Chapter 3

Learning sensor models



2 CHAPTER 3. LEARNING SENSOR MODELS

3.1 Introduction

In section ?? we introduced the architecture of our Sensor Data Fusion
(SDF) system. One of the main characteristics of that architecture is that
each sensor first converts its measurements to a common internal repre-
sentation before the actual fusion is performed. This is to facilitate fusion
between sensors from different modalities. Such a system can also easily be
extended with new sensors as long as these sensors convert their measure-
ments to the same common internal representation. Also we argued that
such an organization of an SDF system leads to a fault-tolerant system that
gracefully degrades upon sensor failure.

While these are all very nice properties for an SDF system, until now we
did not pay attention to the problem of converting the sensor measurements
to the common internal representation. Indeed it is generally acknowledged
(see, e.g., [21]) that this is a key issue in such SDF systems. Not only should
the conversion include a mere “translation” from measurement to common
internal representation, but as we argued in section 7?7 also the certainty
values for the translated measurement should be given. These certainty
values express the error characteristics of the sensor. They are vital to the
subsequent fusion process; without certainty values the fusion process could
not exploit the specific strengths (e.g. accurate measurement of distance)
and weaknesses (e.g. inaccurate measurement of angle) of the sensors. Thus
it is of great importance that the conversion of sensor measurements also
includes a model of the sensor’s error characteristics. In this chapter we
will discuss how such models can be used to convert sensor measurements.

With the definitions given in the previous chapter we can already state
the problem of converting sensor measurements to the common internal
representation for our autonomous mobile robot more formally as:

Given a sensor measurement s define conversion functions
G; such that

g; 2 P(cell ¢; is occupied | 8) = G;(s), (3.1.1)

for all cells ¢; in the occupancy grid.

These conditional probabilities can then be used directly in our higher level
fusion method, the PDOP (see (?7), chapter 77, section ?7).

In the definition of the PDOP it can be seen that the higher level fusion
method also needs the joint conditional probabilities P(cell ¢; is occupied|sy, s2).
For ease of discussion, we will ignore these probabilities for the time being
and focus on the conversion of single sensor measurements. Once we have
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finished discussing these we will return to the point of joint conditional
probabilities.

We commence our discussion of conversion functions with a review of
conventional methods. We discuss the conversion functions which are most
often used with an occupancy grid as common internal representation. We
then review some variations to these basic conversion functions. Our main
objection to all these approaches is that they only take into account the
sensor specific characteristics (such as, e.g., the opening angle of the sensor),
while the conversion functions are equally influenced by the environment.
E.g., time-of-flight range sensors are also influenced by air temperature [16]
and the specularity of the obstacles in the robot’s environment [9]. One
can imagine that also different conversion functions are preferable for, e.g.,
cluttered environments and hallways.

Obviously such complex environmental influences are hard to model ex-
plicitly with analytical expressions. Therefore we apply a neural network
to learn the conversion functions from sensor measurements to probabilities
in the occupancy grid. We define the neural network topology, the learn-
ing rule, and we introduce the sense and drive algorithm which provides
the learning samples for the network. Experiments show that indeed these
learned conversion functions are adaptive not only to changes in the sensor
specific parameters but also to changes in the environment. We conclude
this chapter with a discussion which puts our approach to learning the con-
version functions in the context of our sensor data fusion system. While the
conversion methods reviewed in this chapter are all predominantly suited
for conversion to probabilistic grids, a review of conversion functions for
Dempster-Shafer grids is also included in the discussion.

In this chapter we will restrict ourselves to sensors for which the mea-
surements s are range measurements (e.g. acoustic sensors or infra-red
range sensors). Most of the theory presented, however, is easily extendible
to other types of sensors.



4 CHAPTER 3. LEARNING SENSOR MODELS

3.2 Conversion functions reviewed

In the discussion of conversion functions G; we will derive a general formula
for all cells ¢;. We will use the following shorthands:

distance measurement from sensor
T true distance

(0CC(c;)) | P(cell ¢; is occupied)

(EMP(c;)) | P(cell ¢; is empty)

P
P

3.2.1 Basic probabilistic conversion functions

The most basic conversion functions G;, which are frequently used to con-
vert sensor measurements to occupancy grids, are introduced by Elfes in,
e.g., [5, 6]. The conditional probabilities in the grid are obtained using
Bayes’ rule:
P(0CC(c;) | 8) = p(s]| OCC(C]J))&];(OCC(CJ)). (3.2.1)

In this equation p(s | OCC(c;)) is called the sensor model. Hence the
conditional probability P(OCC(c;) | s) is called the inverse sensor model
(we already encountered the inverse sensor model in a general discussion of
Bayesian fusion methods in section ??). The probabilities P(OCC(c;)) and
P(8) are the prior probabilities.

We will first explain how the terms in this equation are obtained by
Elfes and we will then discuss our opinion about this particular conversion
method.

The sensor model. Many approaches in the sensor data fusion litera-
ture are concerned with the definition of an accurate sensor model. In the
standard approach presented in [5, 6] the sensor model p(s| OCC(c;)) is
derived from its more general ‘continuous’ form p(s | r). This is a proba-
bility density function which gives the probability of a measurment s given
the true value r. Typically, and also in [5, 6], Gaussian functions are used
to define such probability densities. It can be easily understood intuitively
how this Gaussian probability density function can be used to express the
uncertainty and the measurement error of the sensor. An accurate and cer-
tain sensor would have a narrow Gaussian density; the ideal range sensor
would be characterized by a continuous sensor model é(s — r), where () is
the §-Dirac function. Inaccurate sensors would have wider Gaussians.

