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Abstract—Parallel computing systems are becoming
widespread and grow in sophistication. Besides simulation,
rapid system prototyping becomes important in designing and
evaluating their architecture.

We present an efficient FPGA-based platform that we de-
veloped and use for research and experimentation on high
speed interprocessor communication, network interfaces and
interconnects. Our platform supports advanced communication
capabilities such as Remote DMA, Remote Queues, zero-copy
data delivery and flexible notification mechanisms, as well as
link bundling for increased performance.

We report on the platform architecture, its design cost,
complexity and performance (latency and throughput). We also
report our experiences from implementing benchmarking kernels
and a user-level benchmark application, and show how software
can take advantage of the provided features, but also expose the
weaknesses of the system.

I. INTRODUCTION

Chip and cluster multiprocessor systems are becoming
widespread, while also growing in sophistication. To achieve
efficiency, they strive for a tight coupling of computation and
communication, and even propose customization of Network
Interface features to meet particular application domain de-
mands. Advanced features in the Network Interface influence
the design of, or require support from the underlying inter-
connection network. Thus, a goal is the integrated design of
network interface and interconnect features.

Evaluating an entire system architecture before it is built
is very complex and requires approximations. Simulation and
rapid prototyping are the available tools, each with its pros and
cons. Rapid prototyping is becoming increasingly important,
owing to the availability of large field-programmable gate
arrays (FPGA), which enable the design and operation of
systems that approximate the actual ASIC designs with very
high accuracy compared to simulators. This ability is even
more important as the software-hardware interactions are only
cruedly (if at all) modelled in simulators.

For our research and experimentation in high speed
processor-network interfaces and interconnects we developed
and describe in this paper an FPGA-based prototyping system.
Our prototyping platform consists of multiple (currently 8)
commercial personal computers (PC’s) linked through our
custom interconnect. An FPGA development board plugs into

the PCI-X bus of each PC, and is configured as its network
interface (NI). A number of additional FPGA boards are
configured as network switches. The key features of this
platform are:

• Remote Access Primitives: for efficient communication
we use Remote Direct Memory Access (RDMA) and
Remote Queues for short messages.

• Efficient Event Notification: we support flexible arrival
and departure notification mechanisms (selective, collec-
tive interrupts or flag setting).

• High Throughput Network: each link offers 2.5 Gbits/s of
net throughput per direction [1]. Bundling 4 such physical
links together (byte-by-byte or packet-by-packet) enables
the creation of 10 Gb/s connections.

• Efficient Network Operation: lossless communication via
credit-based flow control; per-destination virtual output
queues (VOQ) for flow isolation; large valency switch
(12×12 switch, with up to 20×20 possible in future
systems). Bundling up to 4 switches in parallel can offer
up to 120 Gbits/s of network throughput.

We are using this prototype platform to study system-level
aspects of network interface, efficient interprocessor commu-
nication primitives, and switch design, as well as evaluate their
overhead and scalability for future multi-core and multi-node
parallel systems. Colleagues from our Institute have used it for
research in storage area networks [2]. In this paper, we report
on the system architecture and performance, as well as the
design cost and development experience. Our contributions are
twofold: (i) we present the design and implementation details
of an efficient, high-performance communication platform
supporting advanced capabilities. (ii) we describe experiences
and evaluation of the platform with (a) benchmarking kernels
and (b) a user-level, interprocessor communication benchmark
application. The evaluation gives valueable insight of the
use and efficiency of the supported features and indicates
bottlenecks that must be addressed in future systems.

In the rest of the paper, section II discusses interprocessor
communication primitives and section III and IV describe in
more detail the NI and switch architectures. Section V presents
implementation details, experimental evaluation results and
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Fig. 1. Remote DMA: the receiver allocates separate buffer space per sender

discusses the efficient use of NI features. Finally, section VI
discusses related work and section VII offers our conclusions.

II. EFFICIENT INTERPROCESSOR COMMUNICATION

PRIMITIVES

To support efficient interprocessor communication, we need
a set of simple, yet powerful communication primitives to be
supported in hardware. This set must be as small as possible
in order to reduce implementation cost, and as versatile and
composable as possible, in order to maximize utility for the
software. In our research we focus and base all network
interface (NI) functionality on just two primitive operations:
Remote DMA and Remote Queues.

