provide higher
coverage or recall. Table 6.1 shows improved
results for all the relations after running the
annotator over the first parse output.

Relati Precision  Precision after Post

elation .
of Parser Processing
k1l 39.8% 54.8%
k7(p/t) 48.4% 71.5%
ré 81.6% 82.2%
rh 75.0% 85.7%
rd - 66.6%
rt - 69.5%
adv 0 68.6%
vmod 4.2% 7.3%
Table 6.1.

YA hyphen (*-*) against a relation indicates that the parser
gave no output i.e., the first parse did not show the relation
under consideration.

It is evident from the table that for relations
like adv, the parser failed to mark even one
instance correctly for the first parse. But, the
annotator corrects this anomaly and records a
high value of precision for the same of 68.6%.
For relations like rh and rd, the parser gave no
output in the first parse. This is also corrected by
the annotator. However, the annotator records
only a marginal increase in the precision value
for vmod. This is due to that fact that the parser
marks a lot of vmod relations. Thus, the overall
precision for vmod, after running the annotator,
is low even though the annotator has a high
precision for vmod (see Table 4.3).

Table 6.2 shows the LAA results after running
the annotator as a post processing tool for the
first parse of the broad coverage parser. Again,
the recall values have not been shown.

. Precision  Precision after Post
Relation .
of Parser Processing
k1l 37.1% 46.6%
k7(p/t) 42.1% 67.3%
ré 77.5% 78.5%
rh 25.0% 57.1%
rd - 66.6%
rt - 60.8%
adv 0 64.7%
vmod 3.9% 6.2%
Table 6.2.

As can be seen from Table 6.2, it is evident
that the annotator helps in improving the output
of the first parse of the parser. It also improves
the head attachment accuracy for the dependency
labels shown in the table. Hence, this initial
experiment shows that the annotator would prove
helpful in fine tuning and improving the results
of the parser.

7 Conclusion and Future Work

In this paper we showed how a rule based system
has been built for automatic annotation for a
Hindi Tree Bank. We also explained the rule
format and the algorithm used by the annotation
tool. The performance of such a system was also
discussed. We showed how the system would
facilitate manual annotation. We also showed
results of the experiments conducted and in the
end issues related to these experiments were dis-
cussed as part of error analysis.

Based on the issues discussed in section 5, we
intend to exploit certain linguistic cues as de-
scribed in section 5.1 to reduce the errors, while



marking dependency relations in future. Also, we
intend to take into consideration the finiteness
and non-finiteness of the parent verb to reduce
errors while attaching the child head with its par-
ent.
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