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Abstract

Robot manipulators have highly non-linear dy-
namics and as such, developing control frame-
works for such systems is difficult problem. In
this work, a framework was developed to con-
trol a robotic arm (The Barrett WAM 7 DOF)
and perform a trajectory following task. First,
the theory of Forward and Inverse Kinematics
in addition to important implementation details
are summarized. Then, the Equations of Motions
for the WAM arm are derived using the theory of
screw kinematics. Three different control strate-
gies are studied, implemented, and tested in dif-
ferent settings. Then, experimental results and a
comparative study are presented to illustrate the
performance of each system. Finally, directions
for future work are summarized.

1 Introduction

Robotic systems have various applications in a num-
ber of fields such as advanced manufacturing processes.
They are used in tasks such as welding, product inspec-
tion and testing, precision machining, and assembly pro-
cessing. Using such systems can lead to higher speed and
better precision and accuracy when performing these
tasks. A Robotic manipulator is composed of links con-
nected by joints allowing the arm to rotate and trans-
late. An end-effector is attached to the arm allowing it
to interact with the environment. The motion of manip-
ulators is typically controlled by a control system which
calculates the torques needed to drive the arm from an
initial pose to a target pose at any time. Jamshidi et
al. [4] introduced decentralized stabilization using PID
controllers plus a feedforward inverse dynamics compen-
sation in the configuration space (Joint space). Khatib
[3] introduced the operational space (end-effector) con-
trol formulation where the control of manipulator sys-
tems is performed with respect to the dynamic behavior
of the end-effector. Nakanishi et. al performed in [2] a
comparative analysis of different operational space con-
trol algorithm (velocity, acceleration and, Force control).
This work focuses on joint space control as in [4]. It
implements and compares different controllers and their
performance for a manipulator trajectory following task.

All experiments in this work were simulated using Peter
Corke’s Robotics’s toolbox.

2 Forward Kinematics

The forward kinematics for the WAM
is implemented using the equation gg(0)
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was run to update the joint angle values of a simulated
arm and it was verified that the desired trajectory
perfectly was reconstructed perfectly.
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Figure 1: Reconstructed path using FK

3 Inverse Kinematics

Let the instantaneous velocity at the end-effector be the
twist V5 then V5 = J5(0)0 where J5(0) is the spatial
manipulator Jacobian and @ is the angular velocity of the
robot’s joint with J5(0) = [& & & & & & &
and & = Adje&ﬁ_._efi—l@i—l (Adj is the adjoint opera-
tor). A differential change in the joint angle Af veloc-
ity will cause the end effector to change by AV with
AV =~ J5(0)Af. Define Ae as the instantaneous er-
ror between the current end effector pose and the target
pose. The inverse kinematic problem aims at solving
Ae = J5(0)AO. A solution f(Ae) = A was com-
puted using the damped least square method where
A0 = JT(JJT + N\2I)~1 Ae for an appropriate choice of
A. For ease of integration with the simulation platform
and address computational speed problems, the ikine(6)
provided by the robotics toolbox solves the IK problem
using optimization (based on the Levenberg-Marquardt
method) and was used instead of f(Ae).



4 Equations Of Motion of the manipulator

The EOM of motions of an open-chain manipulator are

M(6)6 + C(0,(0))(0) + N(6,6) = T where M is the in-
ertia matrix, C' is the Coriolis matrix, N include the
gravitational forces acting on the manipulator and 7 is
the vector of actuator torques.

4.1 Computing M for the WAM arm

Using the provided dynamics properties, a 4 x 3 trans-

Isxs %
zeros(1,3) 1
express the origin of the ith joint frame Vi € [1..7] in
terms of the base frame (g; is the coordinate of a point
lying on the joint axis of joint i). Another transfor-

formation gfm = [ ] was calculated to

Isxs rf
zeros(1,3) 1
the configuration of the ith link’s COM in the ith joint
frame where r; is provided and denotes the location of
COM of the ith link with respect to the ith joint frame.
Finally, the initial configuration of the frame attached
at the COM of the ith link axially aligned with the
joint frame is expressed in terms of the base frame as
gl’;li = géjig;-li Vi € [1..7]. I;, The inertia matrix for a
frame at the COM, axially aligned with the ith joint
frame is given by dezag( I)QT. The body jacobian
J . (0) corresponding to g;; was computed for each link

[g{ e o .0
T —1 . .
where fj = Ad(eéj"j...efif’igsli(o))fj Vi < 4.
we obtain M(0) = Y." , JI(0)M;J;(0) where M; =
I3.3m; zeros(3,3)

[zeros(S, 3) L

and inertial matrix of the ith link respectively. Note
that the Matlab inv command was found to be slow
when performing symbolic matrix inversion and there-
fore, Ad;1 was computed using the identity Ad;1 =
RT —RTp

o]

4.2 Computing of N and C for the WAM arm

Once M is found, the C matrix can be computed as
follows C(G 9) =iy 1(881\(;[: 8%““ - 6M’”)0k and
N(6, 6’) 9V where V is the potential energe of the
mampulator
Note that to speed up calculations, the rne method in
the robotic toolbox was used to calculate the torques
from the EOMs given 6, 0.60. rne Computes the inverse
dynamics using the recursive Newton-Euler formulation.