A. Remote Direct Memory Access

The Remote Direct Memory Access (RDMA) is the basic
data transfer operation needed to enable zero-copy protocols.
Zero-copy protocols deliver data in-place, so as to avoid the
receiver having to copy them from one memory location to
another. This is an important factor in overhead reduction,
since data copying introduces major costs in latency, memory
throughput, and energy consumption. In the remote DMA
operation, every network packet carries the destination address
where its data should be written, thus the receiving NI avoids
to place the data in a temporary buffer, and then rely on
protocol software to copy these data to their final location.
The basic challenge in implementing RDMA is dealing with
virtual-to-physical address translation and protection.

Fig. 1 illustrates the RDMA operation, in the presence of
multiple parallel transfers, and when packets of each transfer
may be routed through different paths (“adaptive” or “multi-
path” routing). Multiple senders, P1 and P2, are sending to
the same receiver, P3, in separate memory areas; otherwise
the synchronization overhead would be excessive.

Multipath (adaptive) routing is desirable because it greatly
improves network performance; however, multipath routing
causes out-of-order delivery – a complex and expensive prob-
lem that many architects want to avoid. Remote DMA matches
well with multipath routing: each packet specifies its own
destination address, and it is placed in the correct place
regardless of arrival order. The only problem that remains is to
detect when all packets belonging to a same DMA “session”
have arrived (subsection III-E).

B. Remote Queues

Remote DMA is well suited to pair-wise (one sender,
one receiver) producer-consumer type bulk communication:
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Fig. 2. Remote Enqueue: atomic operation by multiple senders on a single
queue

the transmitter controls the write pointer, while the receiver
controls the read pointer. RDMA is not optimal for small
transfers: it requires some overhead to specify the source and
destination addresses, initiate the DMA and then the transfer
takes place; notice that a small transfer may be comparable
in size to the RDMA descriptor. Also, if multiple senders
exist, they must each be allocated a separate memory area,
at the cost of additional memory usage, and also increased
cost of monitoring arrival in these multiple memory buffers.
Remote Queues (RQ) [3], [4] offer an effective alternative for
these cases. A remote enqueue operation specifies the ID of
the queue where its data will be placed. The receiving NI
maintains the queue and atomically accepts messages upon
arrival, Fig. 2; this property makes remote queues a valuable
synchronization primitive.

One important use of queues that we target in our research
is to collect notifications for multiple concurrent transfers. If
a receiver is expecting data from many potential sources via
RDMA, and data arrival is signaled conventionally, by writing
a flag at the last address of each transfer, then the receiver has
to circularly poll many flag locations; this introduces latency
and consumes memory bandwidth 1. Alternatively, if arrival
notifications are all placed in a single queue, the receiver can
simply wait for that queue to become non-empty, and then
read from that queue the information of a transfer that got
recently completed.

III. NI PROTOTYPE

Our prototype NI is designed as a 64-bit PCI-X peripheral
based on a Xilinx Virtex II Pro FPGA and uses up to 4 Rocke-
tIO multigigabit transceivers [1] for the network transport. The
architecture of NI is depicted in Fig. 3. We briefly describe
the main modules of the system in the paragraphs below
and we focus on the components supporting interprocessor
commmunication in the next subsections.

The PCI-X module fully implements initiator, target and
interrupt functions and exposes memory-mapped regions to
the system. It supports 32 and 64-bit accesses in burst or
non-burst mode to the target interface, while the initiator
provides the DMA capabilities to read/write from/to the host’s
memory, supporting 32 or 64-bit wide bursts using physical
PCI addresses.

1If notification is done through the use of interrupts there is no need for
this mechanism; however, the cost of per-transfer interrupt is excessive in high
speed communications and they should be avoided whenever possible.
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The Link interface uses the RocketIOs to transmit the pack-
ets through high speed serial links. It injects control delimiters
using in-band signaling, transmits the raw packet data and
appends CRC checksums for error detection. Moreover, it
uses a QFC-like credit-based flow-control protocol, to achieve
lossless network transmission.

The DMA Engine is the heart of both the outgoing and
incoming portion of the NI which arbitrates between and
serves transfers from (i) Request Queues to generate outgoing
traffic and (ii) Incoming Network Queues to serve all the traffic
that arrives from the network and will be delivered to the host
memory.