The sensor model is related to its continuous form as follows:

p(s|r) =p(s|OCC(c¢;) and EMP(cy) for cells ¢ ‘closer’ than r). (3.2.2)
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This means that at distance r, in cell ¢; an obstacle is present while all cells
¢, between this cell and the sensor are empty, for else an obstacle in cell ¢,
would have caused a measurement s’ < s.

This equation can now be used to estimate the sensor model. The
estimation is performed by summing over all possible occupancy grid con-
figurations using Kolmogoroff’s theorem (see [6] for more details):

p(slocc(e) = Y (p(s | GOCC(4)y P(GOCC(CJ'))) . (3.2.3)
0CC(c)),
In this equation GOCC(Cj) represents an occupancy grid configuration for

which cell ¢; is occupied.
The probabilities p(s | GOCC(Cj)) can be obtained with (3.2.2). The

distribution of possible configurations GOCC(Cj ) could reflect the particular
environment the robot is working in. In fact, this is precisely what we will
do later on in this chapter. In the standard approach of Elfes, however, the
distribution is derived from the individual prior cell occupancy probabilities
P(OCC(c;)). This is a legitimate approach since the individual probabilities
are assumed to be independent. The choice of these priors is discussed in
more detail in the next paragraph.

The prior cell occupancy probabilities. The prior individual cell oc-
cupancy probabilities P(OCC(c;)) represent the a-priori probability of a
cell being occupied; i.e., prior to the sensor measurement. In section ?? we
have already discussed the importance of choosing accurate priors for the
initial occupancy grid representation of the environment. The priors are
also used in the conversion of sensor measurements with Bayes’ rule (3.2.1)
and, as we saw in the previous paragraph, in the calculation of the sensor
model (3.2.3).

Ideally, the prior should reflect the average ‘clutterdness’ of the envi-
ronment; a cluttered office environment should have a higher a-priori occu-
pancy probability than, say, an outdoor scene. Indeed it is noted in [6] that
the priors “... can be obtained from experimental measurements from the
areas of interest, or derived from other considerations about likelihoods of
cell states.” However, typically one does not bother and the priors are set
to the non-informative

P(0CC(e;)) = P(EMP(cy) = 3

The prior sensor measurement probability. Similar considerations
hold for the prior sensor measurement probability P(s). Again, the prior
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could be estimated from a great number of sensor measurements taken in
the area of interest. In this case, the prior is instead calculated from other
probabilities which we have already obtained earlier:

P(s) = p(s ] 0CC(c;)) P(OCC(c))) + p(s | EMP(c;)) P(EMP(c;)).

This is a valid calculation because in the definition of an occupancy grid
(see 7?) it was defined that “occupied” is taken to mean “not empty”. Thus
the states OCC and EMP are exhaustive and P(OCC(c;)) + P(EMP(c;)) =
1. The conditional probability p(s | OCC(c;)) is obtained with (3.2.3);
p(s | EMP(c;)) is calculated similarly. In the previous paragraph it was
discussed how the priors P(OCC(c;)) and P(EMP(c;)) are obtained.

The result. Combining the sensor model p(s | OCC(c;)) with the priors
P(OCC(c;)) and P(s) Elfes arrives at a conversion function as sketched in
figure 3.1. For ease of discussion, we call the part with occupancy values

f

05 +

P(OCC(c;) | 5)

¢j

Figure 3.1: Example of basic conversion function for occupancy grids in 1D.
For cells closer to the sensor than the measured distance s the occupancy
probability is set to 0 (empty). The cells around the measured distance have
high occupancy probability. Beyond this range there is no information (and
thus the occupancy probability is fixed to the prior P(OCC(c;)) = 1.).

close to 0 the empty part, or, as in [9], the free space hypothesis. This part
represents the cells ¢ in equation (3.2.2). We will call the part with higher
occupancy probabilities the occupied part.

In 2D the method results in a conversion function as sketched in fig-
ure 3.2

ILet it be noted that although similar in form these distributions are the sensor
models, while the figures in section ?? are the inverse sensor models.
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sensor

Figure 3.2: Example of basic conversion function for occupancy grids in 2D.
The sensor is positioned in the top left of the figure and is pointed towards
the bottom right. Again the figure clearly shows the free space hypothesis,
the occupied part and the part where no information is available.
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Discussion. Our major objection to this approach is that in the calcu-
lation of the sensor model in (3.2.3) the distribution of grid configurations

GOCC(CJ' ) is derived from the individual cell occupancy probabilities. The
rationale behind this derivation is that the individual cell occupancy values
are assumed to be independent. In our opinion, since the assumption of
independence is violated anyway, this is the place to drop that assumption.

The violation of the independence assumption can be seen as follows.
Independence between cells in the grid is assumed because the occupied
cells are assumed to be occupied by infinitesimal objects. Thus there are
no obstacles which cover multiple cells, for in this case the occupancy values
in these cells would indeed be dependent. This assumption is justified by
the fact that range sensors only measure the distance to single points of
an object only; these points are modeled as infinitesimal objects in the
grid. However, if these assumptions are carried through in the conversion
of sensor measurements, the occupancy values in the resulting grid are no
longer independent. Consider, e.g. figure 3.2. The occupied part of the
figure represents the probability distribution of the cells being occupied by
the one single infinitesimal object that was measured by the sensor (in [3, 4]
Elfes calls this the “somewhere occupied” region). Thus, if we find that one
of these cells does not contain the object (for instance, if another sensor
gives occupancy value 0 for that cell) the occupancy values of the other
cells in the occupied part can be increased and therefore, they are indeed
dependent. This is, in fact, exactly what is done in [5]. In that article an
update of an occupancy grid is performed in two steps. In the first step the
empty parts in the grid are combined. Then the occupied part is rescaled
to probability mass 1 before the remainder is fused.