5 Models and Control algorithms

This section presents more details about the control al-
gorithms. Experiments were performed on 1) a noise
free system and 2) injecting a measurement noise into
the first joint position measurement A(0,0.0226 rad).

mation g;'-li = { was found which gives

using the equation: ngi (0) =
Finally,

and m; and I; are the mass

The PIDs were all tuned on a robot model with parame-
ters listed in project description table 3 and the control
stategy was tested on a robot model with parameters in
table 2

5.1 Decentralized Joint Control

Fig 2 is the Simulink diagram for a decentralized con-
troller in which the inertia and coupling forces are
treated as disturbances in the control loop. Let M (0) =
M + AM(6), the EOM become: M@+ AM(6)6 + C6 +
N = 7 and treat the term AM(0)6 + CO + N as a dis-
turbance d. An independent PID controller (PID =
ky + kit s+ kg e ~ ) was designed and tuned to control

each JOlIlt 1ndependently (Each pid joint control block
implements one PID controller for one joint). The pa-
rameters were first tuned using Ziegler-Nichols method
but it was found that better performance was achieved
when tuning using the Simulink PID autotuner.

Desired angular velocites il

Figure 2: Decentralized Joint Controller

5.2 Feedforward Control

Fig 3 shows the plant and the implemented feedfor-
ward controller. [1] gives the equation of the generated
torques:

T* = M(@d) 9d + C(@d,ed)ed + N(Qd) + K, ( qq — q) +
Ky(qa — @) = D704, 04,04) + Ko(da — 4) + Kplga — q)
where D1 is the inverse dynamics functions [inverse dy-
namics block in Figure 3] and K, K, are gain matrices.
Since the gain matrices are diagonal, and independent
PID controller was designed for each joint similar to sec-
tion 5.1. The feedforward control compensates for the
gravity disturbance torque in pure decentralized control
and incorporates computations of inertia and other dy-
namics into the control law [1].

5.3 Computed Torque Control

[1] and [5] describe the computed torque strategy shown
in Figure 4. Computed torque control converts the non-
linear dynamics of the robot arm into linear dynam-
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Figure 4: Computed torque controller

ics via feedback linearization (using full-state nonlinear
feedback) which allows the usage of linear control strat-
egy such as linear feedback control [5]. The control law
equation is: 7 = M(0)(0; — Kqé — Kpe) + C(6,0)0 +
N (0, 0) where 6 is the desired angular acceleration and
e is the position error term. The stability of the sys-
tem was studied and established in [5]. Angular velocity
was obtained by differentiating the noisy position mea-
surements. The tested system was sensitive to noise and
therefore an Extended Kalman filter (EKF) was used
to filter our the additive noise from the first joint po-
sition measurements. The parameters used in the EKF
are: state covariance = diag([0 10e —5]), measurement
covariance = (0.000053. The sampling time was set to
5 times faster than the controller’s sample time. The
EKF measurement function is y = x;;(1) since the only
observed state is the angle. i is the joint index and k
is the time step. The EKF state transition is defined as
Tik = Tk + [T (2);u;/mq] * dt where dt is the sample
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Figure 5: M(1,1) when changing J1 and J2 angles

time. m; is an average inertial value for the M(1,1)
element of the inertia matrix. This average value was
found by analyzing how the value of mqy; varied with
different robot configuration and then taking an average
value ((maxz — min)/2). Figure 5 shows an example of
how the value of mj; changes when joint 1 and joint 2
angles are varied from —x to . All PID parameters in
addition to rise time, settling time, overshoot, gain and
phase margins for the 3 controllers are specified in the
appendiz.

6 Results

In this section, the results are presented for the differ-
ent controllers. First a visual result overlapping the ref-
erence trajectory and the generated trajectory is pre-
sented for each controller for a perfect and noisy en-
vironment. Two error metrics are used: the per joint
average error (JAE): E(i) = & chvzl |desired(6;(k)) —
response(6;(k))| and the total averaged error (TAE):
E = 21-721 %Z]kvzl |desired(6;(k)) — response(0;(k))]
where 7 is the joint index and k is the sample time.