A. RDMA Support

Our prototyping approach allows the host processor to post
transfer descriptors for RDMAs to memory-mapped regions
which are exposed by the NI. We have chosen to support only
RDMA-Write in hardware since it is the basis for RDMA
communication; RDMA-Read can be implemented via system
software using a rendezvous protocol. The descriptors arrive at
NI’s PCI-X target interface, are stored in the RDMA Request
Queues and served by the central DMA engine.

A transfer descriptor consists of two 64-bit words which
contain all the information needed to initiate and transmit
an RDMA packet. The first word specifies the PCI-X source
address for the local data and the second word contains:

- a 32-bit remote host destination physical address; where
the data will be transfered to,

- the size of the transfer, in 64-bit words (the maximum
supported size is 512 words or 4096 bytes),

- the ID of the destination host (current support for 128
hosts) and

- an “opcode” field that controls the notification options for
the transfer, as described shortly.

The RDMA Request Queues keep the transfer descriptors for
the pending remote writes and are organized per-destination-
node to prevent head-of-line blocking and ensure flow isola-
tion. We currently have 8 queues, one per-destination host in

the network, that allow up to 128 pending transfer descriptors
each.

Besides decoupling the operation of the DMA engine from
the processor, these request queues support clustering of
requests to the NI: the host processor can write multiple
transfer requests to the queue (and even write them in non-
sequential order), while holding their processing back until a
special “Start Flag” bit is set in the last one of the clustered
requests; at that time, all clustered requests are released to
the DMA engine for processing. One example for such use
would be to prepare a scatter operation before the actual data
are computed, then release the entire scatter when the data
become available.

B. Remote Queues Support

Although the remote DMA mechanism could support of
remote enqueues, we followed a different approach. A remote
write operation requires a transfer descriptor to be written in
a request queue and then a local read DMA to be performed.
This series of events entails significant latency overhead since
the system bus is traversed two times. Our remote enqueue
approach relies on a mechanism that allows issuing low-
latency short messages. This mechanism allows the processor
to form messages directly into NIs memory – Outgoing
Message Queues – and avoid the double traversal of the system
bus.

The Outgoing Message Queues are organized per-
destination and allow the processor to implement a remote
enqueue operation or send control information (for example a
cache line or a pointer) without posting a transfer descriptor.
The processor forms the actual short messages (header and
body) into these queues and the central DMA engine forwards
them to the network. Moreover, processor’s programmed-IO
can exploit the write-combining buffers and greatly improve
performance by transferring the packet data into bursts. We
currently have 8 queues, one per-destination host in the
network, of 2KByte each, implemented as a circular buffer
in a statically partitioned 16KByte memory.

The outgoing messages contain a QueueID, instead of a
destination address, for the remote enqueue operation, which
should be translated into a physical address at the receiver.
This translation is dynamic and provides the physical ad-
dresses in a cyclic manner in order to form circular queues
into the receivers host memory. The mechanism that handles
these messages at the receiver uses a 256-entry lookup table
– Queues Translation Table – which keeps 128-bits per entry:

• a 64-bit base physical address which is bound with the
queue ID

• queue’s head pointer offset
• queue’s wrap around offset
During an enqueue operation, the head pointer of the

associated Queue advances and when it reaches the wrap
around offset it returns to the base address. This translation
table is also memory-mapped in the NI’s address space and
can be configured by the system software to allow the creation
of 256 circular Remote Queues of programmable size.



C. Notification Mechanisms

The NI provides three notification options:

i. local notification
ii. remote interrupt

iii. remote notification

Local Notification is used to inform the sending node that
the packet was sent to the network: when so requested by a
transfer descriptor or a short message, upon departure of the
transfer, the NI copies the tail pointer of the associated queue
to prespecified locations in host memory, using a single-word
DMA write access. Since we have per-destination queues,
we also have per-destination locations in the host memory
for these local notifications. The addresses for these memory
locations can be programmed by software. In our system we
have 8 Local Notification memory locations for the remote
write operations and 8 more for the short messages (we
currently have 8 destination nodes in our network).

The processor can poll in these notification locations to
determine the state of the requested transfers i.e. how many
transfers have departed (transfers from a single queue depart
in-order), hence recycle their slots. Processor polling in the
host memory is lighter than polling the tail pointer itself – a
NI control register – in I/O space.

Remote Interrupts and Remote Notifications can be used to
inform the receiving node that a packet or message has arrived.
The former are traditional PCI interrupts, while the latter are
similar to their local counterparts: they write (via single-word
DMA write) the last address of a completed DMA operation
into a prespecified address in the receiver’s host memory. Since
the packets come from different hosts, we have per-source
locations in the host memory for the remote notifications. The
addresses for these memory locations can be programmed by
software.

