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Abstract

Map learning methods are generally designed to
learn from scratch and start with zero knowledge about
the state of the world. In this paper, we present a tech-
nique for extending a given metric map of the envi-
ronment by objects of a known type, where localization
and perception of the robot is allowed to be uncertain.
The advantage of our approach is that it allows the
robot to estimate its own position in the given out-
line of the environment and thus to estimate the po-
sition of the objects not contained in the map. The
method relies on partially observable Markov decision
processes as well as on the Baum-Welch algorithm. It
has been implemented and eveluated in several sim-
ulation experiments and also in a real-world sewage
pipe network. The experimental results demonstrate
‘that our approach can efficiently and accurately esti-
mate the position of unezpected objects. Because of the
probabilistic nature of the underlying techniques, our
method can deal with noisy sensors as well as with
large odometry errors which generally occur when de-
ploying a robot in a sewerage pipe system.’

1 Introdqctiori )

To performi its tasks efficiently, a mobile robot needs
a model of its environment. Using a map, however, re-
quires methods for acquiring and maintaining it as well
as techniques for estimating the robot’s position in it.
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Two broad map types can be distinguished according
to the form of representation. First, metric approaches
represent the environment geometry more or less di-
rectly. A variant of metric maps, which has proved
useful for robot navigation, are occupancy probabil-
ity maps that decompose the robot environment into
a set of grid cells and estimate for each of them the
probability that the cell is occupied [6, 13, 12, 19].
Second, topological approaches use a graph-like rep-
resentation, in which the nodes correspond to places
of interest, such as rooms ur junctions, and the arcs
between these nodes represent a connectivity relation
[11, 18, 8].

Several techniques for computing models of the
environment from sensor data have been proposed
[6, 13, 12, 19]. Most of these approaches are designed
to learn maps from scratch, i.e., start with absolute
uncertainty about the state of the robot’s environ-
ment. However, in many practical applications such
as surveillance, transportation, or exploration, prior
knowledge about the environment structure can be
exploited and allows the robot to perform more effi-
ciently than in the case of absolute prior uncertainty.

We present a probabilistic method for extending
a given metric map by perceived stationary objects
of known types. Data from a simulation as well
as experiments in a séwerage pipe network are pre-
sented that demonstrate the feasibility of the tech-
nique. The method maintains probability distribu-
tions about where the objects might be. These dis-
tributions are estimated using the Baum-Welch (BW)
algorithm [15], which is known to exploit given obser-
vations optimally in the sense of yielding models that
maximize the observation probabilities under a given
set of robot actions.

The BW algorithm has been used before in robot
control for map building from scratch [18, 17, 20]. Our
method, in contrast, exploits a prior map, where the
only change to be made is entering objects of prior



known types at a priori unknown places. Using the
prior map allows the position of a perceived object to
be estimated even in the presence of extreme odometry
errors such as occuring when mobile robots operate in
sewers [7]. Compared to existing variants of Markov
localization [14, 5, 18, 3, 8], our technique extends
localization by allowing to estimate past positions.

The next section of this paper recapitulates basic
concepts of Markov localization and the BW algo-
rithm. Then, we describe how these techniques are
applied to estimate the position of unmapped objects.
After that, we illustrate the applicability of our ap-
proach in a typical office environment and in a sewer
system with its large odometry errors.

2 Markov Localization and the Baum-

Welch Algorithm

This section briefly recapitulates basic concepts of
POMDPs and of the BW algorithm, as far as they are
relevant for this paper. It may be safely skipped by
anyone who is familiar with these.

Partially observable Markov decision processes
(POMDPs) (4, 18] are used for localizing autonomous
mobile robots under unreliability of sensor readings
and of motion. The resulting positional uncertainty
is represented as a probability distribution, or belief
state, over the set of possible discrete positions, or
states. In navigation according to a topological map,
a state corresponds to a robot position at one of the
landmarks in the map; in metric maps, larger areas
devoid of landmarks are discretized by overlaying a
grid, each grid cell inducing a state.

