DISTRIBUTED COVERAGE OF
RECTILINEAR ENVIRONMENTS

Zack J. Butler
CMU-RI-TR-00-23

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DocTOR OF PHILOSOPHY
in the Robotics Institute
of

Carnegie Mellon University

(© Zack J. Butler 2000

Carnegie Mellon University

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.






Abstract

This thesis addresses a specific problem of distributed robotics — namely, the problem of
using a team of identical robots to autonomously and cooperatively generate a map of their
shared workspace without the use of a central controller. The problem is posed as one
of sensor-based coverage, in which a complete exploration of the environment is produced
without any initial information. The system that inspired this work, the minifactory, is an
automated assembly system that requires the ability for complete self-calibration, a task that
can be posed as sensor-based coverage. The problem addressed here is therefore specified
for a class of robots similar to the minifactory’s couriers — rectangular robots with intrinsic
contact sensing operating in a shared rectilinear environment.

To approach this problem, first a novel sensor-based coverage algorithm for a single
robot, C'Cg, is presented. C'Cpg uses a reactive construction and no time-based history
to perform coverage, enabling the straightforward addition of cooperation. A proof is then
presented which shows that a robot under the direction of C'C'r will reach every point in any
finite rectilinear environment with no initial knowledge. A cooperative algorithm DCy is
then presented which runs independently on each robot in a team with a shared workspace.
DC'g uses a modified version of CCg to produce coverage, while two additional algorithmic
components allow the robots to cooperate at run-time to determine their relative location
in the environment and improve the efficiency of the coverage process. A proof for DCp is
also presented which shows that each point in the environment will be reached by at least
one robot, and that each robot will end up with a complete map to which it has registered
itself. Extensions to DCg are presented which allow for the handling of collisions between
robots, some position uncertainty in the robots’ sensing, and teams of different sized robots.
Finally, some directions for future work are presented, including the extension of CCpr and
DC'g to different robot systems and the generalization of the proof of DCpr to a class of

cooperative robotic algorithms.



Acknowledgements

It’s been a great few years here at Carnegie Mellon, and I’m happy to have this opportunity
to thank some of the people who have helped make it so.

First of all, I'd like to thank my thesis committee for reading this document and being
there to ask all the right questions. I’d like to especially thank my advisor, Ralph Hollis,
who had a great idea about the future of manufacturing and put together a great lab (and
populated it with great robots). And in my case, he let me run with one little piece of his
idea and explore the world of algorithms while getting to play with robots too. Al Rizzi was
always there to answer my hard questions and ask some too, and was willing to sit down
and help build robots, even when it meant a few hours with a soldering iron and a crimping
tool. T also had many useful discussions with Howie Choset and Ercan Acar, who have also
been working on sensor-based coverage here at CMU.

A great lab is in large part a collection of good people, and I certainly enjoyed being
part of the Microdynamic Systems Lab. From a technical standpoint, Arthur Quaid wrote
the courier control code and assisted with experimental setups, and Jay Gowdy built all the
high-level AAA software that I used for initial simulations. Moreover, I greatly appreciated
all the talks with the other folks in the lab, both technical and otherwise. And being in
the Robotics Institute and getting to interact with a wide variety of smart people (and at
subsidized social events!) was a wonderful experience.

From a more personal standpoint, I'd like to thank my girlfriend, Christy Dryden, who
put up with various frustrations over the last three years, and who even told me to get back
to work when I needed to be told. And of course my parents, who supported me for all
those years, and who thought that grad school was a good idea.

The work presented here was also made possible by an NSF Graduate Research Fellow-
ship as well as NSF grants DMI-9523156 and DMI-9527190.

For another take on these thoughts, take a look at Appendix C.

ii



Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Introduction

1.1 AAA/Minifactory . . . . . . o o
1.2 Problem Statement . . . . . . . ...
1.3 Previousrelated work . . . . . .. ..o L
1.4 Document Summary . . . . . . . . ... e e e
2 Single-robot coverage
2.1 CCprdescription . . . . . . . . . e
2.2 Correctness Proof . . . . . . . ..
2.3 Implementation . . . . . . . . .. L e
3 Cooperative coverage
3.1 Cellular decompositions under DCr . . . . . . . . . . ... ... ...
3.2 Components of DCRr . . . . . . . . . e
3.3 Correctness Proof . . . . . . . .. L
3.4 Implementation . . . . . . . . .. L e
4 Algorithm Extensions / Discussion
4.1 Collision handling . . . . . .. ... ..
4.2 Data propagation . . . . . . . ...

iii

ii

vi

12

14
14
28
38

51
92
93
65
7



4.3 Non-identical and rectangular robots . . . . . . ... ... ... . 0L

4.4 Future extensions . . . . . .

5 Conclusions
5.1 Contributions . . . . . . ..
A Algorithmic details
A.1 CCpg event handler . . . . .
A.2 CCgr map interpreter . . . .
A.3 CCgip updates . . . . . ..
B Courier sensors
B.1 Magnetic platen sensor . . .
B.2 Optical coordination sensor
C Acknowledgements, revisited
Bibliography

v

106
107

110
110
112
114

117
117
119

121

125



List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

Performance of CCg in various square environments. . . . . . . . . .. . ... 44
Performance of CCg in the environments of Fig. 2.18. . . . .. ... ... .. 46
Performance of C'Cg on the courier in the environments of Fig. 2.19. . . . . . 48
Elapsed time (in seconds) for CCg under various control methods. . . . . . . 50
Effects of the overseer on the robot’s current cell C.. . . . . .. ... ... .. 75
Performance of DCr in the environment of Fig. 3.18. . . . . .. . .. ... .. 81
Performance of DCr in the environment of Fig. 2.18a. . . . . . . .. ... .. 82
Performance of DCr in the environment of Fig. 2.18b. . . . . . . .. ... .. 83



List of Figures

1.1
1.2
1.3
1.4

2.1
2.2

2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

2.17
2.18

Typical coverage paths for a given environment. . . . . . . . . . .. ... ...
An example section of a minifactory. . . . . . ... ..o oo
The moving part (forcer) of a courier robot sitting on a platen. . . . . . . ..

A common approach to sensor-based coverage. . . . . .. .. ... ...,

A schematic of the components of CCr. . . . . . . . ... .. ... ......
Examples of (a) an oriented rectilinear decomposition and (b) a boustrophe-
don decomposition. . . . . . . .. L. e
The data structures associated with a single cell C; as represented in CCg;
cell C; also shown for clarity. . . .. ... ... ... .. ... .........
The four segments of a seed-sowing path. . . . . .. ... .. ... ... ...
The ways that an interesting point can be discovered during seed-sowing.

An example of localizing an interesting point and continuing coverage. . . . .
A second example of localizing an interesting point and continuing coverage. .
The two ways an interesting point can be discovered during edge exploration.
A cell’s maximum extent is limited by other cells’ minimum extents. . . . . .
A summary of the FSM representation of CCgr. . . . . . . . . .. . ... ...
The states of CCg during seed-sowing. . . . . . . . . . ... ... ... ....
States of CCR during exploration of the initially discovered side of a cell.
The states involved in exploration of the second known side of a cell. . . . . .
The possible geometries of placeholders being turned into cells. . . . . . . ..
An annotated screenshot of the simulation of CCg. . . . . . . . .. ... ...
The states and transitions corresponding to state Al (as shown in Fig. 2.11)
and motion « in the absence of hybrid force/position control. . . . . . . . ..
Problems arising from small position errors. . . . . . . .. .. ... ...

Test environments for CCr. . . . . . . . . . . . . 0 i

vi

4
o

15



2.19 Environments used for CCg testing. . . . . ... ... ... ... ... ....

2.20 Two different decompositions created in the environment of Fig. 2.19a . . . .

3.1 A schematic version of the concept behind DCg. . . . . . .. ... ... ...
3.2 An example sweep-invariant decomposition and generalized rectilinear de-
cCOmpOSItion. . . . . . ... e
3.3 A schematic representation of the components of DC'k and the types of data
transferred between them. . . . . . ... ... o oL oL
3.4 The effects of an exploration boundary. . . . .. ... ... ... ... ....

3.5 A typical example of the maintenance of intervals between vertically adjacent

3.6 Two potential transforms are calculated by the feature handler. . . . . . . . .
3.7 An example of adding new area by the overseer . . . . . ... ... ... ...
3.8 A new cell narrower than an incomplete cell must be as tall. . . . . . . .. ..
3.9 Determining the cell(s) adjacent to an interval 7. . . . ... . ... ... ...
3.10 The discovery of interesting points in a GRD when the current cell has a
vertically adjacent neighbor. . . . . . . . . ... oL oL
3.11 The two ways in which incomplete cells might overlap. . . . . . . .. ... ..
3.12 Generation and handling of multiple incomplete cells. . . . . ... ... ...
3.13 Intersection of added area in the context of the proof. . . . . ... ... ...
3.14 Potential types of adjacency for an interval ¢ in an added cell Cpey. - - - - . .
3.15 Special cases of alteration of the current cell. . . . .. .. ... ... .....
3.16 A screenshot of the simulation of DCr. . . . .. ... ... ... .......
3.17 Problems caused by inaccurate colleague transforms. . . . . . ... ... ...

3.18 Additional environment used for efficiency testing. . . . ... ... ... ...

4.1 Utilizing collisions to generate a colleague relationship. . . . . . . ... .. ..
4.2  Some of the possible geometries of colliding robots. . . . . . ... ... .. ..
4.3 A schematic description of the “script” followed by a pair of robots after
colliding. . . . . . . o . L
4.4 A difficult, but possible, collision avoidance. . . . . . . .. .. ... ......
4.5 Configuration spaces and SIDs for different robots in the same environment. .
4.6 Construction of workspace cells for sharing between robots of different sizes. .
4.7 System-specific sweep-invariant decompositions. . . . . . . ... ...

4.8 An example of two robots colliding at the outset of coverage. . . . ... ...

vil



B.1 Commercial planar motor forcer with integrated 3-DOF magnetic sensor. . . 118
B.2 End view of a pair of magnetic platen sensors. . . . . . .. .. ... ... .. 118

B.3 Mechanical schematic of the optical coordination sensor. . . . . . . ... ... 120

viii



Chapter 1

Introduction

As the field of robotics becomes more mature, the potential has arisen for the development
of teams of robots to perform various tasks. When creating such a cooperative robot team,
the robots need to be able to successfully navigate around each other and achieve their
goals, which in general requires a map and a common frame of reference. And while such
a map can often be developed by hand and given to the robots a priori, it is potentially
more efficient (i.e. requiring fewer hours and/or fewer person-hours) and more accurate to
have the robots generate the map themselves. In addition, if this autonomous exploration
is performed cooperatively, its efficiency can be improved even further. However, it is
also important to ensure that the map creation process is reliable — for instance, that a
complete map of the environment (and one to which all robots can register themselves) will
always be generated. In order to achieve these goals, this dissertation will present a set of
algorithms for cooperative coverage with which a team of robots operating without a central
controller can be shown to always produce a complete map of their shared environment
while simultaneously discovering their relative locations within that environment. A proof
of the cooperative algorithm is also presented which is important in terms of guaranteeing
completeness of the exploration process, but is also a contribution in itself, since the set
of cooperative robotic tasks for which provable algorithms exist is fairly small, and this

algorithm presents a cooperation technique that may be of use in other systems.

The basic problem of coverage is that of planning a path for a sensor, effector, or robot to
reach every point in an environment. It is a task that appears in domains as diverse as CNC
machining [1] and plowing fields [2], and has been solved for arbitrary known planar areas [3].
Typical coverage paths for a sample environment are shown in Fig. 1.1. A more challenging

problem is that of sensor-based coverage, in which there is no a prior: information about



2 CHAPTER 1. INTRODUCTION

the environment. In this case, the geometry of the area to be covered must be discovered
in order to generate and execute (often simultaneously) a coverage path. Sensor-based
coverage is by nature limited to robotic tasks, in which sensing and actuation are coupled
and the environment may be unknown (as opposed to performing milling operations with a
machine tool, for instance, a task in which the complete geometry is known ahead of time).
Even in this restricted domain, sensor-based coverage is used for a number of different tasks,
such as automated floor cleaning [4] and landmine detection and removal [5]. A number of
approaches to sensor-based coverage for different robotic systems have been developed and
are described in more detail in Sec. 1.3.1, although a new sensor-based coverage algorithm

was required for the type of system under investigation, as described in Chapter 2.

Coverage tasks are also interesting robotic applications in that they are well suited to
cooperation. Since the goal of the coverage problem is to visit every point in the environ-
ment, it may be possible to divide the environment such that n coverers will each visit 1/n
of the total area in an equivalently short (or even shorter) amount of time compared to a
single coverer. For known areas, this problem has been investigated, and in fact this optimal
efficiency gain can be nearly obtained for most geometries [6]. For robots operating in un-
known environments, the efficiency gain will in general not be as great, since the division of
labor cannot be done optimally without complete prior information. However, a significant
increase in efficiency is still possible, as will be demonstrated in this dissertation. Perhaps
more importantly, a team of robots working without a central controller (a peer-to-peer
team) can often withstand failure of one or more robots in the team, as long as the division
of labor happens on an ongoing basis. This requires that the robots have a way to divide
their common environment among themselves rather than simply accepting commands from
a central decision maker that has complete knowledge about the team. Robots in a peer-
to-peer team also may or may not know each others’ initial positions, and if they do not,
the coverage algorithm must also be able to determine the robots’ relative locations as they

explore.

In addition, in all of these tasks, whether a spray painting task on a known surface
or a cooperative mine detection task with little or no initial information, there is a need
for assurance of complete coverage. For known areas, a path can be correctly generated
off-line, but in the sensor-based case, the usual solution (such as the one presented here) is
instead to use a strict geometric algorithm about which correctness can be proven for any
environment of a given class. The extension of sensor-based coverage to multiple robots

introduces additional complexity, since each point in the environment need only be reached



1.1. AAA/MINIFACTORY 3

O

(2) (b)

Figure 1.1: Typical coverage paths for a given environment based on two common tech-
niques: (a) wall-following and (b) seed-sowing.

by one of several robots, and in order to cooperate, the robots must know (or discover, in
our case) each others’ locations, and these processes must be incorporated into the proof
of correctness. However, using multiple robots gives the potential for greatly increased

efficiency in terms of total time required.