Notice that our system uses packet segmentation – for large
RDMA transfers – and multi-path routing, thus the packets
may arrive out-of-order and through different network paths.
Solving these issues is very crucial for the correct operation
of remote notifications and require the use of a completion
notification mechanism (subsection III-E).

Local and remote notification options, in combination with
the operation clustering option, allow for a drastic reduction
of number and overhead of interrupts. For example, if the net-
work provides in-order delivery, a large multi-packet transfer
can use interrupt or notification only for the last packet. In
a network storage application, this allowed a 3 to 4 times
improvement in bandwidth [2].

D. Multiple VOQ Support

The use of a single output queue for all outgoing traffic re-
gardless of destination leads to head-of-line blocking resulting
in significant performance loss. In order to avoid the head-of-
line blocking effect, multiple virtual output queues (VOQs)
– one per (potential) destination – are implemented. The use
of VOQs instead of a single queue greatly improves the NIs
performance and localizes the effects of congestion.
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Fig. 4. VOQs block and flow diagram

The initial architecture of the VOQ handling system is
based on previous research [5]. Fig. 4 depicts the initial
VOQs architecture where the thick arrows show the packet
flow through the various modules. Traffic is segmented in
variable-size multi-packet segments and only the first segments
of each VOQ reside in on-chip memory. When a VOQ be-
comes excessively large its body migrates to external memory
(SRAM and/or DRAM) which is partitioned in blocks of
configurable size and dynamically shared among the available
VOQs through the use of linked-list structures implemented
in hardware.

The addition of multi-path support – load balancing – is
highly dependent on the VOQs implementation and led to
a very complex design, inappropriate for FPGA prototyping.
Therefore, we simplified the VOQs block by keeping only on-
chip VOQs in the current implementation and by not making
use of external memories (i.e. DRAM). The current VOQs
design is far more flexible and has lower latency since the
linked-lists are removed and packet processing is performed
in parallel with packet sorting; before packets enter the VOQs.

The RDMA packets (max. size 4096 bytes) that exceed
the maximum network packet size, which is 512 bytes in
our design, are segmented into smaller independent RDMA
packets by modifying or inserting the appropriate packet
headers. After the appropriate segmentation, the packets are
sorted and enqueued to per-destination VOQs (8 in our system)
to be served by the scheduler. The scheduler cooperates with
the multi-path block and serves the flows according to the
scheduling policy of the multi-path routing scheme.

E. Multipath Routing and Completion Notification

Inverse multiplexing [6] is a standard technique that allows
k links of capacity C each to be combined together in order
to implement a ”link” of capacity k · C. The load on each
link is switched (routed) to the destination independently and
thus the original traffic needs to be partitioned at least per
packet 2. Moreover for inverse multiplexing to operate on
internally-non-blocking switching fabrics, the load must be
evenly balanced among the parallel paths, on a per-destination
basis.

Such multipath routing may deliver packets out-of-order,
at the destination. Owing to the use of RDMA semantics
(each packet carries its own destination address / ID), packet

2The alternative of per ”flow” partitioning is not appropriate for our system,
since the 8 existing flows are very few and potentially unbalanced to allow
load balancing.



payload can be delivered in-place in the host memory even if
the packets arrive in scrambled order. Although the RDMA
semantics eliminate the need for reorder buffers and data
copying, Completion Notification remains a problem. If data
are delivered in-order, completion can be signaled by the last
word being written into its place, however, when packets can
arrive or served out-of-order, the last address in the destination
block can be written into before intermediate data have arrived.

Our current method to provide completion notification is
to resequence packet headers. Notice that we economize
on resequence buffer space by writing packet data into its
destination address, and only keeping packet headers in the
resequencing buffers. After resequencing, we discard headers
in-order until seeing a header that contains a notification flag;
when this header is seen after resequencing, we are sure that
all packet before it have been received and processed, hence
the notification can be safely delivered.

IV. SWITCH PROTOTYPE

Our switch implements an 8×8 Buffered Crossbar (Com-
bined Input-Crosspoint Queuing - CICQ) architecture [7] on
top of the Xilinx ML325 board [8]. The switch uses small
buffers at each crosspoint and features (i) simple and efficient
scheduling, (ii) credit-based flow control for lossless com-
munication, (iii) variable-size packet operation, and (iv) peak
performance without needing any internal speedup.