An action leads the robot from a state to a state.
It is an abstraction from a possibly complicated struc-
ture of concrete robot control commands. As assumed,
an action may yield an unintended result, such as over-
shooting in a turn or drifting past a landmark steered
for. Estimated a priori probabilities for these faults
have to be given in advance. Then, the result of an
action executed in a state is described by a probabil-
ity distribution over possible successor states: Given
a belief state B = [b ... b"] induced by a set of states
S = {s!,...,s"}, the successor belief state B’ after
an action a is computed component-wise for all i by
B' = [P1(s'|a, B)]".(We assume that all actions are
defined for all states, so no normalization is necessary.)

An observation is abstract in the same spirit: It
represents the type(s) of object(s) that the robot per-
ceives at a certain position. Object is understood in
a broad sense here; an object may be a landmark as
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occuring in a map, some a priori known world fea-
ture of a priori unknown occurrence, such .as a dam-
age in a wall (later, we will attempt to map these
objects), or a spatial situation, such as a position in
the middle of a corridor, which is remarkable for the
absence of other distinguishing features. As assumed,
mis-perceptions may occur, such as overlooking an ob-
ject or mis-classifying it; again, the respective a pri-
ori probabilities must be given. The result of an ob-
servation in a state is a probability distribution over
states; accordingly, an observation o maps a belief
state B into a belief state B’ = [ob* Pr(o|s?)]’, where
o =1/Y, b Pr(o|s’) is a scaling factor.

Now assume that actions and observations are exe-
cuted in observe-then-act pairs (o, a). Consider a trace
of length T', i.e., a trace consisting of T' — 1 such pairs
with an additional observation or at the end. Using
the above definitions, we can obviously compute the
resulting belief state Br, doing forward localization.
In particular, we have the probability of being in a
given state sat t (for 1 <t < T):

Pr(sloy...c;a1..0-1)

g Pr(o|s) Z a;—1(s") Pr(slas-1,")
s'eS

o (8)

)
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(o is a scaling factor defined in analogy to ¢ above.)

Given a trace of length T', we can also perform back-
ward localization: Compute the belief state associated
with a past point in time ¢. The probability of having
been at s at t is ‘ ‘

Bi(s) (2

Putting forward and backward localization to-
gether, we can use a trace of length T' for computing
the probability of having been at position s at time ¢
(where 1 <t <T):

Pr(s|og41...75 Qe1..7-1)

Pr(s|oy..7,a1..7-1)

at(s)Be(s)or :

To denote the probability of transitirig from position
s to &' at t within a trace, we use

¥ (s) (3)

7 (s, 3’) = Pr(s,s'|o1..7,01..7-1) 4)
Based on these local transition models (s, s’), it is
possible to recompute the transition probabilities ac-
cording to the trace, i.e., to not only refine the belief
states, but also adapt the underlying POMDP model
of the robot’s functioning in the environment. The
BW algorithm [15] in fact does both.



Model update is done in the regular way; we re-
fer to {10] for the exact procedure. For our work, we
restrict the model update to changing only the obser-
vation probabilities, and keeping fixed the transition
probabilities. The reason lies in our current target
application domain: Local and temporal motion con-
ditions (dirt, material, weather effects) in parts of a
sewer can be dramatically different for a sewer robot.
In consequence, positions may exist in the sewer that
provide very atypical motion conditions. A transition
model averaging over a long trace would practically ex-
clude to localize the robot at such an outlier position.
This assumption is debatable. The general method
presented in this paper does in no way require it.

The computational complexity for updating all be-
lief states is O(|S|?>T') in one iteration of the BW algo-
rithm. Practically, computation can be saved by ex-
ploiting structural properties of the environment, such
as symmetries among map areas.