6.1 Decentralized controller

Decentralized control

Decentralized control

Figure 6: Decentralized controller (reference = orange).
Right fig: noisy



H joint index  JAE TAE H joint index JAE (noisy) TAE (noisy) H

1 0.0047 - 1 0.0103 -

2 0.0001 - 2 0.0002

3 0.0006 - 3 0.0020

4 0.0359 - 4 0.0354

5 0.0176 - 5 0.0177

6 0.0258 - 6 0.0260

7 0.0006 - 7 0.0022 -

- - 0.0853 - - 0.0937

Table 1: Decentralized control errors

6.2 Feedforward control
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Figure 7: Feedforward control (reference = orange)

H joint index  JAE TAE H joint index JAE (noisy) TAE (noisy)

1 0.0013 - 1 0.0028 -

2 0.0002 - 2 0.0007

3 0.0002 - 3 0.0027

4 0.0001 - 4 0.0004

5 0.0002 - 5 0.0016

6 0.0000 - 6 0.0033

7 0.0006 - 7 0.0021 -

- - 0.0028 - - 0.0136

Table 2: Feedforward control errors

6.3 Computed Torque Control

H joint index  JAE TAE H joint index JAE (noisy) TAE (noisy)

1 0.0051 - 1 NA -

2 0.0031 - 2 NA

3 0.0012 - 3 NA

4 0.0091 - 4 NA

5 0.0159 - 5 NA

6 0.0091 - 6 NA

7 0.0058 - 7 NA -

- - 0.0492 - - NA

Table 3: Computed torque control errors
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Figure 8: Computed torque control (reference = orange)

Figure 9 shows the position measurements and the refer-
ence angle for joint 1 when using computed torque con-
trol with an extended Kalman Filter in a noisy setting.

Figure 9: Reference signal in blue and measured joint 1
angle in yellow

7 Discussion

The computed torque controller was very sensitive to
noise. Using an Extended Kalman Filter algorithm on
top to filter our the noise resulted in a relatively bet-
ter state estimate (Figure 9) over time and a smoother
tracking performance. However, clear spikes in the mea-
sured joint angles can be seen, specifically when the
derivative of reference signal flips signs (periods of tran-
sitions). Further analysis of the cause of these spikes
is required before any potentially deploying the algo-
rithm to a real system. Based on the TAE metric, the
feedforward controller, achieved better tracking perfor-
mance compared to pure joint decentralized control un-
der both perfect (T'AEgecentratized = 30 * TAEpp) and
noisy settings (T AEgecentratized = 9 * TAEpp) which
agrees with the result obtained in [4]. The feedforward
controller also achieved better performance compared
to the Computed Torque Control in the perfect setting
(TAEcr 15« TAEpp). We can conclude that the
feedforward controller performed best under the assump-
tions of our simulated environments. Further testing,
better tuning of parameters, and additional theoretical
analysis are needed before generalizing this conclusion.
Future work for a broader comparative study is to im-
plement and test against operational space controllers
as defined in [3] and [2]. Manipulators control goals are
usually formulated in Cartesian operational space and
as such control strategies must be implemented in this
space. Operational space also allows incorporating force
control on top of position control which allows robots
to perform more dexterous and a wider range of ma-
nipulation applications. Finally, It is worth noting that
the topic of robotic safety (safe manipulation) was not
discussed in the analysis of the different control algo-
rithms. This should be an important aspect of future
comparative studies.
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8 Appendix

8.1 Decentralized Joint Control Parameters

H joint index kp k; kq N H
1 5.44 1.23 4.85 22.7
2 1510 6860 38 297
3 73.62 181  6.76 112
4 33.8 NA 4 441
5 5 NA 041 6783
6 2.57 NA 0.22 1052
7 0.084 0.095 0.016 2224.66

Table 4: PID parameters (Feedforward Controller)

joint index Rise-time settling time overshoot Gain margin phase margin
1 0.29s 2.58s 18 % -25.3dB @ 0.5 rad/s  64.9 deg @ 4.29 rad/s
2 0.0171s 0.244s 238 %  -19.6 dB @ 12.1 rad/s 78.1 deg @ 57.2 rad/s
3 0.0237s 0.217s 16.1 %  -29.8 dB @ 4.16 rad/s 90.4 deg @ 72.6 rad/s
4 0.0442s 0.33s 13.8 % inf dB @ inf rad/s ~ 77.6 deg @ 32.7 rad/s
5 0.0283s 0.239s 113 %  -74.2dB @ 2.84 rad/s 82.5 deg @ 57.2 rad/s
6 0.0344 0.269s 13.7 % inf dB @ inf rad/s 78.6 deg @ 43.3 rad/s
7 0.0663s 0.55s 14.6 % -25.9dB @ 2.41 rad/s 77.7 deg @ 22.6 rad/s

Table 5: Performance and robustness (Feedforward Con-
troller)

8.2 Feedforward control parameters

H joint index kp ki kq N H
1 0.21 0.009 1.15 5.46
2 105.58  49.44 15.92  1887.49
3 31.57  60.62 3.01 33.02
4 57.48  148.28 5.28 169.92

0.72 0.86 0.14 108.43
0.54 0.55 0.11 104.31
3.94e-6 1.33e-8 7.78e-5  13.46

-~ o v

Table 6: PID parameters (Feedforward Controller)