In our opinion, if the assumption of independence is violated anyway,
it should be abandoned at an earlier stage. It is clear that in most “areas
of interest” of the robot obstacles will be present that cover multiple cells
in the occupancy grid, which are, therefore, dependent. We propose to
already use this dependency in the calculation of the sensor model. In the
approach presented in this section, this means that the distribution of grid
configurations in (3.2.3) is taken over grids with dependent cell values. In
our approach, we will take the distribution of grid configurations from the
actual environment the robot is working in. This distribution will then be
reflected in the grids representing the converted sensor measurements.

This way, in our approach we acknowledge the higher order of a discrete
probabilistic representation of the environment, but we choose to represent
the zeroth order approximation only. We are freed from the computational
burden of also updating the higher orders in our representation of the en-
vironment, while we do use the dependencies at will, e.g. in the conversion
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of sensor data.

3.2.2 Variations to the basic conversion functions

Many different conversion functions have been presented in literature. Un-
fortunately, a comprehensive overview of the different methods is still lack-
ing. Therefore we decided to compose one ourselves. To not get distracted
from the main topic in this chapter, we have included this overview as an
appendix ??, and we only give an impression of the different approaches
here.

One basic problem with the use of Gaussian shaped sensor models is
how the parameter of this model, i.e. the width of the Gaussian, should be
chosen. Therefore in [1] and in [14] approaches are presented where this
width is estimated by experiment. But there are several objections to be
made to the assumption of Gaussianity per se.

In some cases rather than Gaussian distributed errors only a strict
bound can be given on the error. In such cases the set membership approach
can be used (see section ??, chapter ??). In other cases the predominant
errors may be the so called outliers, or spurious sensor measurements. One
can then follow the approach presented in [13]. In this work a more heav-
ily tailed distribution is used, and a special fusion method is introduced
for such distributions. Converse to spurious readings (measurements from
obstacles which aren’t there), a sensor may also suffer from specular reflec-
tions, when a sensor does not measure an obstacle which is there. In [9] a
conversion method is introduced which adapts the conversion function to
probable specular reflections: if a specular reflection is suspected the empty
part of the converted measurement (see figure 3.1) is decreased. Obviously,
while these approaches work for the specific type of errors they are designed
for, they are not adaptive to other kinds of errors.

Another solution to the problem of non-Gaussian distributed noise is to
filter the non-Gaussian component before performing the conversion with
standard Gaussian methods. E.g., in [2] polynomial error series are esti-
mated in a calibration phase. The model thus obtained is then used as
a “whitening filter” during operation. In [16, 17] a pulse reflected by one
transmitter is sensed by three receivers. It is shown that with straight-
forward triangulation the non-Gaussian uniform error component can be
effectively filtered from the signal. Unfortunately, both approaches are
very sensor specific and a more general approach is needed.
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3.2.3 Learning to convert sensor measurements

Basically, our objections to the conversion methods proposed in the previ-
ous section can be stated as follows.

e There is sufficient support in literature that the sensor models should
not use Gaussian-shaped noise models. The alternatives presented in
literature are either noise-specific or sensor-specific. A more general
approach is needed.

e In the conversion of sensor measurements of a common internal repre-
sentation the distribution of the actual ‘areas of interest’ of the robot
should be taken into account. For the environment also has a signifi-
cant influence on the correct conversion of sensor measurements: e.g.,
the clutterdness of the environment, the reflection coefficients of the
obstacles in the environment (mirrors vs. brick walls), and the air
temperature. An approach is needed which adapts to changes in the
characteristics of such environments.

This point was already mentioned in the discussion of section 3.2.1.
It implies that the conversion method also takes into account the
dependency between cells in the grid caused by the occurence of non-
infinitesemal obstacles in the environment.

Summarizing, we are faced with the task to specify very complez func-
tions, the conversion function G;, which are adaptive to changes in the
environment. In recent years meural metwork theory is often applied to
learn such functions. We will first shortly review the literature on neural
network approaches to the conversion of sensor data and we will introduce
our approach in the next section.

3.2.4 Review of learned conversion functions

The idea of using neural networks for the conversion of sensor data is also
described by Thrun in [22, 23], although it is applied in a different kind
of sensor data fusion system. In the approach of Thrun a neural network
is used to learn the conversion of robot-mounted range sensors to a world-
centered (global) occupancy grid. The network serves as a general function
approximator of the conversion function from its inputs, in this case the
sensor measurements, to its outputs, in this case the occupancy values for
the cells in the global grid.

A single network is used to compute the occupancy values for all cells
¢; in the grid individually. At each computation of an occupancy value,
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the network is input with the polar coordinates of the cell ¢; in the world-
centered grid with respect to the current robot configuration as well as the
quadruplet of sensor measurements from the four sensors pointed in the
direction of that cell. The network outputs the occupancy value g; of that
cell. The network is sketched in figure 3.3.

sensor measurements

mobile robot

-
robot configiration occupancy value of cell

relative position of cell in the grid

Figure 3.3: Sketch of the network used by Thrun to convert sensor mea-
surements.

The neural network is trained to perform the correct conversion by
minimizing the sum squared error over a number of learning samples (in
section 3.3.3 it is discussed in more detail how such neural networks are
trained). A learning sample consists of a pair of input values and the cor-
rect, or ‘desired’ output values. In the work of Thrun, the robot obtains
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the training samples by driving around in a so called ‘calibration environ-
ment’. The occupancy grid representation of this environment is calculated
manually prior to the training of the network, thus providing the desired
outputs of the network. The robot then drives around in this environment
in the training phase while gathering the inputs for the training samples.