1.1 AAA/Minifactory

While the direct inspiration for both the single-robot and cooperative work presented here
did come from a real-world team of robots, the task domain of the robots in question is
not a traditional coverage application. Rather, the robots are components of the minifac-
tory, a novel modular automated assembly system [7]. The minifactory has been designed to
conform to the Agile Assembly Architecture (AAA), a platform for the development of mod-
ular assembly systems that has been developed by members of the Microdynamic Systems
Laboratory over the last several years [8]. The AAA framework provides for rapid design,
programming, deployment and reconfiguration of assembly systems by imposing mechani-
cal, network and algorithmic modularity among the agents in the system [9]. In this case,
an agent is not simply a piece of software, but a physical device with integrated computing
(i.e. a robot) that can support the protocols of AAA. Each agent has not only the ability to
move in its environment and communicate with its peers, but can also represent itself in a
A A A-specific language so that it can be simulated with high fidelity in a centralized design
and monitoring tool [10].

The minifactory, a small example of which is shown in Fig. 1.2, primarily consists of two
types of agents: couriers (the robots to which this work applies) and overhead processors.
Couriers are small tethered robots based on planar linear motors that operate on a set of

tileable platens which form the factory floor. The actuated member of a courier, called a



4 CHAPTER 1. INTRODUCTION

Overhead

<~ manipulator
Precision N
parts "‘i L Bulk random
-l
N==N

. | parts feeder

S

A

)
I
s

Figure 1.2: An example section of a minifactory.

forcer and pictured in Fig. 1.3, is a single body that can move in X and Y at velocities over
1 m/s. The couriers move over the platens to both carry subassemblies and participate in
assembly operations. They interact (both in hardware and over a network) with overhead
processors, such as pick-and-place robots (manipulators), glue dispensers, or screwdrivers, to
perform assembly operations on the product. The couriers have position sensing that retains
accuracies of 20 pum throughout its workspace and has resolution of 0.2 pm (1o) [11] which
has allowed for various forms of closed-loop control [12, 13], enabling them to be robust
and trustworthy members of the minifactory community. In addition, each is equipped with
an upward-pointing optical coordination sensor to locate LED beacons placed on overhead
robots as calibration targets [14, 15]. Details on the operation of these sensors is given in
Appendix B. However, the couriers have no sensing that looks out across the platen, and no
extrinsic contact sensors, so they use only intrinsic contact sensing to detect the boundaries
of their environment. What is meant by “intrinsic” contact sensing is that a courier can
only sense a platen boundary by attempting to move in a certain direction and noting no
change in position — since the forcer floats on an air bearing that eliminates friction, any

inability to move will necessarily indicate an obstacle.

To support precision assembly operations, a minifactory must be calibrated after being
built. In addition, the rapid deployment and reconfiguration demanded by AAA requires
that a minifactory be capable of autonomous self-calibration. This is because the precisions

demanded of the robots’ relative positions is greater than can be easily achieved through



1.1. AAA/MINIFACTORY Y

position
sensor
= electronics

optical
coordination

4 sensor

O/h\
/

Figure 1.3: The moving part (forcer) of a courier robot sitting on a platen.

manual calibration, whereas self-calibration can very quickly produce an accurate factory
map. The result of this self-calibration, however achieved, will be a complete map of the
platens and overhead robots to which each courier has registered itself. This process will
require the couriers to move about the minifactory from unknown initial locations and find
all overhead processors relative to all platens. This problem prompted the investigation of
coverage algorithms for the couriers, both for a single courier as well as for the cooperative
case, since a complete coverage of the factory by the courier’s body will determine the
geometric layout of the platens, while simultaneous coverage of the minifactory’s airspace
by the coordination sensors will ensure the detection of all overhead robots. In addition,
explicit cooperation between couriers is desirable, since multiple couriers will be available
for this task, and minimizing the overall time to completion is important for getting the
factory operational as quickly as possible.

Aside from the need for a self-calibration technique, several aspects of the minifactory
system make it an attractive one in which to study the coverage problem. The nature of
the high-precision position sensing and optical landmark sensing of the couriers has very
helpful implications for the coverage algorithms, as the dead-reckoning problem common
to mobile robotics tasks can be legitimately discarded. There is some potential for non-
cumulative position error, due to both sensor inaccuracy and environmental irregularities,
but this is a problem which is much simpler to model and handle, as described in Sec. 2.3. In
addition, the restrictive environment of the platens provides a simplified domain to consider
— since all platens are themselves rectangular, the overall environment will necessarily
be rectilinear — making the data representation and implementation of cooperation easier
than for arbitrary environments!. Finally, having only intrinsic contact sensing to detect

boundaries does complicate the map-building portion of coverage for reasons described in

!The potential for extension to less structured environments is discussed in Sec. 4.4.1.



6 CHAPTER 1. INTRODUCTION

Sec. 2.1, but this has been successfully overcome.

1.2 Problem Statement

The core problem faced is then twofold. First of all, a sensor-based coverage algorithm
must be developed that directs rectangular robots with only intrinsic contact sensing to
completely cover any environment with finite rectilinear boundaries and finite area. In ad-
dition, this algorithm must be designed in a way that allows for eventual cooperation. The
second problem is then to direct teams of square robots (an extension to some rectangular
robots will also be presented) with intrinsic contact sensing operating in a shared, connected
rectilinear environment with finite boundary and area to cooperatively cover their environ-
ment. “Cooperatively cover” means that each point in the environment will be passed over
by at least one robot. In this problem, the robots in the team will not know their relative
initial positions or orientations, however, due to the structure of the environment, their
orientation will be one of four distinct values (i.e. with axes aligned with the environment
boundaries) and cannot change. In addition to a solution to this core problem, some exten-
sions will be addressed, most notably the explicit handling of collisions between robots and

the incorporation of limited uncertainty in the robots’ positions.

1.3 Previous related work

The work presented here is (to the best of our knowledge) the first to perform provably
complete cooperative coverage without the use of an a priori common frame of reference or
modifications to the environment. However, it certainly draws from and has similarities to a
variety of previous work in a number of areas of robotics. Research on sensor-based coverage
forms a large portion of directly relevant prior work, with some algorithms displaying similar
overall behavior to our work, but using different internal structure [16, 17], while others go
about the task with different goals and methodologies [18, 19]. The work presented here
also involves cooperation without the use of a central controller, an aspect of robotics that
has previously been seen in more minimalist provably correct algorithms [20] as well as
more generic systems [21, 22]. Finally, cooperative exploration (and even coverage) of an
environment by a team of robots has been investigated [23, 24, 25] but for the most part
not for systems that have no initial team knowledge (such as a common starting point for

the team members) or central controller.



1.3. PREVIOUS RELATED WORK 7

() (b)

Figure 1.4: A common approach to sensor-based coverage, in which after the robot (a)
discovers a hindrance to its coverage path, it (b) marks the obstacle and continues coverage
on one side.

1.3.1 Sensor-based coverage

Algorithms for sensor-based coverage have been written for a variety of different robots, en-
vironmental representations, and algorithmic goals (provability, efficiency, simplicity, etc.).
Some of these have provided inspiration for the work presented here, but none is exactly
applicable to the problem at hand, either in terms of the types of robots under consideration
or in being amenable to the addition of cooperation.

In one class of sensor-based coverage solutions, to which our work belongs, the algorithms
begin by assuming the environment to be simply shaped (e.g. simply connected, monotone,
convex, etc.). To cover its environment, the robot begins to execute a simple coverage path
such as the ones shown in Fig. 1.1, until it discovers evidence that contradicts the initial
assumption, such as at the moment depicted in Fig. 1.4a. At this point, one of several
strategies is used to ensure coverage on all sides of the newly discovered obstacle. This
is depicted generically in Fig. 1.4b as a path continuing below the obstacle with a marker
above the obstacle. Note that for this particular coverage path, an obstacle (such as the one
shown in Fig. 1.4) need not be an “island” in the environment, but simply a feature that
causes an interruption in the coverage path.

The earliest known algorithm for sensor-based coverage of this type is presented by
Huang et al. [26]. It uses a seed-sowing method to cover the free space of the environment
and implicitly builds a cellular decomposition of the environment. It uses a local wall
follower to move around obstacles and (for the example of Fig. 1.4) would perform seed-
sowing below the obstacle until the end of the obstacle is detected, after which it would
follow the obstacle back and cover on the top of the obstacle. However, the details of the

algorithm (including how such obstacle points are detected) are not presented, nor is any



8 CHAPTER 1. INTRODUCTION

notion of the algorithm’s correctness. An algorithm presented by Lumelsky et al. in [27]
and extended in [17] produces complete coverage of C2 environments for robots with finite
non-zero sensing radius by recursively building a subroutine stack to ensure all areas of the
environment are covered. For example, when detecting the “obstacle” shown in Fig. 1.4b,
the coverage algorithm would be called on the area below the obstacle, so that when this
task completed, the robot will return to the corner just detected and continue coverage on
the top side of the obstacle. Although this presentation is one of the first to include a proof
of correctness, it does require range sensing and the details of its implementation are not
discussed. In addition, the use of a recursive algorithm implies long-term planning, since the
robot is essentially committed to completing the areas in its stack, which may make it more
difficult to incorporate run-time cooperation. A similar algorithm is presented by Park and
Lee [4], although their work explicitly considers the size of the robot in the coverage task,
something that is required for robots with only contact sensing, but their work still requires

that the robots have finite range sensors.

Another notable feature of the algorithms by Lumelsky et al. is that they do not ex-
plicitly build a map. While this can be efficient in terms of memory required and algorithm
complexity, it does not lend itself to cooperation. Sensor-based coverage work by Acar [16],
based on a planned coverage strategy outlined in [28], is similar in overall behavior, but
creates a sparse geometric representation of the environment. In [16], a cellular decomposi-
tion of the environment is constructed and used to form an adjacency graph which in turn
is used to plan coverage. When a specific cell (corresponding to a node in the adjacency
graph) has been covered, the robot uses the structure of the graph to plan a path to an
unexplored area, and when the graph has no unexplored edges, coverage is complete. The
cellular decomposition (the form of which is described in more detail in Sec. 2.1.1) is in-
crementally developed, starting with a single cell and adding additional cells as the robot
discovers (as it does in Fig. 1.4) that the environment cannot be represented by the cells
currently in the decomposition. It should be noted that this work is one of the few coverage
techniques that has been demonstrated on a real robot. This work has also been shown
(at least in theory) to work for robots with perfect extrinsic contact sensing, although the
engineering task of implementing such a robot and environment has yet to be undertaken.
The approach of [28] and [16] also helped to inspire the algorithms presented in this work,
especially the single-robot algorithm described in Chapter 2, in which a cellular decompo-
sition of the environment is also incrementally constructed. However, our work explicitly

compiles and uses the complete geometry of the environment, which can be easily done due



1.3. PREVIOUS RELATED WORK 9

to its restricted nature and is necessary for the type of cooperation implemented.

Different approaches to sensor-based coverage have also been proposed. One notable
technique is that of Pirzadeh and Snyder [18], in which the environment is represented by a
uniform grid in which each cell is the size of the robot and represents either a portion of an
obstacle or free space. This work uses a technique referred to as “indirect control,” in which
each time a cell is visited, its cost is increased, to encourage the robot to explore elsewhere.
This therefore does not require any planning and can still be proven to produce complete
coverage, which is intriguing in terms of enabling straightforward cooperation. They also
introduce heuristics to improve efficiency without contravening the proof, and are one of
the few researchers to present quantitative measures of the efficiency of their algorithm.
However, the use of a coarse grid representation limits the completeness of coverage to a
portion of the interior of the environment. A recent algorithm by Gabriely and Rimon [29]
also discretizes the environment into a grid (in which grid size is equal to the robot size),
but they show that a Hamiltonian path? through the grid can be constructed as coverage
progresses. The result is that for any environment in which all corridors are at least twice the
width of the robot, coverage is performed along an optimally short path. This is therefore
also a quantitative result (and one that cannot be improved upon), but one that applies

only under a fairly restrictive assumption about the environment.

Yet another approach to sensor-based coverage is probabilistic coverage, in which the
coverer can be proven to eventually reach every point in the environment as the amount of
time spent covering increases. This is an approach often taken in systems (either theorized
or real) in which algorithmic simplicity is more important than exactness of coverage. For
example, robotic lawn mowers to date have used this type of algorithm, since it does not
require mapping or odometry, reducing the sensing and computation requirements of the
mower [19, 30]. Friendly Robotics’ Robomow and RL500 [30] move to a boundary (sensed by
detecting a buried wire) and leave the boundary at a small angle from the direction that the
boundary was approached, a technique which, although not proven, can be demonstrated to
perform reasonable coverage [31]. However, these techniques tend to be significantly slower
than the geometric algorithms described above — the specification for the RL500 is that it
can mow 1000 ft2/hr, meaning that at its specified velocity of 0.5 m/s, it mows each blade

3

of grass an average of just over ten times®, compared with ratios of (on average) 2-3 in our

2A Hamiltonian path in a graph is one that visits each node of the graph exactly once, and by extension,
a Hamiltonian path in a grid is one that visits each cell exactly once.

3This metric will also be used to measure the efficiency of our coverage algorithms in Chapters 2 and 3.



10 CHAPTER 1. INTRODUCTION

system. In addition, the lack of a map means that the robot has the potential to get stuck

in cluttered portions of the environment.