Figure 5 depicts the internal structure of a 4×4 buffered
crossbar switch. Incoming packets are delivered to the appro-
priate crosspoint buffers according to their headers and the
output scheduler (OS) is notified. If sufficient credits exist and
the outgoing link is available, the output scheduler for that link
selects a crosspoint buffer for transmission. As packet bytes
are being transmitted to the output, the credit scheduler (CS)
generates the corresponding credits that will be transmitted
back to the source of the packet. These credits are multiplexed
with the other packets destined to the initial source. Datapaths
of the switch are 32-bit wide and the clock frequency is 78.125
MHz as required by the RocketIO serial link interfaces.

Crosspoint Buffers: each of them consists of a 2 Kbyte
dual ported FIFO implemented in one on-chip BRAM. The
crosspoint control logic is very simple: a head and tail pointer,
a small FSM triggered by start-of-packet and end-of-packet
indicators, and a synchronizer to notify the output scheduler
of packet arrivals.

Output Schedulers (OS): they keep track of the number
of packets enqueued in each crosspoint of their column, and
they select in a round-robin fashion the next crosspoint to be
served among the crosspoints with non-zero occupancy counts.
Each OS supports cut-through operation even for minimum-
size packets and hides scheduling latency by utilizing a pre-
scheduling technique; schedules the next packet before the end
of the previous packet transmission.

Credit Schedulers (CS): they are associated with a specific
input port each; each of them maintains per-output counts of
the number of bytes that originated from this input and have
departed through that output. We use a QFC-like protocol [9]:
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Fig. 5. The internal structure of a 4x4 Buffered Crossbar

counter wrap-around and infrequent credit losses do not affect
correct protocol operation. The CS is informed about departing
bytes from the output schedulers, and when requested (on
packet boundaries), provides the credit data to be transmitted.
More detailed descriptions can be found in [10] and [9].

V. COST AND PERFORMANCE EVALUATION

This section reports the implementation cost of our FPGA
prototype and presents a performance evaluation through var-
ious benchmarks. At first we illustrate the performance of
our custom network, then we present the observed DMA
performance through the PCI-X bus and finally we report on
the efficient use of the platform by the systems software.

A. Hardware Implementation Cost

Table I presents the hardware cost of the system blocks.
The numbers refer to the implementation of the designs in a
Xilinx Virtex II PRO FPGA with the back-end tools provided
by Xilinx. The Debugging block is one of the biggest blocks
in terms of area because it contains a suite of benchmark,
performance and monitoring sub-blocks that occupy many
LUTs and BRAMs and represent approximately 33% of the
overall design. The VOQs block is also area demanding
because it involves many BRAMs to be used as packet buffers
and considerable logic for their associated state.

B. Network Performance Evaluation

For the evaluation of our custom network we implemented
some extra hardware functions in the NI and the Switch so
as to use them for benchmarks (latency and throughput). We
can set the NI and the switch in Benchmark Mode, where
they record cycle-accurate timestamps and append them in the



TABLE I
HARDWARE COST BREAKDOWN

Block LUTs Flip Flops BRAMs
PCI-X - DMA Engine - Queues 2500 1400 22
Link Interface 1800 400 0
Multiple VOQs 4100 2100 37
Multipath Support 2800 1200 20
Debugging Support 2900 2100 32

Totals NI 14100 7200 111

BufXbar Switch 8×8 15800 13300 64

payload the packets, as they passes through the various stages
of the system.

In Benchmark Mode the timestamps are recorded at the
following points: (i) upon packet creation, in the request queue,
when the host processor writes a transfer descriptor; (ii) upon
packet departure from the NI to the network; (iii) upon packet
arrival at the switch port; and (iv) upon departure of the
packet from the switch. Timestamps (i) and (ii) measure the
queuing delay and the pipeline latency in the NI, whereas
timestamps (iii) and (iv) measure the delay and latency in the
switch. The latencies of the cables and the SERDES circuits
of the RocketIO’s are constant, and therefore we don’t have
to measure them; we simply add them to the final latency.
Moreover, we bypass the process of reading the payload of the
packet from the host memory (through a PCI-X DMA read)
and simply generate a packet payload with zero values; in this
way, we factor out the software and the PCI bus latencies.