Results show that after this training phase, the robot has successfully
learned to convert its sensor measurements to the world centered grid. If it
is placed in an a-priori unknown environment of similar characteristics, the
neural network can form a rather accurate occupancy grid representation
of this environment?.

While this approach does indeed solve our first objection formulated in
the previous section, the approach is not adaptive to a change of environ-
ment. If the robot is to be operated in a different ‘area of interest’, first a
calibration environment with similar characteristics is needed (indeed, this
point is explicitly mentioned in [23]). Obviously it is impractical to create
calibration environments for, e.g., space applications or for robots that will
be mass-produced to be sold and applied in many different environments.

Furthermore, the network described here may also suffer from the fol-
lowing:

e Because the network converts quadruplets of sensor measurements
in fact it performs cooperative fusion between these measurements.
We have already stated that cooperative fusion is sensitive to sen-
sor malfunction and thus so is this network. It cannot adapt to a
malfunctioning sensor during operation.

e A single network is used to convert quadruplets of many different
sensors. Thus the sensor model for this conversion function is aver-
aged over all the sensors on the robot. This will have negative effects
when one sensor is much less accurate than the others (during cali-
bration). It will have drastic effects if one sensor malfunctions during
calibration. The network does not identify which.

e The network is fed with 6 inputs. Such a high-dimensional input
space requires many training samples to learn a reliable conversion.
Typically the increase of the number of inputs requires an exponen-
tial increase of learning samples, while an increase in the number of
networks used requires a linear increase of training samples.

2For ease of discussion we have ignored the robot positioning problem here. This
problem is addressed, however, in the references given and a rather successful position
estimation algorithm is described.
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In the next section we introduce a neural network approach to the con-
version of sensor data which is, in the first place, adaptive to changes in the
environmental characteristics, at the cost of a few robot collisions. Also,
we use our networks to convert single sensor measurements. Thus, it is less
sensitive to sensor malfunction and it may be expected that it does not
need as many learning samples.
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3.3 Neural networks for conversion functions

In the introductory section conversion functions G; were defined which per-
form the conversion of sensor measurements to occupancy values (proba-
bilities) in the occupancy grids. We defined the conversion functions as

follows (see (3.1.1)):
9; 2 P(cell ¢; is occupied | 8) = G;(s).

Again note that the actual occupancy value of cell ¢; is denoted by g;.

In the previous section it was shown how such conversion functions could
be derived from the sensor model P(s |r) using Bayes’ rule and a number
of variations to the basic conversion method were discussed. We also dis-
cussed the advantages of learning the conversion functions G;(s) instead.
In this approach, no explicit definition of the sensor model is given. The
network learns the entire conversion directly, thus implicitly modeling both
the model of the sensor as well as the environmental characteristics. In the
application of Bayes’ rule these aspects are explicitly modeled in the sensor
model p(s | OCC(c;)) and the priors P(OCC(c;)) and P(s), respectively.
We also reviewed the approach to learning conversion functions introduced
by Thrun.

In this section we introduce our learning approach, which is somewhat
different. First of all we learn separate conversion functions for each sensor.
This way higher level fusion is performed after conversion and unnecessary
cooperative fusion is avoided. Perhaps even more important, we introduce
an approach which remains adaptive to changes in either the sensor or the
environment. The network keeps adjusting its conversion functions during
operation. This is due to the fact that we use the sense-and-drive algorithm
to provide the learning samples for the network.

We will first define the neural network and the learning rule to train the
network in detail. We will then describe the sense-and-drive algorithm and
we conclude the section with experimental results and a discussion.

3.3.1 Network topology

A neural network is to be defined which learns the conversion functions:

g; = Gi(s)- (3.3.1)
To this end a network is defined as sketched in fig. 3.4:

e an input neuron which is fed with the sensor measurement s,
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output units o; (cells in the occ. grid)

weights w;;

() hidden units h;

sensor measurement s

15

Figure 3.4: The network used for learning the conversion of sensor data.



16 CHAPTER 3. LEARNING SENSOR MODELS

e a number of hidden units with values h;, j = 1,..., Np;4, with acti-
vation function Fyiq and biases ¥,

a set of output units with outputs o;,¢ =1, ..., Ny, witch activation
function F,,¢ and biases O,

a set of weights v;, which connect the hidden units to the input unit,

a set of weights w;;; each output unit ¢ is connected to all hidden
units j.

In this application each output unit represents a single cell ¢; in the occu-
pancy grid and thus g; = 0; and Ny, = N.

3.3.2 Functionality of the network

The output of a single output unit in this network can be written as

0; = Fout Zwij - Fhid [vj -5+ 5] | + 0O, (3.3.2)

J

We are now faced with the task to adapt the weights and biases in the
network such that the difference between o; and G;(s)

lloi — Gi(s)l (3.3.3)

is minimized.

3.3.3 The learning rule

A network as defined here is usually trained with a number of training
samples consisting of inputs s and the corresponding ‘correct’, or ‘desired’
outputs G* = {g7,...,95}- In the current context the input is the sensor
measurement s and the desired grid G* is the probabilistic representation
of the distribution of all possible grid configurations which would give that
particular sensor measurement s. As we stated earlier, we will use a dis-
tribution of grid configurations which is derived from the actual “areas of
interest” of the robot.