1.3.2 Cooperative mobile robots

A great variety of work has dealt with teams of mobile robots performing in a common
environment. Some common tasks are maintaining formations [32, 33], transporting large
objects [34], search and rescue [35], surveillance [36], mutual sensing to minimize position
error [37, 38] and collision-free navigation [39]. In addition, cooperative exploration and
coverage have been investigated, and these works are related in more detail below.

One type of application most relevant to this work is that in which, like our algorithm,
the same algorithm is independently executed by each robot in a team (without a central
controller) to achieve a well-specified group task. For example, in the work of Donald et al.
[20], several distributed algorithms were presented, both homogeneous and heterogenous,
with which a pair of robots could perform a cooperative manipulation task. There, however,
the goal was to recast a simple provable algorithm in such a way that explicit communication
was unnecessary, but could rather be implicit in the task mechanics. In our work, however,
the environment is static, and so this reduction is not available. Theoretical approaches to
distributed formation creation have also been developed using local mutual sensing [33], but
these are limited in the behavior they can generate. It is our goal to produce a cooperative
algorithm which performs a somewhat more complex task while retaining provability. Other
work on cooperative mobile robots each executing the same algorithm has focused on the
creation of a specific broadly defined group behavior. Examples includes tasks as simple as
foraging (see e.g. [40]) or as complex as playing soccer (such as the RoboCup teams at CMU
[22]). This research has not concentrated on proving the correctness of either the individual
or group algorithms, as these concepts do not necessarily apply to such behaviors, but rather
on qualitative and quantitative measures of task performance.

A significant amount of research has also gone in to distributed task allocation among a
team of robots with a large set of overall goals and (often) heterogeneous capabilities. One
notable system is ALLIANCE [21], which is a completely distributed system that uses a set
of behaviors for each robot that can be enhanced or suppressed by the actions of the other
robots. This architecture is generally independent of the tasks to be performed, although it
has been used to implement a cooperative target observation task [41]. Other architectures
for task allocation include ARCO [42], a system that uses a greedy selection by each robot

to choose the easiest of the team’s tasks, with communication between robots to prevent



1.3. PREVIOUS RELATED WORK 11

competition between robots, and an architecture proposed by Noreils [43], in which robots
can dynamically and distributedly form sub-teams to achieve specific tasks. These efforts
could perhaps be applied to the problem here, but since our task is essentially the same for
all robots, the division of labor is a simpler problem than for a system with a wide range
of overall goals, and so the overhead inherent in such a system is unnecessary, and in fact

could make guaranteeing complete coverage more difficult.

An area of mobile robot research that most closely pertains to the work presented here
is that which investigates algorithms for traversal or complete coverage of an environment
by a team of robots. Although not directly related, tasks in which multiple robots are used
to reach a set of goal locations (in general more quickly than a single robot), faces the same
division of labor concept as the coverage task. In the GRAMMPS system developed by
Brummitt [44] information about the shared environment is exchanged between the robots
while they negotiate about which robot will achieve each goal. The algorithm presented by
Cai et al. [45] also shares data between robots that are exploring a common environment,
although in this case each robot has a single goal and therefore performs all of its own

planning.

Among cooperative coverage research, the vast majority has so far used a central con-
troller deploying robots from known locations, which is not satisfactory for the minifactory
problem, as the couriers will be initially distributed throughout the factory and their posi-
tions will not be well registered relative to each other. A paper by Kurabayashi et al. [6]
describes a method for distributed coverage in a known environment by a team of sweeping
robots. In their work, a single coverage path is computed for the environment, which is
then efficiently divided amongst the robots in the team. This is the only known effort in
cooperative coverage that has been deployed on actual robots, although only a single trial
is reported. An algorithm by Min and Yin [23] produces cooperative coverage assuming
the environment is unknown, calling for sensor-based coverage, but it does assume that the
robots start outside the area to be covered at a common location so that the area division
can be done a priori. This work does not focus on the details of the coverage process,
but rather the key contribution is that the system is robust to failures of individual robots
— when one robot is unable to continue, the other robots negotiate to decide which will

complete the failed robot’s assigned area.

Other cooperative coverage work includes a system described by Gage [5] in which ran-
dom walks are performed by each robot in a large team with a common home position

to generate probabilistically complete coverage. Another approach to coverage, in which



12 CHAPTER 1. INTRODUCTION

the environment is covered by robots’ infinite range sensors, is presented by Rao et al.
[46], in which a small team of point-sized robots cooperatively build the visibility graph
of a polygonal environment. A scan from each point in the visibility graph then ensures
complete coverage, although requiring sensing of a type not generally available. Singh and
Fujimura present an algorithm for a team of heterogeneous robots to cooperatively build
an occupancy grid of their environment without a central controller, but assumes that the
robots are initially collocated and share data continuously [47]. An algorithm by Yamauchi
[24] also has each robot construct its own occupancy grid of the environment while sharing
data with its colleague and attempting to view every point in the environment and allows
the robots to be initially distant, but still assumes known initial relative positions for the
robots. In contrast, work by Rekleitis et al. [38] performs coverage using cooperating robots
with mutual remote sensing abilities, but with explicit cooperation to reduce mapping errors
rather than to increase efficiency. This system then effectively acts as a single robot with
excellent positioning accuracy, although the algorithm must generate explicit coordination

between the robots on top of a more standard sensor-based coverage algorithm.

The closest work in this area to the work presented here is that of Wagner et al. [25],
who present both deterministic and probabilistic coverage algorithms for a team of robots
that does not require a central controller or even a common home position. In their work,
however, each robot marks the ground as it travels, so that the robots can each sense what
area has been covered by each of its teammates without having to explicitly share data or
determine their relative positions. In addition, their system requires that the robots have
omnidirectional range sensing of a range at least twice the diameter of the robot. They
present conservative symbolic bounds on the efficiency of the algorithms and a simulation of
their algorithms, but only a small amount of numerical data for a few simulations of simple
environments, from which it is difficult to draw conclusions about the average efficiency of

their algorithms.

1.4 Document Summary

The remainder of this thesis document will describe the solutions developed to the problems
outlined above. Namely, a basic algorithm for sensor-based coverage is presented and proven
to produce complete coverage of any rectilinear environment, and a cooperative sensor-based
coverage algorithm is then presented and proven to be correct for any environment (with

certain assumptions) and number of robots. Extensions to this algorithm are also presented



1.4. DOCUMENT SUMMARY 13

which make it more amenable to implementation on a real-world robot system.

Chapter 2 details a novel sensor-based coverage algorithm for a single rectangular robot
employing intrinsic contact sensing to cover a rectilinear environment. The algorithm, C'Ch,
uses no time-based history and no plans longer than a single step, attributes which allow the
robot to easily stop and integrate information from other robots and continue coverage, since
the robot continually replans even when working alone. The ability for the straightforward
integration of cooperation is the key contribution of this algorithm, since it derives from
a technique not previously employed for sensor-based coverage. A proof of CCg for any
finite rectilinear environment is also presented, verifying that complete coverage will indeed
always be generated. Chapter 3 then presents a cooperative coverage algorithm DCpg that
is based on a slightly modified version of CCgk. Two additional algorithmic components are
described which induce cooperative behavior without interfering with the ongoing coverage
process, or even requiring that the coverage process be aware of the existence of the cooper-
ation. DCg therefore allows a team of robots to collectively cover their shared environment
without the use of a central controller or a common home position. A proof of DCpg is then
presented which takes advantage of this decoupling of coverage and cooperation, but relies
on assumptions of perfect position sensing and the lack of collision between robots in the
team during coverage. Chapter 4 then describes extensions to DCpr which allow for the
robot team to operate without some of these assumptions, although only some of the exten-
sions are incorporated into the proof. Also in chapter 4 is a discussion of potential further
extensions both to DCp itself and its proof. Finally, chapter 5 presents some conclusions

and a list of contributions of this work.



Chapter 2
Single-robot coverage

While the overall problem proposed for this thesis is one of cooperative coverage, the unique
properties of the minifactory system required the development of a new coverage algorithm
for a single robot of the type under consideration. While it may be possible to adapt a
previously described sensor-based coverage algorithm to the type of geometries and sens-
ing capabilities specified in the problem statement, the choice was made instead to use this
opportunity to take a somewhat different approach to sensor-based coverage than had previ-
ously been explored. The algorithm developed, CCp (Contact-based Coverage of Rectilinear
environments), a summary of which was first presented in [48], departs most notably from
previous algorithms by using a reactive structure that does not make use of time-based
history or long-range plans. This structure allowed the relatively straightforward addition

of cooperation as described in Chapter 3.

2.1 (CC% description

CCpr was inspired by the work of Choset and Acar [16, 28] and enables a rectangular robot
with only intrinsic contact sensing to perform complete sensor-based coverage of finite recti-
linear environments. C'Cr operates by incrementally constructing an exact cellular decom-
position of the environment. This decomposition is composed of a set of non-overlapping
cells, rectangular areas that can each be covered in a straightforward way. Using a cell
decomposition also makes it easy to decide when the environment is completely covered by
making sure that each cell has been covered and that the boundary of the decomposition is
known. The decomposition C is built through a two-stage cyclical approach, and its evolv-

ing structure directs the progress of coverage. Each cycle of C'CR consists of first selecting a

14



2.1. CCgr DESCRIPTION 15

. Robot Y}t type
tra]ectcV
y

Map P Event
interpreter - \_handler

"o

Figure 2.1: A schematic of the components of CCg.

straight-line trajectory based on the current state of C, then executing the trajectory until
it has completed or been interrupted by a collision, at which point C is then updated to
reflect the outcome of the trajectory. The generic behavior of CCFg is to cover each cell
with a seed-sowing path as shown in Fig. 1.1b (and defined for CCg in Fig. 2.4). When an
interesting point (representing a cell boundary, defined below) is reached, CCr will notice a
disruption to seed-sowing, at which point the interesting point is localized, the current cell

finished, and seed-sowing begun in a new cell.

Two distinct algorithmic components, shown in schematic form in Fig. 2.1, make up
CCpRr. The first is the map interpreter, which tests C and the robot’s current position p
against a list of rules to choose a trajectory for the robot to follow. A trajectory ¢ in the
context of CCF is defined by a triple (¢4, tg, t), where ¢4 is the maximum travel distance, ¢y
the direction of travel (always one of the four cardinal directions: +z, —x,+y or —y), and
ts an optional direction (also one of the cardinal directions) in which to maintain a contact
force while moving. The other component of C'Cr is the event handler, which uses the
result of the trajectory and p (after the motion has been completed) to alter C if necessary
to account for new environmental knowledge. This interaction between the low-level robot
control and the event handler is the only place where the quality of the robot’s sensors

enters into consideration.

Finally, it should be noted that CCg operates in the configuration space of the robot,
and so the decomposition that is built is that of the configuration space. Because the robot
has only contact sensing, this means that the robot can sense (and therefore cover) only a
single point in configuration space at a time, and so must correctly infer the presence of
boundaries or free space between two sensing events. CCr was originally written to operate
in the workspace of the robot, since the sensor returns (and therefore the correctness of

the algorithm) are more intuitive in the workspace. However, certain details (most notably



16 CHAPTER 2. SINGLE-ROBOT COVERAGE

iceiling ;

¢ floor

interesting
points

&\Kyé
(a) (b)

Figure 2.2: Examples of (a) an oriented rectilinear decomposition and (b) a boustrophedon
decomposition [28].

in path planning, as described below) made the configuration space implementation more

attractive.

2.1.1 Cellular decompositions under C'Cy

The cellular decompositions created by CCgr belong to a class that will be called oriented
rectilinear decompositions (ORDs). An example of an ORD is shown in Fig. 2.2a. An ORD
C consists of a set of non-overlapping rectangular cells {Cjy...C,} that collectively span
the free space of the environment. Cells in an ORD are delineated by interesting points,
as seen in Fig. 2.2a, which are defined as the x locations of vertical boundary segments.
Each cell therefore has a strictly horizontal and connected floor and ceiling, and is as wide
as possible while maintaining these constraints. An ORD can be easily created from a
known rectilinear environment by finding and sorting the interesting points, and can also be
constructed incrementally as described below. This decomposition is conceptually similar to
the boustrophedon decomposition of a C? environment [28], an example of which is shown in
Fig. 2.2b, in which cells are defined by critical points of the boundaries of the environment
relative to a “sweep” along the z axis.

Under C'CR, during the progress of coverage, each cell C; is represented by its minimum
known extent and maximum possible extent, an example of which is given in Fig. 2.3. The
maximum extent, C;_, is represented simply by a rectangle, while the minimum extent, C;, ,
is given by four points, two on the cell’s ceiling (t1 on the left and tr on the right) and two
on the floor (bl and br), along with values for the floor and ceiling. (The reasoning behind
this choice is explained in detail below.) As an example, when the robot begins coverage

with no knowledge of the environment, C will contain a single cell Cy in which Cy,, has zero



2.1. CCgr DESCRIPTION 17

Figure 2.3: The data structures associated with a single cell C; as represented in CCg; cell
C; also shown for clarity.

size and Cp, is infinite in all directions. As the robot covers this cell, Cp, will increase in
size while Cp, will be limited with the discovery of each boundary.

In addition to the minimum and maximum extents of the cell, the width of the portion
of the cell that has been covered by the robot is also represented. This quantity is denoted
and Cj,,, where C; , < C;,. . Additionally,

associated with each of the edges of the cell is a linked list of intervals which explicitly

C;, and is represented by two z values Cj;

wl wl

denote the cell’s neighbors at each point along the edge. Each interval is represented as
a line segment together with a neighbor ID. A cell is then complete when its edges are at
known location (C;, = Cj,), it has been covered from side to side, and all sides have been

completely explored (i.e. a list of intervals spans the height or width of the cell).
In addition to the cell decomposition, CCr maintains a list H = {Hy ... Hy,} of place-

holders. A placeholder is a linear object that denotes an element of the boundary of C
that is not a boundary of the environment, and can be thought of as the “entrance” to
unexplored free space. An interval’s neighbor can therefore be a cell, a wall segment, or
a placeholder. As such, it is not necessary to keep an explicit list of placeholders, as the
list could be created by scanning all intervals in all cells and deriving a placeholder from
each such interval. However, creating and maintaining H is a very useful convenience when
in a complete cell and looking for an area in which to continue coverage. A placeholder is
created when exploring the edge of a cell and discovering an area of free space adjacent to
the cell. A placeholder can be deleted either when a new cell is created that represents the
area behind it (which the robot will then cover) or when the robot happens to explore the
area it points to while in another cell. For coverage to be complete, no placeholders can

remain, since they indicate unexplored components of the boundary of C.