3 Mapping Unexpected Objects

This is the general idea of our method for enter-
-ing objects into a metric map even in the presence of
large odometry error: We use a grid-based representa-
tion; the aim is to find the correct grid cell for enter-
ing the object. Navigation of the robot is modeled in
a POMDP with grid cells corresponding to the state
set. That means, whenever an object U is perceived
unexpectedly, the recent probability distribution over
states yields a first clue about its position. Concep-
tually, the whole “life history” trace of the robot is
recorded; the BW algorithm is used to compute from
it a maximally likely POMDP model for explaining
the past actions and observations. (Practically, rela-
tively short traces should suffice, with the rest of the
robot history encoded in the form of an intermediate
version of the map. We will not go into that here,
but note that the optimality of the BW algorithm is
theoretically lost then.)

The process is iterated for the continuation of the
robot’s travel through its environment. Over the time,
and particularly so if an updated trace includes more
passes along U, its position estimation will grow more
reliable. In addition to this standard behavior of the
BW algorithm, we wash out possible positions of very
low probability by maintaining a threshold for the
minimum probability of positions to be considered
that starts out very low and is increased with every
iteration of the algorithm. This helps v converge to-
wards unique position estimations for U.

We now turn to describing this method technically.
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For ease of presentation, we assume there is just one
type U of unexpected objects for mapping, such as
fire extinguishers for an office environment, or inlets
in sewers. Of this object type, the environment may
contain an arbitrary, previously unknown amount of
instances. The generalization to handling more than
one object type is straightforward.

We start out with an initial metric map My, which
remains constant and available all the time. This map
is assumed to be correct in the sense that all land-
marks included are in fact present in the world, ob-
servable, and mapped at the right location. Note that
a landmark here is taken to mean a distinguishable ob-
ject from a fixed set of classes; pragmatically, a navi-
gation map should contain only relatively few of them.
For example, we use shafts as landmarks in sewers, and
doors in office floors. The map is overlayed with a grid
of appropriate, constant cell size. The initial POMDP
environment model is given, with states corresponding
to grid cells.

Unexpected objects must be different from land-
marks. By definition, they may be observed at any po-
sition. To shield initially localization from the obser-
vation of such an object, we add to the initial POMDP
a schema, for all (initially unknown) unexpected ob-
jects U that Pr(o = Uls) = 1.0 for all s.

Given a trace of length T', we use the BW algorithm
to maintain an updated version M of the original map
My that includes for each position s an expectation
of the existence of an object U. This expectation is
defined as the ratio of the sum of probabilities of being
at s after any t steps and observing U, and the sum of
probabilities of all visits at s. The ratio compensates
for differences in frequency of visiting different states
s. In particular, for T,

_ EZ;I ~:(8) such that o = U
ZZ‘:I Ye (S)

Ey(s) ©)

Practically, observations are not always definite; we
have used a pseudo-observation dontknow in these
cases. It makes sense then to sum up in the denomina-
tor only those observations that differ from dontknow.

The observation probablities in a given position
have to change accordingly. Note that the ground
map Mp and the recent map M have the same set
of states; they may differ only in what is expected to
be observed in the same state. For an observation o
using the map M, change of observation probabilities,
then, is modeled by weighting U with Ey, and with
1— Ey the observation that would have been expected



according to the ground map Mj:

Pr(o|s) = Ey(s) Pr(o|sin M)+(1—-Ey(s)) Pr(o}s in My)
(6)

If odometry is really bad, as we have assumed for
this work, then the position estimation in Markov lo-
calization grows “shallow” after only short travel dis-
tances. Accordingly, the position estimations for a
newly detected object is normally very fuzzy, and re-
mains so over quite some time even if using the 7,
forward-and-backward localization. To speed up this
process, we have used a minimum likelihood threshold
0 < e <1 for the Ey(s) values. € starts out low and is
increased after every iteration of the BW algorithm.
All Ey(s) < € are then set to 0.