If we have a set of such samples we could define the summed squared
error € of the network over this set as:

=33 (r - o0

set 1
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In fact, this is the distance between the the output of the network and
the desired output as defined in (3.3.3) if you take the Euclidean distance
norm. The network can then be trained by minimizing this error term.
Minimization is performed by following the negative gradient of the error
term with respect to the weights in the network:

Oe

8’11),']'

0;, (3.3.4)

Aw;; = —v = 2v(g; — 0:)

9
8’11),']'

where %oi can be obtained from (3.3.2). This learning rule is called
the generalized §-rule. The weights to the hidden units can be adjusted
similarly by first back-propagating the summed squared error to the hid-
den units and then applying gradient descent to the back-propagated error

(see [19)).

3.3.4 The training samples
Training with binary samples

Unfortunately, in practice the learning samples (s, G*) are not readily avail-
able. Instead, we train the network with samples (s, Gbin) where GPI? is a
grid configuration representing a specific environment. As defined earlier in
chapter 77, section ?7?, a grid configuration is a binary representation of a
specific environment, in which we know for certain whether or not the cells
in the grid are occupied. We take these specific environments from the ar-
eas of interest of the robot, such that the distribution of the configurations
induces G*.

Thus, we only have training samples with grids GP™™ characterized by
Vi gPime{o,1}.

These values are not probabilities, but realizations of a stochastic process
following the probability distributions g;. lLe.,

P(g}’inzl):g;’"

or in this case
bi
E bin, 8191 = g1,
where the expected value is taken over all possible grid configurations
GPn; 8 which give the same sensor measurement s.

But what if we train the network with the samples (s, GP™)? Tt still
remains to be proven that with such samples the network learns to out-
put the probabilities G* given the measurement s. In [22, 23] Thrun uses
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the very same method to train his networks (in this case the specific grid
configuration is an occupancy grid representation of the calibration envi-
ronment), but for a proof that this method does indeed work the reader is
referred to [8]. Below we prove that it actually doesn’t matter whether you
train the network with samples (s, G*) or the samples (s, Gbin).

Theorem 1 If a supervised neural network is trained with samples (s, Gbin)
the same result is obtained as when the network is trained with (s, G*), pro-
vided that the distribution of grid configurations GP™ follows G*.
Proof The proof shows that with either type of learning samples, the
expected change in weights of the network is the same. This means that
for a given network, the weights, being the parameters of the network,
may be expected to converge to the same values. Thus it does not matter
which type of sample is used.

For the case of samples (8, G*) we have:

E(s,6+) [Awi;] = Es [Aw;;] =

. 0
ij

In the first equality we used that G* is a single-valued function of s

(the conversion function!), and in the second equation we simply sub-
stituted (3.3.4).

For the case of samples (s, Gbin) we have:

E g gbin, [Awij] = /

N (Awijp(s, Gbi“)) dsdGP® =
(8,gbm)

= / . (Awijp<cbi“|s)p<s>) dsdG"™ =
(S,Gbm)

z/.; Z {AwijP(Gbin | s)} p(s)ds =

gbin, 8
=Es Z {Awijp(Gbin | s)} . (3.3.6)
gbin, 8

We then simplify the following:

Z {A’LU—;jp(Gbin | s)} =2y Z {(g;'bin - m)aij 0; p(GP™® | s)} =

obin, 8 obin, 8

1o} . o "
=2’Y{(1—0i)moi'gi +(0—0i)670i'(1—9i)}-
ij

ij
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Here we used the fact the GP™® follows the distribution of G*: with prob-
ability g we have that cell ¢; is occupied and thus g})m = 1, and with

probability (1 — g;) we have g}) in _ 0. We further simplify to:

« 0 « 0 0 « O
27\ 9i gy % T 9i0ig, —0i —Oig —0i+ gioig —oi o =
17 i7 ij 7

. d
2v(gi — 0i) 5, —0i- (3.3.7)
i

Finally, if we substitute (3.3.7) in (3.3.6) we get (3.3.5), which completes
our proof. o

In this proof we have used the fact that if we sum over all grid configurations
GPI for a given s, all the parameters in the network, such as o; and %oi
ij

are constants, because the input s is constant.

Convergence

In conventional supervised learning the network would be presented with
training samples (s, G;(8)). But since such samples are not available the
network is trained with samples (s, g})in). We just showed that the expected
output value of the network E[o;] equals the expected occupancy value of
the cell £ [g}’in] = g;. However, because of this type of training sample the
network will never converge.

If we consider the learning rule (3.3.4) with g;pin substituted for g we
see that the change in the weights never decreases to 0. This is because
the output of the network is o; € R while the ‘desired output’ in the
training sample g}’in € {0,1}. And thus the network will not converge
to an equilibrium state. Instead it will oscillate around this optimum.
Convergence can be achieved by averaging the weight update (3.3.4) over
a sufficient number of training samples. In our experiments we did not
bother and we were satisfied with a function oscillating slightly around its
optimum; we stopped training after a fixed number of learning samples.

Partial training: use local activation functions.

Another point which deserves attention is the fact that the samples are
most probably not evenly distributed over the inputs s. The distribution
depends on the actual sensor measurements taken by the robot which are,
in turn, dependent on the environment and the exploration strategy.
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Because of this uneven distribution of samples over the outputs as well as
the inputs, the network should use local activation functions for the hidden
units. For else the uneven distribution would have a global effect on the
learned function. The convergence function would be learned accurately
for inputs s which occur frequently, while for inputs s which are infrequent
a much worse approximation is learned. Therefore we choose Gaussian
kernels for our activation functions:

hj = exp — (vjs + \Ilj)z.

Such networks are more commonly known as Radial Basis Function net-
works.