18 CHAPTER 2. SINGLE-ROBOT COVERAGE

Figure 2.4: The four segments of a seed-sowing path, « through §, shown along with the
covered width (C;, ), the position of the robot p and the minimum extent (tr,br) of the cell
before « is executed.

Finally, a list of beacons B is also maintained, mostly for the minifactory task, in
which discovering the locations of all calibration beacons is actually at least as important
as discovering the geometry and topology of the environmental boundaries. For C'Cpg in
isolation, B is not necessary, although it will reappear in cooperative coverage, as the

beacons are useful landmarks when trying to match the maps of two robots in a team.

2.1.2 Overall behavior of CCy

Rather than delving immediately into the inner workings of CCr, a discussion of the overall
behavior of the algorithm will be given first, followed by the details of the event handler
and map interpreter. As mentioned above, CCg covers the interior of each cell with a
seed-sowing path, as shown in detail in Fig. 2.4. Once the left or right side boundary of
the cell is detected, C'Cg directs the robot to complete the cell, usually requiring additional
edge exploration. When a cell is completed, a new target for coverage is chosen and a path
planned to that location. Each of these processes will now be described with the use of some
examples.

A seed-sowing path primarily consists of a series of strips, motions in +y (motion § in
Fig. 2.4) which are separated in z by a distance equal to the width of the robot w, the
concatenation of which will cover the width of the cell. In addition, in order to discover any
gaps in the floor or ceiling of the cell, the robot maintains contact with the floor or ceiling
while traveling between strips. These motions are called sliding motions, and are shown in

Fig. 2.4 (and successive figures') as sets of angled arrows, and are the motions for which

!Other figures will also use angled arrows to denote exploration of a wall on the side of a cell, indicating



2.1. CCgr DESCRIPTION 19

AN SANNRNANNNNN AN ASANANRNNNNNY N SANNNSNNNNNST——

NN
'_}&g VN YR A \iT&
ANNNNNNNNNNNNW|

N N N
(a) (b) (c)
Wy f .
JAX
4—
4—
N0
N A

(d) (e)

Figure 2.5: The ways that an interesting point can be discovered during seed-sowing.

ty # 0). The robot also backtracks after each strip using motions y and 0. These motions
ensure that the robot travels to every point on the floor and ceiling, as shown in Fig. 2.4.
Motions « and ¢ (the sliding motions) will terminate when contact with the floor or ceiling
is lost as well as when contact is sensed in = or the maximum trajectory length ¢4 has been
traveled. Each § and a motion will move one side of the cell’s minimum extent a distance

of w.

Eventually (since the environment is assumed to be finite), the robot will complete one of
these trajectories in a way that is incompatible with the seed-sowing path. This necessarily
indicates the discovery of an interesting point. There are five different ways an interesting
point can be discovered (this statement will be proven below), all of which are shown in
Fig. 2.5, and which will be referred to as discoveries of Cases I-V. Each of these can also
be mirrored both horizontally and vertically, with the same ensuing behavior. Fig. 2.5a
portrays a Case I discovery, in which motion «a encounters a vertical boundary, geometry
that is described here as an “internal” corner. Fig. 2.5b represents Case 11, in which « loses
contact with the floor or ceiling, the discovery during sliding of an “external” corner. The
remaining cases are an unexpected collision during motion § (Fig. 2.5¢ and Case IIT), an
unexpected non-collision of motion 3 (Fig. 2.5d and Case IV), or a loss of contact during

motion § (Fig. 2.5e and Case V). (The last case is distinct from Case I in that during

motion in +y and contact in +z.



20 CHAPTER 2. SINGLE-ROBOT COVERAGE

Ny, 1P M\_«-'P \MS
L1 C :
P 1 [
Co Cp 5 Co : C;
< C,: :C ]
N 0etiy &W&g{h&()x AR

(a) (b) (c)

Figure 2.6: An example of localizing an interesting point and continuing coverage.

motion « the robot is beyond the covered portion of the cell while during motion § it is
not.)

For some of these cases, since the robot has only intrinsic contact sensing, an interesting
point will be indicated, but additional motion will be necessary to localize it, as discussed
below. Also, in most instances, once the interesting point is localized, the side of the
cell that has just been localized must be completely explored so that the cell is complete
before coverage can continue in the next cell. These activities are each commanded by an
appropriate rule in the map interpreter. For example, for Case IV as shown in Fig. 2.6a,
the robot ends motion 8 beyond the ceiling of the current cell Cy. A new cell C7 which is
taller than Cy must therefore be instantiated around p. The boundary between these cells
is uncertain, lying somewhere between p and the last seed-sowing strip (Cp,,. ), and so the
cells’ minima and maxima are set accordingly as shown in Fig. 2.6b. The map interpreter
then notices that C; (now the current cell) has an uncertain left edge, but must have a wall
at the current y location (the wall responsible for the interesting point separating the two
cells). The robot is directed to the left to localize this corner, at which point the previous
cell is complete (since its side is now known in location and disposition) and the left edge
of C'y will then be explored before seed-sowing resumes.

As another example, for Case III, the robot will follow the course of action shown in Fig.
2.7. In this case, the robot experiences an unexpected collision during motion 8 which also
indicates an interesting point somewhere between the current position and the previous seed-
sowing strip. The event handler instantiates a placeholder as shown and sets the maximum
right edge of the cell at p,, which in turn causes the map interpreter (over three cycles) to
move the robot as shown in Fig. 2.7b. A collision while moving in = will localize the right
edge of the cell, at which point the map interpreter will direct the robot to finish exploring
the cell’s right edge as shown in Fig. 2.7c. The other types of interesting points lead to

similar behavior in order to complete the current cell and return to a state (usually in a



2.1. CCgr DESCRIPTION 21

NNNNNNN_— NN N
2
z
Z
72
T
AN £ NN
Hm Hm
\ W \ \

() (b) (c)

Figure 2.7: A second example of localizing an interesting point and continuing coverage.

N e 0 0 0

<

N\ A\
() (b)

Figure 2.8: The two ways an interesting point can be discovered during edge exploration.

new cell) from which seed-sowing can continue.

Because of the nature of the seed-sowing and having only contact sensing to detect
boundaries, it is possible to detect interesting points while seed-sowing in one cell that
actually define a different cell. Fig. 2.8 shows the two cases for which this occurs. In these
cases, motion « ends in an internal corner and the robot begins exploring an edge that does
not belong to the current cell. There is then another interesting point lying between the
one just discovered and the previous seed-sowing strip which will then be discovered during
the exploration of the side edge. This interesting point takes one of two different forms as
shown in Fig. 2.8. For each of these cases, the current cell C, will be split into two — one
comprising all previous strips (and the left side of C., if present), and the other comprising
the edge being explored and the current strip. The two cells will have mutual intervals

between them, and may initially have an uncertain boundary, such as after Fig. 2.8a.

One important issue is the definition of a known edge and how it relates to the represen-

tation of C¢,. Under CCg, a side edge is defined to be known when its minimum (C¢, , .,)

and maximum (C,

corigne) aT€ equal. The minimum value for a side edge is in turn defined as

the smaller of the floor minimum and ceiling minimum (“tr” and “br” in Fig. 2.4). The one

issue with this representation is that when the side edge of a cell is first discovered (whether



22 CHAPTER 2. SINGLE-ROBOT COVERAGE

or not it turns out to indeed belong to that cell), this edge is considered to be known and
both of the appropriate minimum extents are extended to match the maximum at the dis-
covered edge. This fact allows the interesting point of Fig. 2.8a to be discerned from that of
Fig. 2.5c. However, when the final seed-sowing strip is completed, there is still a bit of floor
or ceiling to be explored — that which lies between the previous strip and the cell edge.
Simply looking at the minimum extents of the floor and ceiling will not indicate that this
exploration has yet to be done, rather, it must be enforced by maintaining intervals for the
floor and ceiling of each cell. This will be necessary in the cooperative case, as described in
Sec. 3.1, but in CCg, the floor and ceiling intervals will always be a single interval pointing
to a wall and most of the time will exactly cover the line between the left and right minima
on the floor and ceiling. The exception is when the edge is discovered, when the minima
are moved to create a known edge but the intervals (rightly) do not — they continue to
represent only the portion of the floor or ceiling that has actually been explored. Therefore,
the seed-sowing rule is actually based on the floor and ceiling intervals, rather than the
minimum extent of the cell, so that when the strip (and edge exploration) is complete, this
rule detects that although the cell is covered, the floor (or ceiling) interval does not reach
the side edge. A final pair of motions v and § of seed-sowing are then generated which

extend the interval appropriately.

If the final edge (and floor/ceiling) exploration finishes without the discovery of an
interesting point, the current cell will be complete (except in the case of exploration of the
first side of Cj). In this case, CCgr must choose a new place in which to continue coverage.
In general, this choice is arbitrary, since there is no way of knowing which traversal of the
environment is most efficient. However, if there is an incomplete cell in C, it must be
finished rather than starting a new cell from a placeholder. This will ensure the existence
of no more than two incomplete cells in C at any time, which in turn allows seed-sowing
to operate correctly at all times, as discussed in the proof in Sec. 2.2 below. If there is
no incomplete cell in C, a placeholder can be chosen arbitrarily, but if the current cell has
a placeholder neighbor, that is chosen to heuristically increase efficiency. Otherwise, the
lowest numbered placeholder in H is chosen and a path planned to it. A cell is then created
based on the selected placeholder, at which point the robot enters the new cell and begins

seed-sowing again.



2.1. CCgr DESCRIPTION 23

2.1.3 Event Handler

The event handler is the portion of CCg responsible for updating C based on the recent
coverage event and current position. In the event handler, the five types of interesting points
must be dealt with correctly, as well as the localization steps that follow them. Also, as each
cell is covered, it must be updated so that the seed-sowing process continues as described
above. This update process is not particularly flexible, rather, C must end up showing a
wall where collisions have occurred, cell edges at interesting points (uncertain in location
when appropriate), etc. It is just a question of correctly testing for and handling all possible
occurrences.

The event handler is executed after each coverage event, which occurs at the end of each
trajectory, and is of one of three types: a collision, a loss of contact (for sliding motions), or
completion of the maximum distance of the trajectory. The event handler must then use the
type of coverage event, the direction of the trajectory just ended (ty), the type of trajectory
(free motion or sliding) and the current position p to determine the type of interesting point
detected, if any, and if not, whether new information has been obtained. A collision is first
checked to see if it was expected (i.e. whether p is at the ty edge of the current cell). If not,
either because that edge of the cell was not yet known or because an interesting point has
just been detected, the current cell is updated appropriately. For non-collision events, the
event handler checks to see if p is outside C,,. If so, this will indicate an interesting point
discovery of Case II, IV, or V.

The great majority of the action of the event handler is therefore broken into (and will
be described here in) two parts — handling of collision events and handling of non-collision
events (including loss of contact for sliding motions). First, however, it checks to see if a
sliding motion has just been completed. If this is the case, regardless of its outcome, the
interval corresponding to the edge that was being pushed against is extended as far as p.
This is implicit in the definition of a sliding motion — until its completion, the robot was
in contact with the edge that it began the motion in contact with. It is also important to
extend this edge immediately, since only after a sliding motion can an interval be extended
a large distance (otherwise, since the robot has only intrinsic contact sensing, two touches of
a wall that are distant from each other do not necessarily indicate that there is an unbroken
wall between them). Once this has been done, the handling of collisions or loss of contact
events is handled as follows (a more complete description is given in Appendix A).

For collision events (including those with internal corners), the event handler first checks

to see if the edge of C, in the direction of travel %y is already known. If this is not the case,



24 CHAPTER 2. SINGLE-ROBOT COVERAGE

then this event necessarily indicates new knowledge, although the exact action of the event
handler depends on ty. If £y = £z, the collision can represent either the initial discovery of
a side edge or the localization of an uncertain cell boundary. In either case, the ty edge of
C. is set to p, and a wall interval added to the ty edge at p, if not already present. In the
case of localizing an uncertain edge, C. will have a neighbor across that edge (either a cell
or placeholder) which must be altered to meet C. at p,. For collisions where ty = +y, the
situation is a bit more complicated. Since the robot may be exploring a placeholder on the
side of a cell, it may actually be outside C,_, and as such the collision may simply represent
the end of the placeholder rather than the actual cell ceiling or floor. The event handler
therefore checks for p € C,,, and if this is not the case, puts a short interval with a wall
neighbor at the end of the current placeholder interval?. Otherwise, the floor or ceiling has
been discovered and is set to p, with a short wall interval added at p,.

If the robot has instead experienced a collision in a direction where the edge of the cell
is known, the first check is to see if the collision was indeed at the expected location for that
edge. If this is the case, the first required action is to extend the interval along the edge,
and if tg = +y, the event handler also checks for a seed-sowing strip in progress, and if one
exists, C,, is extended to include the strip. Otherwise, the robot has experienced a collision
before reaching the known edge of C,, and so an interesting point has been discovered. The
event handler must then discern whether the discovery is one of Case III (shown in Fig.
2.5¢) or the one in Fig. 2.8a, which is done by looking to see if the edge of C., nearer to
p is known. If the edge is known, the cell should be split: a new cell with zero minimum
width is added to account for the area to the right of the interesting point, and the new cell
is given the intervals previously assigned to C., while C, gets a single interval pointing to
the new side. If the near side of C, is unknown, on the other hand, this is Case III, and so
a placeholder is added at p, with its height from p, to the far edge (floor or ceiling) of C.
and the near side of C, is set to p,.