All packets are written in the destination host memory
through DMAs in the appropriate addresses and are then col-
lected by a LINUX kernel module which is developed inside
the device drivers of the NI. The software, after execution
of an experiment, reports a graph with the distribution of
the packet latencies and reports the observed throughput per
source. The throughput is measured by using processor-cycle-
accurate timestamps that start upon arrival of the first packet
and finish upon arrival of the last packet, per source.

Using the special software and hardware functions, we have
run delay and throughput experiments in order to validate
the simulation experiments of the switch performance that
appear in [7]. For the traffic patterns, we generated packet
traces with the Traffic Generator of [11]; at measurement time,
host software loads the traces and feeds NI’s request queues
with descriptors at specified times. We were able to run only
small scale experiments due to the limited number of hosts
and memory resources, and therefore our figures correspond
to experiments with a 4×4 switch: each NI had to act as
either source or sink of packets, but not both, because if it
were to act as both then software and the PCI would be the
bottleneck, rather than being able to saturate the network. We
have run each test with 50 million packets where the first few
thousands of packets (warm-up) and the last few thousands
were not accounted in order to have as accurate measurements
as possible. The duration of these tests ranged from 1 to 14
minutes of real time traffic.

For the delay experiments we have run tests with uniformely
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Fig. 6. Average Delay vs. Input Load under uniform traffic. Max load is
96%.

destined traffic and uniform packet sizes. The results of the
delay vs. load experiments are shown in Fig. 6. The observed
curve follows closely the simulation results of [7]. The average
end-to-end network delay of our platform under light load is
just 1.25 microseconds, where half of this (0.64 µs) is due to
propagation delays (SERDES (95%) plus cables (5%)); this
figure (1.25 µs) is from the moment a packet is generated (by
hardware) inside the source NI, to the moment that packet
enters the destination NI, in other words this figure includes
source and switch queueing, propagation, and scheduling
delays, and SERDES+cable delays from source to switch and
from switch to destination, but does not include any PCI or
software delays. Our NI and switch designs proved to have
modest latency even under 80% load, where the end-to-end
delay is lower than 3 µs.

C. PCI-X microbechmarks

We used hardware cycle counters at the NI to examine the
behavior of the host-NI interface, namely the PCI-X Target
Interface. For single-word PCI-X write transactions, on the
order of 10 PCI-X cycles are required. Therefore, initiating a
single RDMA write operation (writing a transfer descriptor)
requires about 40 PCI-X cycles, or about 400 ns. Leveraging
the write-combining feature of the host processor, we can write
a burst of 64 bytes of data in 24 PCI-X cycles, which translates
to 4 transfer descriptors. This feature gives a 6x improvement
over the simple case which would need about 160 PCI-X
cycles. Naturally, the cost of the write combining feature is
the latency of the data in the write combining buffer, but it
does save a significant number of cycles on the PCI-X bus.

For a write-DMA transfer of 4 KBytes (PCI-X maximum
size) to the host memory, with 64-bit data phases, we measured
a delay of 570 cycles, out of which only 512 actually transfer
data (90% utilization of PCI-X cycles). The remaining 58
cycles are attributed to arbitration, PCI-X protocol phases, and
the occasional disconnects. For 4 KByte read-DMA transfers
from host memory, we measured a delay of 592 PCI-X cycles,
i.e. a utilization of 87 percent. In every DMA read transfer, 50
cycles are consumed until we receive the first data word from
the corresponding split completion, and we found that a split
completion sequence completes on average in 3 transactions.
For each of these 3 transactions, we have an average latency
of 6 cycles between them, and we also need 4 cycles for the



PCI-X protocol phases in every transaction. Finally, the PCI-
X bridge issues a split response to all read requests destined
to host memory. The above measurements have been recorded
in a PCI-X bus where the NI is the only peripheral and we
expect the above latencies to increase with the addition of
other PCI-X devices on the same PCI-X bus.

The theoretical maximum throughput of a 64-bit 100MHz
PCI-X bus assuming zero arbitration cycles is 762,9
MBytes/sec. We managed to achieve 662 MBytes/sec in PCI-
X read transfers and 685 MBytes/sec in PCI-X write transfers
by using a specially designed DMA engine that performs
a series of back-to-back DMA transfers. This DMA engine
is programmed once by software, and can perform a large
number of PCI-X accesses that employ the PCI-X busfor over
a minute of real time.