3.3.5 The Sense-and-drive algorithm

In contrast to the application of Thrun, where a “calibration environment”
was needed, we assume that such environments are not available. Instead,
learning samples (s, Gbin) are obtained by the robot itself. The robot col-
lects the training samples while driving around in its environment. We call
this algorithm for collecting training samples the sense-and-drive algo-
rithm:

e With the robot in configuration ¢ take a sensor measurement s.
e Drive in a random direction until collision occurs.

¢ Using the odometry of the robot, represent the path just traveled by
the robot in an occupancy grid centered at ¢. Set gzbi“ =1 for the
cell ¢; in which collision occurred and set g}-’in = 0 for the cells ¢; that
were traversed without collision.

An example of the sense-and-drive algorithm is sketched in figure 3.5.

This way, the sense-and-drive algorithm first provides the network with
an input s and then the robot starts driving. When the robot is driving,
the probability that it will collide with an obstacle in cell ¢; by definition
is given by P(cell ¢; is occupied | s), and thus

P(gP'™ = 1) = P(c; is occupied | ),

or
E[gP®] = P(¢; is occupied | s).

K3

This is exactly what we need for the training samples as discussed in sec-
tion 3.3.4.
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Figure 3.5: Tllustration of how training samples (s, GPI") are obtained.



22 CHAPTER 3. LEARNING SENSOR MODELS

Sense-and-drive at run-time. The successful application of the sense-
and-drive algorithm requires frequent collision of the robot. Obviously,
this cannot be realized at run time and this specific algorithm can only be
applied in a calibration phase. However, at run time the networks which
perform the conversion of sensor data remain adaptive: the network can
be trained with training samples (s,G*) where s are the measurements
taken by the robot at run time and where G* are the occupancy grids
representing the robot’s local environment, obtained by the fusion of the
various converted sensor measurements. I.e., the “desired” output is in this
case given by the fused outputs of all the sensors. This idea is also proposed
in the next chapter for a different kind of network. It is discussed in more
detail in chapter ?7.

In case of sensor malfunction, the robot may be provided with erroneous
occupancy grids of its local environment. In the worst case this will result
in a collision with the obstacles in the environment. However, the sense-
and-drive algorithm exploits the occurrence of this collision to adapt the
conversion function of the malfunctioning sensor. Thus, at the cost of a few
possible collisions, the algorithm is capable of adapting its inverse sensor
model.
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3.4 Experiments in simulation

In this section we discuss various experiments to learn sensor models in
a simulated robot environment. The learning algorithm described in the
previous section was tested with a simulator of an ultrasonic range sensor
(ASSIM, see [10]). After the robot takes a sensor measurement s with the
simulated acoustic sensor, it follows a path to explore the (local) environ-
ment with touch sensors. During this path more sensor measurements are
taken and stored to generate training samples. The path is then represented
in an occupancy grid GP™ and the network is trained with (s, Gbin). The
path consists of a series of connected straight lines, each at random angle.
If a collision occurs, the path is abandoned and a new path is started at a
random location. In figure 3.6 the environment, the robot, and the size of
the robot-centered occupancy grid are sketched on scale.

robot sonar bundle

of front sonar

robot-centered occupancy grid

room the robot is driving in

Figure 3.6: Sketch (on scale) of the learning environment.

In our experiments we used a network as defined in section 3.3.1 with
one input neuron, Np;q = 20, Ngyut = 16 X 16, where the outputs neurons
are organized in a regular 2D square lattice. For the activation function
Fout We used the identity function and for Fu,;q we used Gaussian functions.
The basis functions ¥; were evenly distributed over the input range. The
widths v; were initialized at half of the distance between two adjacent
kernels and were updated during training using error back-propagation and
the generalized d-rule. The biases ©; were kept fixed at 0.5, representing
‘unknown’ occupancy.
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3.4.1 A model for a single sensor

As a first experiment, we learned a conversion for a single sensor mounted
on the front of the robot, as shown in figure 3.6. In figure 3.7 results are
shown of the learned sensor model. The results clearly show the increasing
width of the sonar bundle at higher range measurements. This bundle is
also wider than one may have expected because the sonar sensor is a point-
source on the center of the robot, while the touch sensors are mounted on
the sides of the robot. Thus, if an obstacle is measured in front, a collision
may very well occur more to either of the sides of the robot. This shows
that the network also learns to incorporate the size of the robot in the
sensor model.

Furthermore, a comparison of these models with figure 3.2 shows that
the learned sensor model represents a much larger free space hypothesis. It
is important to note that figure 3.2 only displays that part of occupancy
grid which is in front of the sensor, while figure 3.7 displays the entire
robot-centered occupancy grid, also including the parts to the left, to the
right and behind the sensor. Thus the free space in figure 3.7 also extends
to parts of the grid where the sensor is not even pointed at. This can
be interpreted as follows: if the sensor measures an obstacle in front of
the robot the probability of an obstacle being present behind the robot is
almost 0. This is consistent with the training samples presented to the
network: if an obstacle is in front of the robot, there is low probability of
an obstacle being present at its rear, i.e. the robot does not often drive in
corridors. This is an example of how the network incorporates ‘knowledge’
of the environment. In the following experiment we show how a different
model is obtained for a different environment.