For non-collision events, whether due to the completion of a trajectory or the loss of
contact during a trajectory, the event handler just checks to see if p is within C, . If this
is the case, no action needs to be taken, but if not, C will need to be updated one way or
another to account for the free space at p. If p is outside C;, only in x, then this simply
means that there is free space adjacent to C. at p,. The event handler checks for the
existence of an interval at p, on the side near p, and if none exists, for another cell C, that

contains p. If there is such a cell, it must have a placeholder at p,, and this placeholder

2Giving the interval an endpoint will cause the map interpreter to move the robot back inside C..



2.1. CCgr DESCRIPTION 25

(2) (b) (c)

Figure 2.9: Cell C3’s maximum extent C, is (a) initially semi-infinite, but (b) is limited by
other cells’ minimum extents, so that upon reaching the edge of the cell in (c), the robot is
not in two cells simultaneously.

should therefore get deleted and its interval changed to point to C¢, while C, gets a matching
interval to C,. If there is no other cell, a new placeholder is added (with zero height) at p,.

Finally, if the robot is outside the cell in the y direction, an interesting point is almost
always indicated. Similarly to collision events, there is first a determination to be made
as to whether C, needs to be split, the determination made in this case if p, is within the
width of C,, . This is the case of Fig. 2.8b, and the event handler will build a new cell to C,
with uncertain boundary between them. Alternately, if p, is not within C,, (but still within
C.,), this is Case IV as outlined in Fig. 2.6 and a new cell is added as shown. Finally, if p,
is outside C,, in x as well as y, the robot must be finishing the exploration of a placeholder
at the floor or ceiling of the cell — the event handler then has nothing to do other than
extend the interval being explored, as the map interpreter will direct the robot back into
the cell to complete it.

Finally, regardless of the changes made to C, the event handler checks for any cells that
overlap the current cell and resizes them as necessary to remove the overlap. Specifically, if
for any cell C;, C;, NC,, # 0, C., is shrunk in z so as to abut C;, . Similarly, if C;, NC,, # 0,
C;, is reduced. An example of this process is shown in Fig. 2.9. This is always a correct
thing to do, since no two cells’ final extents will overlap, and the minimum size of a cell will
not be reduced. In addition, this will allow the map interpreter to correctly determine the
robot’s current cell, and allow the event handler (eventually) to notice that the robot has

left the cell, as shown in Fig. 2.9c¢.

2.1.4 Map Interpreter

Once the event handler has updated C, it is up to the map interpreter to generate the next

trajectory by which coverage will continue correctly by using an ordered list of rules. The



26 CHAPTER 2. SINGLE-ROBOT COVERAGE

predicates of each rule rely only on C and the robot’s current position p, rather than an
explicit notion of state. This structure also implies only single-step planning — there is no
explicit plan or script that the robot is to follow.

In order to generate the behavior described above, the map interpreter first tests a series
of rules that attempt to “clean up” the current cell, since these actions take precedence over
simple seed-sowing. These rules create the motions shown in Figs. 2.6 and 2.7 and other
similar actions. If none of these rules apply to the current situation but the current cell is
not complete, then seed-sowing can and should be continued from p. Finally, if the current
cell is complete, the final three rules will choose an appropriate place to continue coverage
and direct the robot to that place.

Before the rules are evaluated, the map interpreter first must decide what cell(s) the
robot is currently in. This is done by testing for p € C; V C; € C, which is simple since
C;_ is a rectangle for all cells. A compact version of the rules is presented here, with some
further descriptions and insights to follow, while a more complete rendering in pseudo-code

is presented in Appendix A.2.

1. If p is in two cells, move in +z just inside the cell with larger y extent. Otherwise, p

should be in only one cell, call that cell C..

-C

Cn,side

2. If C, has a side edge with finite uncertainty (0 < |C, | < o0), move into

x,side

C., to a y location where the side edge is known to contain a wall, then move toward

the wall.

3. If C, has a side edge at a known position but whose intervals do not span the edge,
go to the nearest unknown y location along that edge and move away from the known

portion of the edge (maintaining contact with the edge if a wall is present).
4. If C, has unknown ceiling or floor, move in +y or —y respectively.

5. [Seed-sowing] If C, is not complete, for the nearer unknown side, move to a point just
past the edge of C¢, _,,., then move along the nearby floor or ceiling while maintaining
contact to a point w beyond the last strip; if at such a point, start a new strip by

moving in +y.
— If this point is reached, C. is complete.

6. If there is an incomplete cell in C, plan a path to it as described below and take the

first step along that path.



2.1. CCgr DESCRIPTION 27

7. If C, has at least one placeholder neighbor, choose the nearest placeholder neighbor
and move toward it (first in +y if necessary, then +z). When moving into the area it

represents, create a new incomplete cell C, 1 based on the placeholder.

8. If there is any placeholder in H, for the first placeholder in H, plan a path to the cell
it adjoins and take the first step on that path.

Rule 1 takes care of the case shown in Fig. 2.8a, after which both the new small cell and
the original cell contain p. This rule moves the robot into the original cell, at which point
Rule 2 will take over to localize the boundary between these two cells. Rule 2 also directs
the processes shown in Fig. 2.7 and Fig. 2.6, although there are several different tests within
Rule 2 which generate these different trajectories.

Rule 3 will produce monotonic exploration along the side of a cell. Walls and placeholders
will each be explored in turn, with a coverage event occurring when the cell’s neighbor along
the edge changes from one type to the other. The predicate of Rule 3 is first tested for the
side of the cell nearer the robot, then for the other side. This is important when a cell is
split as in Fig. 2.8b, but otherwise will have no effect, as there will be only one partially
explored side in the current cell.

Rule 5 will produce the seed-sowing path pictured in Fig. 2.4. Rule 4 is essentially a
special case of this rule, making the minimum extent of the cell well-defined before seed-
sowing begins. It should be noted that upon the creation of a new cell from a placeholder,
the floor or ceiling of the new cell may be unknown as shown in Fig. 2.14, but Rule 3 will
take precedence. One side of the new cell will be known (as described below), but since the
maximum possible floor or ceiling will be infinitely far away, the edge will not be completely
explored until that floor or ceiling is discovered, at which point neither Rule 3 or Rule 4
will apply.

Rules 6 and 8 both require the robot to move to another cell that may be arbitrarily
distant from its current location. This is done through the implicit creation of and search
in an adjacency graph of the cells, with the search a simple depth-first approach that checks
for and avoids cyclic paths. This is done by starting with the cell C; that is the robot’s
intended destination, and checking all of its intervals for neighbors that are also cells. If C.
is not one of these neighbors, then one of Cy;’s neighbors is chosen, added to a list of visited
cells, and its intervals are checked for cell neighbors to be successor states in the search. This
search process continues in a depth-first manner, skipping cells already in the list of visited
cells, until a path is discovered to C.. At this point, the search function simply returns

the first cell after C. on the path, which is the next to last cell on the path as generated



28 CHAPTER 2. SINGLE-ROBOT COVERAGE

from Cy to C.. The map interpreter then figures out which direction to travel from p to
enter (or prepare to enter) that cell. There will be at most two steps to get from one cell to
another, with a motion in =z always necessary and always being last, since two neighboring
cells always share a vertical edge, and a move in +y before that may be necessary if the
destination cell does not span C,,. Further details are given in Appendix A.

It is also important to note that this path planning makes implicit use of the fact that
C is represented in the configuration space of the robot. The planning assumes that a path
through C can be directly transformed into a path for the robot. If C represented the
workspace, this would not be the case, since the robot could be wider than some cells, and
so the path planning would have to explicitly consider the robot’s extent. The fact that
this type of path planning is traditionally done in the configuration space of the robot is
what influenced the choice of environment representation for CC'r despite the non-intuitive

nature of the intrinsic contact sensing in configuration space.

2.2 Correctness Proof

As stated earlier, one of the key facets of a coverage algorithm is a guarantee (either exact or
probabilistic) of complete coverage. For C'Cg, we will show this through the construction and
analysis of a finite state machine (FSM) representation. Although C'Ck does not explicitly
represent state (a fact that becomes very important for the extension to the cooperative
case), the behavior of the robot can be determined at any time by the cell decomposition C
and the current position p. These data therefore can be considered to be the implicit state
of the algorithm. The state will be represented here as (C,p), with C € € and p € IR?.
This is not necessarily helpful, however, as the space € of all possible cell decompositions
is of infinite dimension.

One way to turn the space {€ x IR?} into something more manageable comes from
noticing that many similar states produce output from the map interpreter that is either
exactly the same or similar in intent. Therefore, it should be possible to create equivalence
classes in the space {€ x IR?}. The equivalence relation chosen for the proof here is based
on the rules of the map interpreter described above. Namely, any (C,p) pairs that invoke
the same case of the same rule are considered equivalent. For example, all states for which
motion [ of seed-sowing is produced, regardless of its length or direction (+y or —y), are
considered equivalent, but a state for which motion 7 is appropriate would not be in the

same class. It should be noted that for the following proof, this equivalence relation was



2.2. CORRECTNESS PROOF 29

not constructed a priori, but rather each class was recognized as the possible evolution of
(C,p) was tracked. The transitions between states represent the possible outcomes of the
trajectory generated for that state, which can number from one to four for each state. These
transitions must be considered uncontrollable in the context of the FSM, and come from the
various types of coverage events (trajectory completed, collision, or loss of contact) together
with whether a collision (if one occurred) was at the expected location.

With this background, the correctness of CCg in any finite environment (where “finite”

means finite area as well as a finite number of boundary components) can now be shown:

Proposition 2.1 A rectangular robot with perfect position sensing running CCgr will pro-

duce complete coverage of any finite rectilinear environment.

Correctness of CCpr is shown through the construction and analysis of an FSM that
represents all possible evolutions of the state of the algorithm. It will be shown that the
traversal of all loops in the FSM induce a measure of progress that is bounded from below,
and that the only terminal state is that where coverage is complete. Therefore, since the
environment is finite, the robot will eventually complete coverage and CCgr will terminate.
The complete FSM is too detailed to show at once, but a graph is given in Fig. 2.10 that
encapsulates the basic structure of the FSM, and the initial discussion will revolve around
this representation. Each node in Fig. 2.10 represents one or more states of the FSM which
together form a basic “behavior” of C'Cp, i.e. seed-sowing, edge exploration, etc. The
basic progress of CCg can also be seen in this graph, as seed-sowing (node A) leads to the
discovery of an interesting point (nodes B, D and E), which in turn leads to edge exploration
(nodes C and F) and cell completion (node X) and/or the resumption of seed-sowing.

At this level, it can be seen (when taken at face value) that the only terminal node is
that where coverage is complete, denoted “end” in Fig. 2.10. In addition, all cycles in this
summary graph contain the completion of a cell. Cell completion is one type of progress
toward complete coverage, since once complete a cell need never be entered again (it may
be entered while the robot is traveling to incomplete area, but this will not revoke its
complete status). Since the environment contains a finite number of boundary segments,
it by definition contains a finite number of cells, and so a finite number of traversals of
this graph will therefore complete coverage. The description of the nodes themselves will
describe all possible state transitions, based on each possible outcome of motion from a
given state. This in turn will show that these nodes do not contain any terminal states and
that all internal cycles also include a measure of progress that is bounded from below and

will therefore eventually be exited. This ensures in turn that the traversal of the graph of



30 CHAPTER 2. SINGLE-ROBOT COVERAGE

begin Seed- '
\ ERne F <)

final edge
exploration

Figure 2.10: A summary of the FSM representation of C'Cg, in which grey dots represent
the completion of a cell.

Fig. 2.10 will continue as the robot moves under the direction of C'Chk.

There is one exception to the assurance of cell completion in the graph of Fig. 2.10 —
when initially exploring cell Cj (and only in this case), both sides of the cell will be unknown.
In this case, CCg will perform seed-sowing to the right, and explore the right edge of Cjy,
just as if the left edge was known. This is because the seed-sowing rule always looks to the
right if both sides are unknown, and once an interesting point is discovered, the right edge of
Cy will be attended to before seed-sowing resumes on the left. The difference between this
progression and the progression in any other cell is that the cell completion event will instead
be a “half-completion” event. Progress toward coverage is still assured, however, since this
half-completion can occur only once. If the first interesting point discovered leads to node
F, the robot will remain in Cj, returning to node A to finish it before starting another cell.
If on the other hand the first interesting point leads to node C (this will happen for Case
IV discoveries), the robot will create and enter C while only half-completing Cy. However,
Rule 6 will eventually direct the robot back to Cy to complete it.

This policy also ensures that C will never contain overlapping incomplete cells. When
an interesting point (other than the first one) is discovered, the robot’s current cell will be
completed, with the robot creating at most one new incomplete cell. This means that the
number of incomplete cells will not increase upon the discovery of an interesting point. Only
in the case described in the previous paragraph, in which Cj is not completed when C} is
instantiated, is this not true. In this case, Cy and C} will share a common vertical edge,
with C to the right of Cj, and therefore will not overlap. Then, once the robot is in C', it is
only possible to create another incomplete cell through another interesting point discovery

of Case IV. However, the cell created at this time will lie further to the right of C; and



2.2. CORRECTNESS PROOF 31

noy
contact

no contact
at ceil

contact
before ceil

Figure 2.11: The states of CCg during seed-sowing (node A of Fig. 2.10), the descriptions
of which correspond to the motions shown in Fig. 2.4, but also apply to the mirrored cases.

therefore also cannot overlap Cj. Further incomplete cells can be created in this manner
(each time with the completion of the previous cell), but eventually a cell will be completed,
at which point the robot will return to Cy to complete it. From this point on, there will be

at most one incomplete cell in C, and so there can never be overlapping incomplete cells.