D. Efficient Use of the NI by System Software

For systems software to make efficient use of the capabilities
offered by our NI, we need to closely match the abstractions
exported by the hardware with corresponding software abstrac-
tions. Specifically, we have to be careful to use the hardware
resources in a manner consistent with their design, despite
the fact that this may lead to a more complicated software
implementation.

To illustrate this point, Fig. 7 shows the throughput achieved
by three alternative implementations of a simple program
that issues one-way data transfers, for a range of transfer
sizes. Fig. 8 shows the software observed transmit latency
for each RDMA transfer. For transfer sizes up to 4 Kbytes
(single OS page), only one RDMA descriptor is posted. For
larger transfers (up to 512 Kbytes), several RDMA descriptors
are posted, one after the other. For each transfer size, the
benchmark programs performed 100,000 transfers and PCI-
X write-combining was enabled for the transmitting endpoint.
The alternative versions of this benchmark differ in the details
of when RDMA transfers are triggered for execution by the NI,
and under which conditions to block waiting for a notification
of transfer completion.

The first version (marked v1) treats the RDMA request
queue as a linear (non-circular) command buffer where RDMA
descriptors are posted in batches (up to 128 consecutive
descriptors for a 512 Kbyte transfer). Only the last RDMA
descriptor in the batch triggers the NI to begin transferring data
from the host memory (PCI-X DMA read) onto the network
tranceivers that transmit them over the RocketIO serial links.
This version of the benchmark waits for this last RDMA
operation to complete, making use of the local notification
capability offered by the NI. Since the RDMA descriptors
are processed in FIFO order, this means that this version of
the benchmark waits until all pending transfers are completed
before posting the next batch.

The second version (marked v2) treats the RDMA request
queue as a circular command buffer, explicitly checking if
there is space to post each of the RDMA descriptors. This is
done by setting each of the RDMA descriptors to trigger the NI
to begin data transmission, and then checking progress toward
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Fig. 7. Throughput comparison of three alternatives (v1, v2, v3) in using
the NI for high-speed data transfers.
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Fig. 8. Latency comparison of two alternatives (v2, v3) in using the NI
for high-speed data transfers.

completion by reading the head and tail values written in host
memory as a result of the local notification feature. If no space
is found, this version of the benchmark busy-waits by polling
on the local notification word in host memory. Otherwise,
it immediately posts the next RDMA descriptor. Thus, the
usage pattern induced by this version more closely matches
the way that the NI hardware actually processes RDMA de-
scriptors. The third version (marked v3) is derived from v2 by
checking the local notification word in a less “eager” manner,
specifically by checking for space after posting four RDMA
descriptors. This version is more tuned to the intended usage
of the NI in this particular experimental setup, which makes
it safe to omit checking for free space in the RDMA request
queue from time to time. Unlike the v1 implementation, v2
and v3 do not have to wait until a large batch of RDMA
transfers are completed. Thus, they allow overlapping RDMA
transfers with posting new RDMA descriptors.

Although v1 achieves a throughput level of up to 632
Mbytes/sec (around 95% of the maximum achievable for this
specific experimental setup, see subsection V-C), it suffers in
terms of latency as transfer sizes increase. By not matching
the way the NI processes pending RDMA descriptors, the
v1 implementation forces even the posting of each batch
of transfers to start after the whole of the previous batch is



transmitted. The v2 and v3 implementations pipeline the dis-
tinct tasks of posting RDMA descriptors and processing them
for transmission. Thus, they achieve comparable throughput
levels for lower transfer sizes, and more importantly keep the
latency per transfer constant for large transfer sizes, around 6.2
microseconds per transfer. The v3 implementation achieves a
further reduction of latency by 3% for large transfer sizes. For
small transfer sizes (up to 4 Kbytes), v2 and v3 significantly
outperform v1. In this range of transfer sizes, v3 is more
efficient than v2, since the software rarely runs out of space
in the RDMA request queue.

The “lazy” approach taken in the v3 implementation is not
safe for general use; however, it demonstrates that in order to
achieve performance levels close to the peak capabilities of the
NI we need to anticipate the usage pattern for critical resources
(such RDMA descriptors). The performance measurement ex-
periments reported in this section have been taken into account
in the optimization of the networked storage system described
in [2]. In that system, we follow the approach exhibited by
the v2 implementation of the one-way transfer benchmark to
maintain a relatively constant latency for posting remote I/O
operations, and their corresponding completions.