3.4.2 A model for a different environment

In this experiment we trained the same sensor as before, but in a differ-
ent environment containing many more corridors. The new environment is
sketched in figure 3.8. Because this environment does contain many cor-
ridors, we would expect a different free-space hypothesis for the robot. In
this environment, if the sensor measures the presence of an obstacle in front
of the robot, it is no longer the case that the cells in the grid that lay behind
the robot are probably empty. This is reflected in figure 3.9. Indeed the
main difference between this model and the model reflected in figure 3.7 is
the free space hypothesis. In this sensor model, if the sensor measures an
obstacle in front of the robot it concludes there is also high probability of
an obstacle being present behind the robot.
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Figure 3.7: The learned sensor model for the acoustic sensor. Shown are
the occupancy values P(cell ¢ not empty | 8) in the robot-centered grid for
various range measurements 8. The position of the sensor is in the mid-
dle of the grid at (8,8) and it is aimed toward ‘the front’ of the robot,
corresponding to towards the top right of the figure.
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Figure 3.8: Sketch (on scale) of another learning environment containing
many more corridors.

Figure 3.9: A sensor model for the same sensor as in figure 3.7 trained in a
different environment containing many corridors.
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Figure 3.10: A sensor model trained in the same environment as in figure 3.7
for a modified sensor with much larger opening angle.

3.4.3 A model for a different sensor

In another experiment we trained the sensor model in the same environment
as sketched in figure 3.6 but with a modified sensor. More specifically, we
increased the opening angle of the sensor to 130 degrees®. This means that
if a sensor measures the presence of an obstacle, this obstacle may very
well be positioned much more to the sides of the robot. The results in
figure 3.10 clearly show that our neural network also adapts to this change
in the sensor parameters. When the sensor still pointing towards the front
of the robot measures a certain distance, the model finds out that at this
distance an obstacle may as well be positioned at the side as in front of

3 An impractical opening angle, but useful for demonstration purposes.
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the robot. Note that overall the occupancy probabilities are lower: when
the sensor pointing towards the front of the robot measures an obstacle the
space in front may very well be empty (because the reflection came from
the sides).

3.4.4 A model for a different robot

Show that a different model is obtained if a tiny robot is used instead of
the large MARIE robot.
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3.5 Experiments with a real robot

Discuss experiments with MARIE on sensor models only. Just give some
pictures of the models obtained with the data from Marie and discuss.
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3.6 Pairwise dependent sources

So far we have only been concerned with the conversion of single sensor
measurements 8 to the robot centered occupancy grid. But consider again
the higher level fusion method that we propose to use in our SDF system:

ﬁ [P(z | s,.s,-+1)] Pe)

1 L P(z]8i41)

It can be seen that this higher level fusion method does not only require
conversion of sensor measurements P(OCC | 8) but also the conversion of
pairwise dependent measurements P(OCC|s;, 8;11). Conversion of pairwise
dependent measurements requires computation of P(z | 8;8;41) given the
dependent measurements s; and s;41. With traditional conversion methods
this would require the definition of a sensor model

P(s;8;41| OCC(cy)).

Obviously such models are rather complex and this is probably why inde-
pendence is often assumed with traditional conversion methods. But our
learning method is easily extendible to learning the conversion of pairwise
dependent sources. The neural network is simply extended with an addi-
tional input unit and at the hidden layer an extra dimension of hidden units
is added. Results of experiments with such networks are presented below.

3.6.1 Simulation results

More specifically, the network for converting pairwise dependent sources is
extended as follows (with respect to the definition given in section 3.3.1):

e an additional input unit is added,
o the hidden layer is extended to a 2D grid of 10 x 10 units.

The basis functions ¥; are distributed evenly over the input space.

We also experimented with the training of a model for such pairwise
dependent sources. To this end an inverse sensor model was learned for
two adjacent sensors pointed towards the side of the robot. The main axes
of the sensors lay 15% apart. In figure 3.11 the positions of the sensors are
sketched. The results are shown in fig. 3.12. Note that in the bottom two
figures the z-axes rescaled for display purposes. The figure clearly shows
the model was trained in the environment without corridors. For correlated
sensor measurements (the top two grids in the figure) the model gives high
occupancy probabilities for a long stretch of cells to the side of the robot.
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Figure 3.11: Positions of the pairwise dependent sensors for which the
conversion function is learned.

For uncorrelated measurements (bottom two figures) the model is uncertain
and gives “unknown” occupancy probabilities around 0.5.

This is an important result which indicates the system’s behavior when
spurious readings occur or when one of the sensor malfunctions. In such
cases, the two sensors would ‘disagree’ and return significantly different
results. The figure shows that these different measurements are converted to
a basically “unknown” representation of the environment. In other words,
the spurious sensor reading is ignored.

3.6.2 Experiments with a real robot
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Figure 3.12: The learned inverse sensor model for pairwise dependent acous-
tic sensors. Shown are the occupancy values grid P(cell 7 not empty|s;s;11)
in the robot-centered grid for various range measurements s;8;,1. The po-
sition of the sensors is in the middle of the grid at (8,8) and they are pointed
toward ‘the side’ of the robot, i.e., towards the top left of the figure.
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3.7 Discussion

In this section we have discussed the conversion of sensor measurements s
to the probabilities g; in the robot-centered occupancy grid. We first re-
viewed the basic approach described by Elfes, in which Bayes’ rule is used
to perform the conversion. The most important term in this conversion
rule is the sensor model p(s|r). While Elfes still uses Gaussians as sen-
sor models many variations to this conversion method are concerned with
defining more accurate sensor models. These variations were reviewed in
section 3.2.2 and appendix ??7. Most of these variations adapted the sensor
model to one particular situation, e.g., the occurrence of many spurious
readings or the occurrence of many specular reflections. We argued that
instead it would be preferable to learn the conversion functions with a neu-
ral network. In this case the combined effect of the sensor’s characteristics
as well as the environmental influences on the conversion function would
be learned by the network. We reviewed one such approach described by
Thrun in which the sensor measurements are converted to a world centered
occupancy grid by a neural network. The network was trained using a
“calibration environment”. We argued that in this particular approach the
adaptive potential of neural networks was not fully exploited. Therefore,
we introduced our approach, in which sensor measurements are converted
to the robot-centered grid. The learning samples are provided by the sense-
and-drive algorithm, which remains adaptive during operation.