When C'Cg begins operation, C consists of a single cell Cy with infinite maximum extent
and zero minimum extent. The map interpreter will first use Rule 4 to discover the ceiling
and floor of Cy. At this point Rule 5 will always be the only applicable rule, and seed-
sowing will begin. This process is represented in Fig. 2.10 as node “begin” leading into
node A. Once in node A, seed-sowing continues until an interesting point is reached, which
can happen in the five cases shown in Fig. 2.5. The individual states and transitions that

make up node A are shown in Fig. 2.11.

Node A: In the absence of another incomplete cell C; overlapping C. (C;, N C,, # 0),
seed-sowing will continue as described in Fig. 2.4. (If such a cell existed, Rule 1 would apply,
and would not be guaranteed to produce the correct behavior, but the above argument shows
that this cannot happen.) The four motions «, 3,7, and § each invoke a transition as shown
in Fig. 2.11. Each traversal of the cycle in Fig. 2.11 includes a complete seed-sowing strip,
which in turn increases the covered area C., by an amount w each cycle. Since the cell
is defined to be of finite width, eventually this cycle will be exited by the discovery of an

interesting point.



32 CHAPTER 2. SINGLE-ROBOT COVERAGE

not in cell /in cell

add* no x contact
oldey /

*'x7+Y,:::

contact
. X/+y
9 y contact
edge \Y edge
incomplete complete

Figure 2.12: States of CCgr during exploration of the initially discovered side of a cell,
corresponding to node C of Fig. 2.10.

Interesting points can be discovered at five points in this cycle, as denoted in Fig. 2.11,
each of which leads to a state represented in a different node in Fig. 2.10. Motion « may
either end at a collision with a vertical wall segment (Case I shown in Fig. 2.5a), leading to
node F, or lose contact with the floor or ceiling (Case II), leading to a state represented in
node D. Motion 8 may experience a collision before reaching the floor or ceiling of the cell,
Case I1II as shown in 2.5¢ and leading to node E, or may reach the end of the trajectory
(traveling beyond the floor or ceiling), a Case IV discovery leading to node B. Finally, if
motion 0 discovers a gap in the floor or ceiling (a discovery of Case V), the side of the
current cell is defined to be at that corner, with the robot now in a taller cell and its state
in node C. The progress of coverage through each of these nodes will now be described in
turn, showing that all possible results are represented in the overview of Fig. 2.10.

Node B: This node is entered when motion 8 has concluded without collision, and
consists of only a single underlying state. The state is one in which the current cell has one
side unknown and the other with finite uncertainty (as shown in Fig. 2.6b). Rule 2 will be
applied in this case, and will immediately direct the robot to move in +x to localize the
uncertain edge. This transition leads (C,p) to state C1 within node C, as defined in Fig.
2.12.

Node C: This node represents all states in which one side of the current cell is at known
location and partially explored and the other side is unknown. It can be reached from node
B as described above, or directly from node A. It can also be entered just after a new cell
has been created from a placeholder, as described below. In all of these cases, Rule 3 is the
applicable one, directing the robot to explore the edge before beginning seed-sowing. The set

of states that makes up this process is shown in Fig. 2.12, with state C1 an archetypal state



2.2. CORRECTNESS PROOF 33

in which the edge is explored just as far as the robot’s current position, the edge contains a
wall at the current y position, and the robot is within C,,. The trajectory directions given
in Fig. 2.12 are for the case in which the left edge of the cell is being explored from floor to

ceiling, such as in Fig. 2.6¢, but the same states apply for a cell reflected about either axis.

The state evolution during the edge exploration process contains one cycle that repre-
sents the exploration of free-space and creation of a placeholder. From state C1, the robot
uses a sliding motion to maintain contact with the wall until one of two events occurs. Since
the ceiling of the cell is unknown at this time, the maximum length of the trajectory (t4)
is 0o, and so the trajectory will only end with contact in y or loss of contact in z. For y
contact events, the edge may be completely explored, in which case seed-sowing begins in
node A, or could be half explored, in which case the robot moves to the remaining unex-
plored section of the edge. This latter case occurs when a cell is created from a placeholder
of the type depicted in Fig. 2.14c such that the placeholder represents the middle of a side
of the cell. That is, the interval corresponding to the placeholder reaches neither the floor

“nearest point” rule will keep the robot to

nor the ceiling of the new cell. In this case, the
one side of the known portion of the edge until the robot has reached the floor or ceiling.
At this point, rather than beginning seed-sowing, Rule 3 will then direct the robot to the
other unknown portion of the edge, at which point it will again be in state C1. This can

happen only a single time, however, and so progress will be maintained.

The other potential coverage event during the edge-following trajectory is that contact
may be lost in z. In general, this causes a new placeholder to be created, leading the robot
to explore it through the cycle of states shown and back to C1 (a “capped” placeholder
is one with another interval beyond it, which is placed there to make the map interpreter
move the robot back inside C.). If another cell is present on the other side of the edge
being explored, however, a new placeholder will not be created, but rather the other cell’s
placeholder will be deleted and a mutual interval created between the two cells. The robot
will then be directed to move beyond this new interval (since it represents known area) and
will return to state C1. For this cycle, the measure of progress is the length of the explored
portion of the edge under consideration — as long as this length increases by a finite amount
for each traversal of the cycle, the cycle will eventually be exited. To show that this is the
case, note that the exploration takes place in configuration space and so each wall segment
must be at least as tall as the height of the robot. Therefore, each sliding motion leaving C1
(after the first one, which may start in the middle of a wall segment) will cause the robot

to move at least as far as its height, and so a traversal of this cycle causes the length of



34 CHAPTER 2. SINGLE-ROBOT COVERAGE

not in cell / in cell

add*® no x contact
holder/;

no contact
past ceiling

old (curr) cell has
r known, expl to p

no y contact x contact

Chalie

Figure 2.13: The states involved in exploration of the second known side of a cell, corre-
sponding to node F of Fig. 2.10.

the explored portion of the edge to increase by that amount. Once the edge is completely
explored, none of the first four rules will apply, and the state of (C,p) will return to node

A.

Node D: This node also includes just a single state, that shown in Fig. 2.5d. In this
state, the location of both sides of the cell are known, but the robot is actually beyond both
the height and width of the current cell, and only a single point of the near side edge has
been explored. A special case of Rule 3 will direct the robot in £y, at which point the state
of C'Cr will be in a state in node F, a transition shown in the upper left of Fig. 2.13.

Node E: This node includes a series of three states with only one set of possible tran-
sitions between them. These states correspond to the process shown in Fig. 2.7, in which
a collision during motion S of seed-sowing leads to the instantiation of a placeholder at an
uncertain z location followed by its localization. A motion into C,,, followed by a motion
in y to move next to a wall, followed by a move in z to localize the corner are all directed

by Rule 2. These motions will result in the state of CCp being in state F1 in node F.

Node F: This node is similar to node C, in that it contains a cycle of states and

represents the exploration of an edge (note that the upper portion of Fig. 2.13 is quite



2.2. CORRECTNESS PROOF 35

similar to the upper portion of Fig. 2.12). The basic concept that exploration continues
along the edge while making finite progress is also in place here, so the only cycle in this
node will also eventually be exited. In addition, the explored portion of the edge will always
extend all the way to the floor or ceiling, eliminating the need to run through these states
a second time for the same edge. However, in this node, the “other” edge (the one not
being explored) is known, as is the floor or ceiling toward which the the robot is exploring.
These allow the exploration to lead to more possible outcomes, in particular the possibilities
described in Fig. 2.8. It should be noted that from this point in the discussion (as well as
in Fig. 2.13), the exploration described by node F is assumed to take place upward along
the right edge of the cell as shown in Fig. 2.7c. Also, state F1 is defined as one in which
the robot is in a cell with one explored edge and the other edge explored from the floor or

ceiling to p,.

Three of the new possible outcomes are different results of the sliding motion along the
edge while inside the cell (the motion leaving state F1). First of all, if the robot finds the
ceiling at the expected location, it must then backtrack to check the last portion of the
ceiling for gaps. This is done with the same motions v and § used in seed-sowing. If the
d motion reaches the cell edge, there is no gap, and so the cell is complete, putting (C, p)
in node X. If there is a gap, however, the cell is split in a similar fashion to the split made
during seed-sowing, likewise completing the current cell while putting the robot in a new
cell. However, in this case, the right side of the new cell takes the known location of the
right side of the current cell, so both sides of the new cell are at known locations (but only
partially explored, since the new cell is of unknown height). This means that (C,p) will be

in node G as described below.

Another new possibility upon leaving state F1 is that the robot will experience a collision
before the ceiling is reached, the situation depicted in Fig. 2.8a. In this case, a new small

cell Cy 41 is built between the previous right edge of C; and C,,,, the rightmost extent of

wr )
the covered portion of C.. This new cell necessarily overlaps C,, so Rule 1 then fires (this
is the only case for which this rule applies), directing the robot into the necessarily taller
C.. The boundary between C,;; and C. is then localized under the direction of Rule 2,
at which point the right edge of C, is once again at known location and explored as far as
Py, indicating that (C,p) is once again in state F1. Although this process results in the
traversal of a loop in the FSM, it includes the completion of a cell, and so it can only occur

a finite number of times.

The final new result of the edge-following motion is that it may continue past the known



36 CHAPTER 2. SINGLE-ROBOT COVERAGE

ceiling of the current cell, such as shown in Fig. 2.8b. In this case, the current cell will be
split, since an interesting point must lie between the edge being explored and the last strip
of seed-sowing. A new cell C},41 is then created with an unknown ceiling and its right edge
equal to the right edge of C.. An uncertain boundary is instantiated between C,, 1 and C,,
which is immediately localized under Rule 2, at which point the shorter C. is complete (its
entire right edge adjoins C, 1 and it has been covered as far as its right edge). The robot’s
current cell is then C), 11, at which point the state of CCF is in node G, described in more

detail below.

Finally, the robot can go past the ceiling of C,. while exploring a new placeholder, a
transition shown at the left of Fig. 2.13. This is a slightly different state than the one shown
in Fig. 2.8b in that the robot will be outside the cell in both x and y at this point. Rule 5,
which directs the robot to perform the final backtracking of the ceiling of the cell, will detect
this situation and move the robot in —y before performing the last backtracking move as

described above for the case where the edge exploration ended at the cell’s ceiling.

Node G: This node represents the unusual case in which the current cell has both
sides at known location but both only partially explored. This comes about only from the
instances in node F mentioned above, and in each case, a cell completion event occurs at
the transition to node G, as represented in the summary graph of Fig. 2.10. Once in node
G, Rule 3 directs the robot to explore the side nearer the robot, which is done as in node C.
Once this edge is completely explored, the cell will have one explored edge and one partially
explored edge. A move in y back to the nearest unknown point on the other edge will return

the robot to state F1.

Node X: This node represents the states when the robot’s current cell C, is complete,
as well as when the exploration of the first edge of Cjy has just been completed. From here,
there are four possible types of actions, depending on the structure of C. In some sense,
this is the one state from which the transition can be controlled, although the choice is
preordained in the rules rather than being made at run-time. In the case of the current cell
being a half-complete Cj, seed-sowing will once again begin toward the opposite side of the
cell as described in node A. Otherwise, if Cj is incomplete but is not the current cell, a path

will be planned to it, and when entered through its known side, seed-sowing will also begin.

Otherwise, if there is still a placeholder in H, CCg will direct the robot to it, build a
new cell from it and delete it. Depending on the geometry of the placeholder relative to its
neighboring cell (the three possibilities are shown in Fig. 2.14), once the robot enters the

new cell, its state may be in node A or node C. If the placeholder does not have known walls



2.2. CORRECTNESS PROOF 37

Figure 2.14: The possible geometries of placeholders being turned into cells.

above and/or below it, as in Fig. 2.14(b,c) the edge of the new cell will not be completely
explored, and so CCr will enter node C, in which the edge exploration process will transpire
as described above. If, however, the placeholder is known to take up the entire edge of the
new cell, seed-sowing can commence immediately, with the state of C'Cr directly entering
node A from node X.

In either of these cases, it may be necessary for the robot to travel through a series of
cells to reach its destination (a placeholder or an incomplete cell). This can be proven to
occur correctly by showing that the depth-first search through the cells will always be able
to create a path from any cell to any other, and will keep to a consistent plan (with one
exception noted in the next paragraph), even though a destination is chosen and a path
planned after the execution of every straight-line trajectory. First of all, the destination
chosen by Rules 6 and 8 will be the same after each trajectory, since the map interpreter
merely selects the incomplete cell Cj if present or the remaining placeholder with the lowest
number, and no placeholders can be deleted or cells finished by moving through complete
cells which (by definition) have no placeholder neighbors. It is also the case that the search
performed by the map interpreter will (if allowed to search all cells in the environment)
produce a spanning tree over the cells: once a cell is added to a potential path during the
search, it will not be used again, so each cell appears in the search tree exactly once — the
definition of a spanning tree. Since the path planning process begins at the destination, the
same cell will always be at the root of the search tree, and since the succession rules for
the search and tree creation are the same, and the adjacency of cells does not change, the
same spanning tree will be created each time. Then, since the path is planned along this
spanning tree, which by definition has no cycles, there is only one possible path from the
current cell to the destination, and so the path must be consistent as the robot makes its
way to its destination.

It is possible that while traveling along such a path to a distant placeholder the robot
is directed through a cell with a placeholder neighbor. After the robot enters such a cell,



38 CHAPTER 2. SINGLE-ROBOT COVERAGE

during the next cycle of the map interpreter Rule 7 will be invoked instead of Rule 8. This
is actually better in terms of average overall efficiency, since the placeholder chosen by Rule
7 is likely to be nearer than the one chosen by Rule 8. And since the choice of placeholder
is arbitrary as far as the correctness of C'Cg is concerned, this is acceptable (and in fact
preferred) behavior.