Handling € is obviously a heuristic matter. In our
experiments, we have achieved good results with a
start value of 0.01 and increments of 0.01. On the
other hand, note that Ey(s) = 1 is practically never
reached, because the traces are finite and the obser-
vations are assumed to be uncertain. In consequence
e ~ 1 is dangerous, as it would lead to deleting many
correct new map entries. In our experiments, we have
achieved good results with constraining € = 0.7.

4 Experimental Results

To describe how our method performs, we present
results from real-world robot experiments in a sewage
pipe network and from simulated runs in an indoor en-
vironment. We start with a quantitative description
of the odometry error from that the sewage pipe ex-
periments suffer and that we have reproduced in the
indoor simulations. It is sewer robotics [7], partic-
ularly, autonomous sewer inspection, that has origi-
nally motivated this work on probabilistic mapping.
Sewer inspection is a huge practical real-world prob-
lem (German public sewers are about 400,000 km long,
with private ones about twice that size [1]), and the
conventional procedure, which must be done regularly
by law, costs enormous money every year. Obviously,
probabilistic mapping makes sense in other applica-
tions as well.

4.1 Odometry errors

Sewer pipes are an extremely demanding environ-
ment for odometry. They are curved, sloped, slippery,
and dirty. Worse, these conditions vary tremendously
within a sewer according to pipe material, wear-out,
and direction of travel. Needless to say, GPS signals
are inaccessible in a sewer.
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Figure 2: Error of calibrated odometry of the sewer
test platform KURT in a tour through an 8-shaped
part (grey shade) of the LAOKOON-net. All turns
were performed correctly. Distances given in decime-
ters; the tour started at the (0,0) coordinate.

To give an idea of the error quantity, we have
recorded test runs of about 1km overall distance of a
sewer robot test platform KURT ([9}; Fig. 1b) in a dry
sewer network made of concrete pipes of 60cm inner
diameter (the LAOKOON-net, installed at the GMD
site, Fig. 1a). We have calibrated KURT’s odometry!
to perform correctly on the average of this 1km trip.
Applying the so-calibrated odometry to single runs
through individual sewer segments between manholes
yields significant inter- and intra-segment differences.
For example, for one segment (called Seg1 in the fol-
lowing) with expected odometry value of 10 m, differ-
ent runs produced an average of 10.7m, with values
varying between 8.9m and 12.2m. For another seg-
ment, also with 10 m expected, the average was 9.5m,
with values varying between 8.6m and 9.9m. The
overall standard deviation is 17%, i.e., 17c¢cm on 1m.
(For details, see [16].) .

To give a visual impression of the odometry error,
Fig.2 shows measured distances.of a travel through
a part of the LAOKOON-net overlayed with the real
pipe system. Note that all travel segments are straight
and all turns at junctions in the recorded trip are rect-
angular, because that is how the pipes are built: Drift
and non-rectangular turns are physically impossible.?

To study odometry errors in environments where

1To be precise, KURT’s odometry is better desribed as
dead-reckoning. The difference is of no importance for our
method.

%In fact, turning errors may happen for KURT that
lead to overshooting by multiples of 90 deg. They are not
recorded in the data shown. Moreover, KURT’s tilt con-
trol maneuvers while passing a pipe, which are a recurrent
source of odometry error, are not recorded as such here.
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Figure 1: Pictures of our experimental settings: The LAOKOON net (a), KURT turning in a manhole of the
LAOKOON net (b), and the RWI B21 robot RHINO (c)
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Figure 3: Odometry error in simulation of a robot
in a tour through an 8-shaped hallway system (grey
shade). Distances given in decimeters; the tour started
at the (0,0) coordinate.

drift and small turning errors are possible, we are
using a simulation of an indoor robot in a hallway
system.® Fig.3 shows internal odometry values of a
simulated tour in a hallway system overlayed with
the simulated space. The amount and distribution
of odometry error used in the simulation is identi-
cal to the one reported above for the sewer segment
Segl; in addition, we have induced slight drift and
turning inaccuracies. This typical odometry error for
the LAOKOON-net is untypically large for real indoor
robots where traction is normally better than in sewer
pipes. In consequence, we have run other simulations
with smaller errors. We will come back to that later.