Unfortunately, it is difficult to compare the different conversion meth-
ods, because an objective comparison measure is lacking. There is no cardi-
nality amongst conversion functions. One such comparison measure could,
e.g., be the distance between the actual and the predicted occupancy state
of a cell:

IP(OCC(es) | 8) - gl
However, since this is exactly the error mass we are minimizing in our
network, our network is superior by definition and thus this measure is of
little academic significance.

By definition of the theory on SDF systems we discussed in chapter ??,
the ‘goodness’ of a particular conversion function is determined by the
fitness of the resulting representation for solving the task at hand. In our
application this would translate as

how well can we navigate with the occupancy grids obtained by
the conversion of sensor measurements?

But once again this question is difficult to answer in our case. In the
work of Elfes and Thrun sensor measurements are converted to a world-
centered occupancy grid which is used by a global navigation method. In
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our case sensor measurements are converted to a robot-centered represen-
tation which is better suited for local navigation methods. Thus, we would
effectively be comparing the combined performance of conversion function
and navigation method (of which the navigation method is probably the
predominant factor).

We have, however, demonstrated that our method is adaptive to both
the sensor’s internal parameters (e.g., the opening angle) as well as envi-
ronmental influences (e.g., the occurrence of many hallways). This can also
be interpreted as a conversion method which can be applied to all differ-
ent range sensors in all different environments. Rather than specifically
adapting a basic model to a special kind of sensor, e.g., which gives many
spurious readings, or a specific environment, e.g., where frequent specular
reflections occur, we have developed a method which learns the combined
effect and which is adaptable to changes in these effects.

In the remainder of this section we discuss the implications of the neural
network conversion functions which we introduced in this chapter to the rest
of our work presented in earlier chapters. If you will, we tie the loose ends
from previous chapters which could not be answered until now.

3.7.1 Supra Bayesian fusion revisited

As discussed in section ?7 most Bayesians advocate the use of Supra Bayesian
higher level fusion. In the context of our SDF system the application of
this fusion system would require the definition of functions f; which give
the probability of cell ¢; being occupied given the output o; of the network
which performs the conversion of sensor measurements:

fi(05) 2 P(OCC(c5) | ). (3.7.1)

The rationale behind this higher level fusion method is that you quantify
some kind of confidence in the conversion function. E.g., if the conversion
function would be very accurate we would have f;(0;) = oj, the identity
function, while if we have no confidence at all in the conversion function
we would have f;(0;) = 0.5.

In our SDF system we introduced neural networks which learn the con-
version functions, and which are adaptive after calibration. Now consider
a conversion function in which we have low confidence,

| P(OCC(c;) | 05) — oj > €. (3.7.2)

In this case the sense-and-drive algorithm would provide the actual occu-
pancy probability P(OCC(c;) | 0;) to the neural network which performed
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the conversion. And consequently, the conversion function would adapt
to this difference. In fact, the neural network is effectively trying to mini-
mize 3.7.2. Le., by definition the network maximizes the confidence in itself.
Thus, we should have maximum confidence in the conversion functions and
indeed we should use f; = Z, the identity function.

This way we have shown that if adaptive conversion functions are used,
we should have maximum confidence in the converted measurements and
consequently, there is no need for a Supra-Bayesian fusion rule. And thus
we are justified to use a simpler fusion rule such as the PDOP (as defined
in section 77?).

3.7.2 Conversion to Dempster-Shafer grids

In section ?? we discussed Dempster-Shafer grids as an alternative to
Bayesian grids. These Dempster-Shafer grids do have some advantages,
most noticeably the explicit representation of the ‘unknown’ state and the
less weight that is given to the prior distribution (see [24, 15, 25]). As an
argument for probabilistic grids we used the fact that accurate conversion
functions for DS grids are still lacking.

The advantage of the ‘unknown’ state in DS grids can be effectively used
in the conversion of sensor measurements. Suppose, e.g., we have a sensor
which is accurate for 80% of the time but which returns gibberish elsewhile.
The gibberish can, e.g., be spurious readings or specular reflections. In
this case a measurement of this sensor would be converted to OCC(c;) =
0.8, EMP(c;) = 0.0, UNK(c¢;) = 0.2. This means that with certainty 0.8
the cell is occupied, but with certainty 0.2 it is an erroneous reading, in
which case it cannot be determined whether the cell is occupied or not
(and thus unknown)?. Such are the conversion functions which are used
in [24, 15]. A rather heuristic inverse sensor model is defined, using the
typical opening angle of the sensor, which is then parameterized by this
gibberish percentage.

While this is indeed a theoretically more appealing conversion of a sen-
sor measurement, the actual values of the parameters of the conversion (the
‘gibberish percentages’) are more difficult to obtain. In [24] the standard
deviation of the sensor measurements is used to determine this parame-
ter. But as we argued before, because the values of these parameters are
influenced not only by the sensor itself but also by the environment the sen-
sor is operating in, the values are preferably learned by a neural network.
But in the learning method described in this section we have seen that if

4The example given here only holds for the “occupied part” of the converted mea-
surement. A similar argument holds for the empty part.
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we learn the conversion of sensor measurements, we are actually learning
probabilities of a cell being occupied (see section 3.3.5). This is one of the
main reasons why we choose to work with a probabilistic, rather than a
Dempster-Shafer representation.
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