Finally, if there are no incomplete cells or placeholders, it must be the case that the entire
boundary of C is defined by walls and its interior covered (as it is made up of complete
cells). In this case, since no rules apply to (C,p), CCr correctly stops operation and reports
successful completion of coverage.

This enumeration of all of the states and transitions in the FSM representation of CCgr
verifies that the summary diagram presented in Fig. 2.10 is indeed representative of all
potential state evolutions. In addition, it has been shown that all cycles within these nodes
will eventually be exited, so that progress will always continue to be made in the summary
graph. Therefore, since a finite number of traversals of the summary graph will result in
complete coverage for any finite rectilinear environment, CCpr will always produce complete

coverage.

2.3 Implementation

CCpr was implemented both in simulation and on a minifactory courier. A simulation was
developed first that did not use sliding motions, and since the output of C'Cp in this case is
simply direction and distance, developing an interface between the underlying courier control
and CCRr was fairly straightforward. The modifications required to avoid sliding motions
are detailed in Sec. 2.3.1. Once sliding motions were available on the courier, this was also
implemented in a straightforward way, since each output of C'Cp is a trajectory with only
three parameters (t4,%9,%4). Some small modifications required for CCr specifically for use
on the courier are described in Sec. 2.3.4.

When running, the simulation generates a pair of windows in which the user can monitor
the progress of coverage, as shown in Fig. 2.15. The window displayed in Fig. 2.15a is a
representation of the entire environment and the robot’s position and progress in it — the
darker gray rectangles are obstacles in the environment, while the lighter gray area is the
area covered by the robot so far. The other window contains a representation of the cell
decomposition, including the maximum of each cell, the minimum of each incomplete cell,

and all placeholders.



2.3. IMPLEMENTATION 39

Robot 075 map

Obstacles Robot 6o
Pos | Theta

complete cells

7 IS

current
— cell

RS

'_A placeholders

(a) (b)

Figure 2.15: An annotated screenshot of the simulation of CCg: (a) a representation of the
entire environment and (b) a representation of C (with text overlays added by hand).

The basic structure of the simulation is essentially as shown in Fig. 2.1. In place of the
robot, however, the simulation contains a world modeler, which tracks the progress of the
robot through the environment and determines when collisions have occurred and beacons
detected. It is important to remember that beacons here are objects to be discovered in the
map and are not used for navigation by the robots. Originally, the world modeler was simply
implemented as a collision detector, moving the robot in small increments when prompted
by the event handler and informing the event handler of collisions, leaving the event handler
to determine when the full distance of a trajectory ¢; had been reached. However, in order
to be more compatible with the minifactory implementation, the world modeler was altered
so that it now simulates an entire trajectory each time it is called, although if a new beacon
is detected during a trajectory, the modeler immediately returns that information to the

event handler. The simulation (without sliding) therefore operates as follows:

e The event handler tells the world modeler the trajectory direction ¢ty € {N, S, E, W}

and maximum distance .
e In the world modeler:

— While distance traveled < t;:

x Calculate the next position for the robot p, = p + dd, where dd is in the
direction ty with length from a normal distribution about a nominal step

size.



40 CHAPTER 2. SINGLE-ROBOT COVERAGE

x If p, is in collision with a wall, return “wall collision”, else set p = py,.

 If a beacon is detected, return “beacon at (b, by)”

— If this point is reached, t; has been traveled without event, return “no collision”.
e The event handler then:

— For a beacon detection, add the beacon to the list B and continue the trajectory.

¢

— For “no collision” or “wall collision,” update C as described in Sec. 2.1.3, then

call the map interpreter to generate a new trajectory.

Within this framework, if sliding motions need to be simulated, they can be (and have
been) approximated by adding a step at the end of the while loop of the world modeler that

reads:

« If ty # 0, calculate py = p + dtg. If py is not in collision, set p = py and

return “no collision”.

The minifactory version of CCg uses the exact same event handler (and map interpreter)
in both instances, so that instead of invoking the world modeler, it simply submits a tra-
jectory to a piece of interface code as described in Sec. 2.3.4 (which may or may not use
sliding motions). The interface code in turn commands the robot to move in the appropriate
direction, and is designed to return the same values for collision and trajectory completion

as the world modeler, so that the remainder of the event handler can remain unchanged.

2.3.1 Wall-following capabilities

One important difference between the pure algorithm described and proven above and the
simulation (and the original minifactory instantiation) is that CCr as described above uses
sliding motions in which the robot maintains contact with a wall while moving parallel to
the wall. This type of control can be implemented in various ways, most commonly using a
technique well-known as hybrid force/position control, originally proposed by Raibert and
Craig [49], in which certain axes are force controlled while others are position controlled. In
some sense the courier is an excellent application for these techniques, since the force control
axis (i.e. maintaining a specific contact force with the boundary) and the position control
axis (i.e. following a trajectory along the boundary) are perfectly decoupled with respect to
the courier’s actuators. The couriers do not have extrinsic force sensing, but an observer

has been implemented which provides (among other things) a reasonable estimate of the



2.3. IMPLEMENTATION 41

disturbance force on the courier, and this value could be used to implement force control. To
implement sliding motions, however, a slightly different type of control from the traditional
hybrid control, termed a “dynamic force controller” was eventually developed on the couriers
by Arthur Quaid for use during exploration [50]. In this controller, both translational axes
are force controlled based on the estimated disturbance forces with artificial damping added
to limit free-space velocities.

At the time of the original minifactory implementation, however, a controller that could
generate sliding motions was not available. It is also the case that the use of such control
requires the obstacle boundaries to be very smooth, as surface roughness and friction can
easily cause large disturbances in the direction of motion and signal an internal corner when
none is present®. In addition, the world modeler of the simulation was originally made
without the ability to model such a control strategy. Therefore, the original implementation
replaced the sliding motions with interleaved small motions along the boundary (where col-
lision is possible but not expected) and small motions toward the boundary (where collision
is generally expected).

In order to generate these interleaved motions, the map interpreter of the version of

CCr implemented therefore used slightly different versions of two rules, to wit:

3. If C, has a side edge at a known position but whose intervals do not span the edge,

go to the nearest unknown y location along that edge and move toward the edge.

5. [Seed-sowing] If C.. is not complete, for the nearest unknown side, move to a point §

past the edge of C. bump the nearby floor or ceiling if less than w beyond the

n,side ?

last strip, otherwise start a new strip by moving in +y.

In theory, such interleaved small moves approach the behavior of the continuous hybrid
control as the length of the parallel motion (6H) approaches zero. In practice, in order for
the robot to make progress along the edge, a reasonably small distance is chosen for §. The
proof will then still apply, but will not guarantee to find all gaps smaller (in configuration
space) than ). In the context of the FSM, the states from which sliding motions are
generated by the map interpreter become pairs of states with transitions back and forth
between them. For example, motion « becomes two separate motions as shown in Fig. 2.16,

with the transitions representing discovery of an interesting point rearranged appropriately.

3The platens under development for the minifactory will have hard high molecular weight plastic bumpers
along their edges which simple experiments indicate will almost certainly allow the courier to slide along
them while maintaining contact.



42 CHAPTER 2. SINGLE-ROBOT COVERAGE

no contact

from 9

contact @

Figure 2.16: The states and transitions corresponding to state Al (as shown in Fig. 2.11)
and motion « in the absence of hybrid force/position control.

The proof still applies (with the caveat about small gaps), since each traversal of this cycle
increases the minimum area of the cell by a distance d)|, and so after w/d traversals of this
loop (barring the discovery of an interesting point) the robot will reach a point at which
motion 3 will be appropriate. Similar arguments hold for motion ¢ as well as the exploration
of a wall lying on the side of a cell (the only type of sliding motion), in which the length of
the explored portion of the edge increases by J) after each pair of interleaved motions, so

that the edge will eventually be completely explored.

2.3.2 Position uncertainty

Another important difference between the pure algorithm and its implementation, and one
which cannot be so easily incorporated into the proof, is that the simulation incorporates
small amounts of non-cumulative position error. This was originally an artifact of the simple
world model — since the world modeler operates by taking small steps and returning “yes”
or “no” for each step, the position seen by the event handler at collision is not the true
location of the wall, but can be off by as much as the step size. However, since this type
of error is very similar to that produced by the courier, it was decided to retain it in the
simulation. The simulation of CCg therefore assumes that the position at any collision has
a random error of at most € in the direction of collision, with the error independent of any
other measurement. The value of € for the current implementation is set to one simulation
“unit” in systems where the typical robot width w was 20 units.

This type of position error has both quantitative and qualitative effects on the per-
formance of coverage. First of all, as might be expected, collisions with known edges are
considered expected (i.e. not representative of an interesting point) if p is within 2¢ of the

assumed value of the edge. The value 2¢ is used since the wall is entered into C at the



2.3. IMPLEMENTATION 43

N N
o S,
1 I B
C
C, 3 Y
NN \ xw%%—@

(2) (b)

Figure 2.17: Problems arising from small position errors: (a) cells on two sides of an obstacle
may not abut or may overlap, and (b) a small jog in the floor of a cell may indicate an
interesting point in a way not previously accounted for.

location of initial contact, which may be off by € from the true location, and subsequent
contact may be off by € in the opposite direction. Another concession to position error is
that when moving from one cell to another, a buffer of at least ¢ must be left between the
robot and the cell edges to ensure safe passage, since the actual position of the wall may be
closer than the position recorded in C.

In addition, in certain situations, structural problems appear in C that would not be
encountered with perfect sensing. For example, if the robot travels around an obstacle as
shown in Fig. 2.17a, the cell along the final edge (C3) may not adjoin the side of Cy, or
alternately, the two cells may overlap. In either of these cases, the cells’ edges must be
aligned in order for p to always be in one and only one cell. Similarly, when the robot finds
the top corner of the obstacle at the moment pictured in Fig. 2.17a, it will exit C3 but
may be just below, rather than in, Cp, and this must be noticed, extending Cj rather than
adding a new placeholder adjacent to C3 just below Cj.

Even more serious is when additional FSM states and transitions arise due to position
uncertainty. The only case in which this occurs arises from a small jog in a horizontal
wall, as shown in Fig. 2.17b. The seed-sowing strip on the right is not considered to be
significantly shorter than the one previous, but when doubling back over the floor of the
cell with motions v and §, an internal corner is encountered. If the right side of this cell
is already known, this is an unexpected collision with a horizontal wall, which in a system
with perfect sensing is impossible. In this case, the event handler must split the cell at p,
into two cells, each of which get half the information of the original cell. The two new cells
share a mutual interval over the height of the (slightly) shorter cell, and the cell on the
robot’s side of the short wall will be slightly taller than the other cell. In addition, each cell

gets the appropriate intervals and covered width from the original cell.



44 CHAPTER 2. SINGLE-ROBOT COVERAGE

Environment size || bw X bw | 10w x 10w | 20w x 20w
Average cf 2.4828 1.7098 1.3674
Std. deviation 0.1300 0.0636 0.0219

Table 2.1: Performance of C'Cpr in various square environments.

The incorporation of these algorithmic details into the proof of correctness (and the
algorithm to which the proof applies) is possible — the possible transitions in the FSM
become greater in number due to the position errors, and the number of states increases
as well. However, this will require the complete enumerations of all ways in which position
uncertainty can affect the outcome of motions under CCg. As this has not yet been done,
there is no guarantee that the current implementation of CCg will succeed in all instances,
although its reliability in simulation has been seen to be quite high. Further discussion of

the expansion of the proof is given in Sec. 4.4.3.

2.3.3 Performance measurements

The simulation of CCgr as described above was run a number of times in a variety of
environments to empirically determine correctness as well as efficiency, and to gain insights
into the types of environments that lead to more or less efficient behavior. The metric used
to measure efficiency is the coverage factor (¢f), which is defined as:
dxw
cf = W(C)’

where d is the total distance traveled and w the robot width. This measures the average
number of times each point in C was passed over by the robot. Note that for a given
environment, cf is proportional to distance traveled, which in turn is approximately pro-
portional to time spent. The optimum value of ¢f = 1 can only be obtained given complete
knowledge of the environment and all cell widths an exact integer multiple of w.

Under CCg, even pure seed-sowing takes a little more time than might be necessary,
as the floors and ceilings of each cell are partially double-covered (by motions v and §) in
order to discover any gaps. As the cells get smaller (i.e. a more cluttered environment),
this effect gets proportionally worse. In addition, since cells will not in general be covered
exactly by an integer number of strips, the exploration of each side edge will cover an area
less than the width of the robot. This effect also gets worse in cluttered environments,

since such environments have more cells for a given area (a rectangular environment will



2.3. IMPLEMENTATION 45

N N
] u S
N\ A

(2) (b)

Figure 2.18: Environments used to test CCr. The black square in each is the size of the
robot.

be “decomposed” into a single cell). These effects were shown empirically in experiments
described in Table 2.1. To collect these data, CCr was run 50 times (with a random initial
location each time) in each of three simply connected square environments. The sizes of the
squares ranged from 5 times the robot’s width w to 20w. In the larger environments, the
non-productive motions have smaller impact, as does the variation due to changing initial

conditions.

CCr was also run on a variety of more interesting (randomly generated) environments
to test its robustness and correct implementation. These environments were generated by
populating an open square of dimension ~ 20w x 20w with between three and eight rect-
angular obstacles. Each obstacle was given a random height and width between w/20 and
10w (recall that w/20 represented a “unit” in the dimensions of the simulation), and obsta-
cles were permitted to overlap to generate more interesting shapes. Results from 50 such
random environments are given in the first column of Table 2.2 — the standard deviation
statistic is perhaps less meaningful than for a single environment, but is an indication of the
variability of CCR’s efficiency over a range of environments. In addition, two environments
were selected for CCr to be run in repeatedly. These are shown in Fig. 2.18. The environ-
ment of Fig. 2.18a was originally generated at random and selected for further testing as
being representative of “average” complexity while having some interesting geometric fea-
tures, while that of Fig. 2.18b was specifically designed to have many degeneracies (i.e. with
many aligned obstacle edges) as well as many small cells to induce extreme inefficiency. The
results generally bear out these hypotheses, although the “average” environment actually
was covered somewhat more efficiently than the average of the random environments. This

was most likely due to the large area of free space at the top and left accounting for a large



46 CHAPTER 2. SINGLE-ROBOT COVERAGE

Environment Random | Fig. 2.18a | Fig. 2.18b
Average cf 2.3074 1.9864 3.557
Std. deviation || 0.3292 0.0860 0.1443

Table 2.2: Performance of CCp in the environments of Fig. 2.18.

fraction of the overall area.