3The simulator is the one used to study the RHINO
robot ([2]; Fig. 1c).
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4.2 Application in sewerage pipes

The method for mapping unexpected objects
has been applied to tours of KURT through the
LAOKOON-net. The given map included as land-
marks all manholes; by law, a manhole must be built
in a sewer wherever the direction of the main pipe
changes, or wherever two main pipes join. We have
used a metric discretization of 1m, with real pipe
length between manholes between 7 and 15m, most
of them 10m.

As objects to be detected and mapped, we have
used small inlets that lead into the mains indepen-
dent from manholes. Such inlets occur in real sewers
to connect single houses or drains from streets; the
LAOKOON-net includes five of them, 15cm in diam-
eter each, which join the mains about the height of
the pipe axis. We used an ultrasound transducer on
a pan-tilt unit to detect the joins, with KURT’s stan-
dard inclinometers providing an “artificial horizon” for
determining the required tilt value; [16] gives the de-
tails. Given this poor sensor, there is a non-0 chance
of overlooking joins or of perceiving artefacts.

Fig. 4 presents flashlights of a development of ob-
ject position estimations over 32 iterations through the
BW algorithm, based on sensor data recorded over 8
physical tours through the sewer network. In Fig. 4(a),
after the first iteration, all five objects have been per-
ceived plus (compare with the nearly correct positions
in Fig. 4(c)) two artefacts—or “real” objects perceived
with a significantly faulty position/orientation estima-
tion. After 10 iterations, Fig.4(b), the probability
mass has started to concentrate; the faulty object at
the top middle pipe is still a plausible candidate. Af-
ter 32 iterations, Fig. 4(c), all objects except one have
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Figure 4: Position estimations of observed laterals after 1 iteration (a), 10 iterations (b), and 32 iterations (c) of
the BW algorithm. Black/grey boxes represent estimated positions of the relative object or objects, with darkness

increasing with probability mass.

just one single plausible position, with no more in-
correct objects present; for the ambiguous object, the
position slightly framed in the figure has fallen out in
the next iteration. All position estimations are then
correct, modulo the 1 m grid size. However, note that
the procedure is anytime in the sense that after one
physical robot tour and one BW iteration, a prelimi-
nary result exists, which is only improved by further
robot tours and BW runs.

4.3 Application in an indoor simulation

The results just reported for the experiments with
KURT in the LAOKOON-net reproduce analogously
in the indoor environment simulation, which we have
conducted to achieve reproducible results in a stan-
dard setting. Note that the possibility of drift or even
involuntary turns on a flat office floor, which are ex-
cluded in the sewer, provide even more sources of blur-
ring the position estimation than in the sewer experi-
ments.

We have used the simulation to experiment with
variants of robot and environment parameters, in par-
ticular, with

the odometry error,
the probability of involuntary turns/non-turns,

the frequency and positions of unmapped objects,
the error rate in object detection.

Most of the overall results are intuitive:

o the method works with all reasonable amounts of
odometry and motion control errors;

479

0.45 T

04

0.35

03

Entropy

I

T
90 100

50
Iteration

30 40 60 70 80

Figure 5: v entropy values over iterations of the BW
algorithm for three different settings in the simulation.

the more correct odometry, motion control, and ob-
ject recognition are, the faster do object positions
practically converge towards unique grid cells;

the position estimation for an object close to a land-
mark converges faster than for an object “in the
middle of nowhere”;

whenever the position of an object converges to a

unique value, this value is mostly correct;
e an error more likely to occur is that, due to false
object classification, an existing object does not get

mapped in the end.