E. End-to-End Latency

Beyond the software based throughput and latency experi-
ments, we have measured, using NI performance counters, the
end-to-end (memory-to-memory) latency in our system. Fig.
9 shows a breakdown of the one-way latency of a small (8-
byte) remote DMA, with and without write-combining, and an
equal-size message transmission. The overhead is divided in
the following components: send-initiation, send-DMA, send-
NIC, switch-delay, propagation-delay, recv-NIC, recv-DMA.
The send-initiation component includes the PCI-X overhead
during posting the transfer descriptor. The send-DMA, recv-
DMA components include all PCI-X overhead related to the
data transfer itself. Finally, send-NIC and recv-NIC is the
time spent in the send and receive NICs. We measured these
components using the corresponding cycle counters on the
NIC boards. The switch-delay component refers to the cut-
through packet delay in the switch and propagation-delay
refers to cumulative delay of all SERDES circuits in the
network paths plus the delay in the cables.

As we can see, write-combining significantly speeds-up
operation initiation. In a system that uses write-combining,
the two components where most of the time is spent are:
propagation delay (36% of the total delay, mostly 95% in
the serializer-deserializer circuits, plus a 5% in the cables)
and the PCI-read DMA at the sending node (33% of the total
delay). The majority of the PCI-read DMA cost is due to read
latency, manifesting itself as PCI-X split duration (50 PCI-X
cycles). Hence, it becomes apparent that, for short transfers,
the message operation yields much better performance than
the remote DMA operation, because it eliminates the read-
DMA at the sender side, at a small incremental cost of 1
PCI-cycle per word, for posting each message word beyond
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Fig. 9. Breakdown of end-to-end latency for (a) an 8-byte RDMA packet
with single (uncombined) PCI-X writes, (b) an 8-byte RDMA packet with
PCI-X write-combining, and (c) a single 8-byte short message with PCI-X
write-combining.

the first two words (up to a message size of 64 Bytes), using
write-combining.

VI. RELATED WORK

Commodity system area networks such as Infiniband [12],
Myrinet [13], Quadrics QsNet2 [14], and PCI-Express Ad-
vanced Switching [15], [16], [17] have been proposed to
offer scalability and high performance switching. Many of
these systems may also offer Network Interface Cards that
are programmable at the (usually system-) software level but
do not provide any hardware customization capability. Our
FPGA-based platform offers the capability to include and
experiment with user-customizable functions at the NI.

In terms of the NI software interface, the Remote DMA
primitives have been proposed in order to provide low-latency
and high throughput communication [18], [19], [12]. These
primitives are already available in high-performance networks
[13], [14] and show up even in relatively low-cost Gigabit
Ethernet controllers that support RDMA functionality over
TCP, e.g. Broadcom BCM5706 [20]. We also believe that
the RDMA primitives are attractive and we have added the
flexible notification mechanisms that has been shown to be
very effective in improving the interrupt processing cost [2].

On the switch side, buffered crossbar witches have become
feasible since recent technology advances allow the integration
of the memory required for crosspoint buffers. We have ex-
tensively evaluated these advantages and proved the feasibility
of that support variable-size packets [9], [7] and multipacket
segments [5]. To our knowledge, there is only one FPGA-
based buffered crossbar implementation done by Yoshigoe et
al. [21], that used older, low-end FPGA devices. Another
important difference is that our switch can operate directly
with variable-sized packets, and that we offer a complete
reconfigurable system that includes the network interface card
and the necessary (linux-based) system software.

VII. CONCLUSIONS AND FUTURE WORK

We presented an FPGA-based, research platform for proto-
typing high-speed processor-network interfaces and intercon-
nects. This platform includes both the network interface card



and the switch card and offers built-in efficient primitives that
can be adapted to new paradigms and protocols.

We believe that an experimental evaluation of new ideas
is important and yields better accuracy and confidence as
compared to simulation. Our FPGA-based platform is open
to accommodate new features and evaluate them in an actual
experimental environment. Our experience so far is that the
system-level operation reveals component interactions that are
practically impossible to forsee and model in a simulator.

We are currently in the process of porting MPI over our NI
and in the near future we plan to measure parallel applications
and benchmarks. Moreover, we strive for architectures that
offer tighter coupling of the NI with the processor. We consider
”moving” the NI closer to the processor, as close as the cache
interface.
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