For details, we refer to [16]. To get an impression
of some common effects of the method, consider the ¥



entropy H(y) = — > ,c57(s)1g7(s) as a measure for
the quality of the recent POMDP. The upper curve in
Fig. 5 shows how H(vy) develops using the sewer-type
odometry error with € = 0. Unsurprisingly, the en-
tropy decreases monotonically; invisible from its value
alone, the model never arrives at unique positions for
detected objects. The middle curve is based on the
same odometry error, but uses € as described, i.e.,
start at 0.01 with 0.01 increments. In principle, the
entropy is lower, except for two regions. First, it in-
creases drastically towards the end, corresponding to
deleting stabilized (in, fact correct) object positions:
As mentioned, € has been pulled too high here. Sec-
ond, the peak around the 40th run corresponds to
deleting (in fact, correctly) an object position; by that,
the recent POMDP deteriorates and needs a little time
to re-adjust, yielding a considerably better entropy
value.

The data for the lowest curve still contains motion
errors (90% correctness) and drift, but is based on a
more favorable odometry error that is realistic for of-
fice navigation and that is used in the RHINO simula-
tor. Accordingly, the localization is much more exact
from the start, and the entropy considerably lower.
Manipulating the e threshold yields effects as before,
albeit in a smoother way.

5 Conclusions and Discussion

In many service applications of autonomous mobile
robots, detailed prior knowledge about the environ-
ment is available by maps; at least some of these ap-
plications, such as inspection and surveillence tasks,
involve localizing objects. In addition to being a huge
and expensive real-world problem, our target applica-
tion, autonomous inspection of sewers, certainly is of
that type. In consequence, there seems to be a practi-
cal problem of mapping at unforseeable locations ob-
jects of known types, such as damages. The features
‘of this mapping process blend map learning with nav-
igation: It is more general than navigation in that
static objects have to be entered into the map; it is
more special than map learning from scratch in that
detailed prior knowledge is available and should be
exploited; it all is supposed to work under the defi-
ciencies of odometry and sensing that are found in
application environments that cannot be tailored to
robot operation.

Sewers are a hairy application area in that they
induce extreme odometry errors. Our probabilistic
approach allows this problem to be handled. As ex-
amined in a simulated environment and tested in a
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real sewage pipe network, we are able to map ob-
jects correctly, where the estimation of an object posi-
tion typically converges fast; precision of initial ob-
ject localizations as well as speed of position esti-
mation convergence directly benefit if the odometry
can be made more accurate. Our work builds upon
well-understood ingredients, namely, Markov localiza-
tion and the Baum-Welch algorithm; yet we are not
aware of equally powerful approaches for mapping un-
expected objects.

Let us summarize the assumptions and require-
ments of our method. The objects that can be
recorded must be stationary in the sense that they re-
main at their position long enough to allow several in-
dependent observations. Moreover, they must be dif-
ferent from the landmarks included in the prior map,
which is assumed to be correct. Using a grid represen-
tation of distance, object positions can be recorded ex-
actly only modulo grid size, and given the allowed un-
certainties in object detection and odometry, there can
be no “hard” guarantee that even unique position esti-
mations are correct—which is normal for probability-
based approaches.

Some issues are open. Can the method be changed
to delete false entries in the ground map? How about
scaling up state spaces such as by covering larger areas
or shrinking grid cells? For the latter issue, it seems
particularly useful to “localize” the computation of
some analog of the BW algorithm to work on just a
small record of the immediate past and on a condensed
representation of the more distant past. We are not
aware of a suitable theoretical framework for that.

All this said, our method seems to have some in-
teresting properties. It can run passively in the back-
ground in the sense that data can be recorded inciden-
tally while the robot is working, and can be processed
at a suitable time later. The data need not even be
collected by one single robot, provided that the action
and observation characteristics among several robots
are comparable. The method is able to work unsuper-
vised, which is mandatory for environments that-—like
sewers—are not accessible for humans.
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