2.3.4 Minifactory implementation

To implement CCxr on a minifactory courier, a small amount of interface code was written
with the assistance of Arthur Quaid (who also provided all of the low-level control code for
the courier). For the first set of experiments, the available primitives were a simple straight-
line motion and a “bump”-guarded straight-line motion, both using open-loop trajectory
following. The guarded move was implemented by watching the difference between the
open-loop set point during motion and the sensed position (from the magnetic position
sensor) — when the difference between the positions went beyond a threshold of 200 pym, a
collision was assumed to have occurred. In practice, certain types of disturbances caused by
the courier’s tether combined with the inherent open-loop tracking error occasionally caused
this threshold to be exceeded when a collision had not occurred. However, this was overcome
by simply restarting after a collision and requiring a second collision at the same location in
order to report collision back to CCg. The second set of experiments were performed under
closed-loop control, both with and without the sliding control described in Sec. 2.3.1 above.
The closed-loop control was implemented using the dynamic force controllers alone and in
combination with standard PD control. For example, to perform a straight line “bump”
guarded motion under closed-loop control, the courier uses the dynamic force controller in
the direction of motion to induce an approximately constant velocity in that direction and
uses PD control in the perpendicular direction to keep it on course. Further details of the
controller implementation as well as the remainder of the low-level courier control code can
be found in [50].

For the first experiments, two obstacles were placed on the platen of the prototype mini-
factory, as shown in Fig. 2.19a. Initially it was considered infeasible to add a fixed obstacle
that was not attached to the edge of the platen due to the impressive force generation (60
N) of the couriers. However, a small planar motor (with its air bearing deactivated and

its tether removed) had sufficient attraction to the platen to form a useful island as shown



2.3. IMPLEMENTATION 47

Figure 2.19: Environments used for C'Cp testing, consisting of half of a commercial platen
with additional obstacles. The (tethered) courier performing C'CF is included for scale.

in the environment in Fig. 2.19b. It should be noted that the production version couriers
will have a low “skirt” that gives them a rectangular footprint while also protecting the
connector and optical coordination sensor from collisions. However, since this is not the
case for the current couriers, a custom skirt was added to the small courier to protect the

connectors of both motors and provide rectilinearity to the obstacle.

Another factor in the setup of the test environments was that although the boundaries
and obstacles were very straight with respect to the platen axes, for most of the “walls,” when
sliding was not available, their compliance required that each collision be followed by a short
(1 mm) recoil motion. Before the recoil, the courier would be compressing the boundary,
and would be unable to freely move parallel to the boundary. While not an issue for this
setup, the recoil would also be important for slightly angled boundaries and obstacle edges.
Without the recoil in this case, a motion parallel to the boundary could result in a collision,
indicating a corner where no actual corner was present, causing the coverage algorithm to
generate a series of zero-width cells and leading to potential confusion. This is another area
where the addition of sliding motions is beneficial, as a force can be maintained with the
boundary and so moderate amounts of compliance would be absorbed by the controller,
although care must be taken to keep the courier from rotating too far while maintaining

contact.

Another issue with real-world implementation is that of scale. In the simulation, the



48 CHAPTER 2. SINGLE-ROBOT COVERAGE

Environment Empty platen | Fig. 2.19a | Fig. 2.19b
Orientation std. rot. std. | rot. | std | rot.
Number of Runs 10 10 10 10 10 10
Average cf 1.69 1.72 2.99 | 2.68 | 2.92 | 3.05
Std. deviation 0.13 0.08 0.27 |1 0.26 | 0.23 | 0.30

Table 2.3: Performance of CCg on the courier in the environments of Fig. 2.19. “Standard”
orientation is as shown in Fig. 2.19 and “rotated” orientation is 90° counter-clockwise.

pixel was used as a convenient geometric unit, with the robot 20 pixels wide and a boundary
tolerance € of one pixel. For CCR on the courier, it was simplest to retain the equivalence
between the units of C and €, and scale the robot width w (internal to C'Cg) accordingly.
Initially, the unit selected was 1 mm, but due to the use of interleaved motions for edge
exploration and the prior selection of d| as one unit, this caused CCF to explore edges very
slowly, as the parallel motions were each 1 mm long. Units of cm were therefore chosen for
CCR, ensuring at least that all gaps of w+(1 cm) in the environment would be discovered.
For the experiments that used sliding motions, d was not an issue, but the way external
corners were handled at the controller level became important. When a sliding motion ends
at an external corner, the robot only travels a short distance around the corner due to the
controller implementation and the need for robust behavior. However, it must be far enough
beyond the corner (in CCp units) to recognize that it is beyond the wall. A unit size of 2
mm was therefore selected for these experiments, and proved to satisfy both requirements.
It should be noted that with sliding motions, the choice of unit size does not change the
basic behavior of the robot, nor is the coverage factor affected, since w and total distance

are each scaled by the unit size, as are the dimensions of C.

Once the low-level processes were worked out and the C'Cg code was integrated with the
courier control code, the courier was set loose in the environments of Fig. 2.19 as well as an
empty portion of the platen of dimension 69x97 cm (4.6x6.5w). Various initial positions
were used as well as both feasible orientations over a series of experiments. A maximum
velocity of 70 mm/s was found to be the highest acceptable in open-loop mode in light of
potential corner-on-corner collisions and the elasticity of some boundaries. The results of
these experiments are shown in Table 2.3. One item to note is that in fact, the environments
with added obstacles are fairly cluttered compared to most seen in simulation — the courier
is 15 cm wide, while the obstacles and spaces between them had dimensions between 10 cm

and 50 cm — so that the coverage factors tended to be fairly high compared to those seen in



2.3. IMPLEMENTATION 49

=| Robot’s view =0 =| Robot’s view = j

extra cell

I [

(a) (b)

Figure 2.20: Two different decompositions created in the environment of Fig. 2.19a

simulation. In addition, these experiments show some of the potential effects of tolerances
on the coverage process. For the environment of Fig. 2.19a, for example, the platen edge at
the upper left of the photograph contains a small jog (on the order of 2 mm) that may or
may not appear as a corner in the environment depending on the orientation of the courier
and the direction in which its edge is explored. Two decompositions for this environment
that show this effect are shown in Fig. 2.20 — the decomposition in part b of the figure
has an additional thin cell on the right side. Similar effects were found for the environment
of Fig. 2.19b. In addition, this latter environment showed the successful creation of a non-
simply connected cell decomposition, in which (for some initial conditions) a cell boundary
is explored from each side at a different time (as depicted in Fig. 2.17a) and the two cells

must be properly attached to each other.

The next set of experiments was undertaken once closed-loop control became available
and easily integrated with the existing CCr implementation. It was immediately realized
that the benefits to be realized were not in terms of the coverage factor metric, but rather
in elapsed time. This is simply because CCgr will produce the same trajectories whether
or not the robot is using closed-loop control (if sliding is not available; if sliding is used,
the same gross behavior will still be generated). However, the maximum speed at which
the courier can recover from a corner-on-corner collision is much higher under closed-loop
control — as high as 200 mm/s or greater (with almost complete reliability) compared to
60-70 mm/s when running open-loop. The greater improvement to the elapsed time was
that sliding proved (as expected) to be much faster than even closed-loop bumping with

the same maximum velocity, as the courier was not required to stop and bump against the



50

CHAPTER 2. SINGLE-ROBOT COVERAGE

Control type Open-loop | Closed-loop | Closed-loop | Closed-loop | Closed-loop
Sliding? No No No Yes Yes
Uz [MM/s] 70 70 250 70 250
Empty platen (p1) 310 281 230 115 46
Empty platen (p2) 318 295 234 140 53
Fig. 2.19a (p1) 409 399 291 224 91
Fig. 2.19a (p2) 365 341 250 201 79

Table 2.4: Elapsed time (in seconds) for CCg under various control methods.

edge once per centimeter. It is important to note that the specified maximum velocity for
an open-loop trajectory will always be achieved, while in the closed-loop case, the use of
the dynamic force controller means that the maximum velocity will only be achieved in the
absence of disturbance forces, and in the experiments presented here, most trajectories ran
at 70-80% of the given v,qz-

To quantify these speed improvements, CCxr was run using all three types of control
from the same two starting positions in each of two different environments. The results of
these experiments are given in Table 2.4. From these results, it can be seen that there is
actually some speed improvement simply due to the use of closed-loop control rather than
open-loop, even at the same maximum velocity v,,q, (and using the same trajectories). This
is presumed to be due to the closed-loop collision detection being more responsive than the
open-loop version. However, for the closed-loop bumping control, an increase in maximum
velocity did not lead to great improvement, as the majority of the time was spent in small
motions along the edges of the platen, during which the courier was required to stop and
change direction repeatedly and could not achieve the specified v,;,4,. On the other hand,
not only was sliding seen to be of great improvement even at the slower speed, but it received

much greater relative benefit from the higher speed capability.



Chapter 3
Cooperative coverage

Once an algorithm exists for sensor-based coverage for a single robot in a specific system,
it becomes possible to discuss performing this task cooperatively to increase the efficiency
with which coverage is performed. As mentioned earlier, while any type of cooperation
between robots has the potential to decrease the time necessary to complete a task, peer-
to-peer cooperation can also make the task performance more robust by eliminating the
dependence on a central controller, thereby allowing the task to continue despite individual
robot failures. For the cooperative coverage task, we have therefore chosen to implement
an algorithm that will run independently on each robot, eliminating the need for a central
controller. This makes higher-level strategic decisions more difficult to implement, since
the robots either need to independently make the same decision or negotiate to determine
a strategy. In our case, we have chosen to have each robot run the same algorithm and
make independent decisions in such a way that complete coverage is still guaranteed while

efficiency is aided as much as is straightforward to implement.

/ Robot \

—

Event
handler

interpreter

? -7~
7 QOther ‘\
N robotgx

- -

Figure 3.1: A schematic version of the concept behind DCpg.

ol



52 CHAPTER 3. COOPERATIVE COVERAGE

Figure 3.2: Two decompositions of the same rectilinear environment: (a) the unique sweep-
invariant decomposition and (b) a possible generalized rectilinear decomposition.

The algorithm developed, DC (Distributed Coverage of Rectilinear environments), is
based on CCg, and makes use of the reactive nature of CCg to not only provide cooperation
and therefore increased efficiency, but also a straightforward extension of the proof of CCgr
to the multiple-robot case. The basic concept behind DCg comes from the notion that the
internal state of C'CRg, while not explicit, can be derived exclusively from C and p. Therefore,
if C can be altered in response to other robots’ data, it should be possible to cause the robot
to avoid parts of the environment covered by its colleagues while still using the same (or
nearly the same) underlying coverage algorithm. This idea is shown schematically in Fig.
3.1. The key is that alterations to C cannot be made arbitrarily, since not all of the infinite-
dimensional space of (C, p) pairs is represented in the FSM presented in Sec. 2.2. Rather, C
must be altered in a well-defined way, and the coverage algorithm slightly modified (thereby
expanding the states of the FSM), so as to retain the guarantee of complete coverage for

each robot running DCg. A summary of DCg was first presented in [51].

3.1 Cellular decompositions under DCg

One of the most important differences between sensor-based coverage under CCpr and co-
operative coverage under DCFR is that the decompositions of the environment that will be
created under DCp will not necessarily fall into the same class (that of oriented rectilinear
decompositions, or ORDs). The way the decompositions are created is described in detail in
Sec. 3.2.3 below, but a description of the class of decompositions in which DCg will operate

will hopefully make the following algorithm description more comprehensible.

Clearly, for any non-trivial rectilinear environment, exactly two possible ORDs exist (one



3.2. COMPONENTS OF DCpg 93

for each possible axis orientation)!. Overlaying the boundaries of these two decompositions
gives rise to a decomposition referred to here as the sweep-invariant decomposition, or SID,
an example of which is given in Fig. 3.2a. The SID of an environment is therefore unique, and
can be created from a given environment by extending all boundary and obstacle edges until
a perpendicular wall is reached, with these extensions representing all cell boundaries. This
decomposition seems promising for use by cooperating robots in rectilinear environments.
However, in the SID, a cell’s extent may be defined by an arbitrarily distant wall segment,
and it is therefore infeasible to create this decomposition in an incremental way.

The SID does, however, form the basis of the class of decompositions developed under
DCpRr. When running DCg, a robot will incrementally construct a decomposition of the
environment that is of a class we will call generalized rectilinear decompositions (GRDs). A
GRD C can be defined as consisting of a set of nonoverlapping cells {Cy...C,,C;NCj =
OVi+# 4}, each of which is a rectangular superset of cells of the SID of the environment.
An example of a GRD is shown in Fig. 3.2b. It is important to note that there are many
possible GRDs for a given environment, and in fact two robots cooperating to cover their
shared environment may create different GRDs, however, the number of possible GRDs for
a given environment is finite and the number of cells in any GRD is also finite. In addition,
GRD cells will contain intervals that represent neighbor relationships like those in an ORD,
but a GRD cell can have cell or placeholder neighbors on all four edges rather than just the
two side edges. A GRD is walid if the cells are rectangular supersets of SID cells and all

cells have intervals that point to the actual entity adjacent to the cell at that location.

3.2 Components of DCj

To generate cooperative coverage as outlined above, in which the cell decomposition is al-
tered while coverage is performed, the algorithm DCp is built out of three components. The
first is called C'Crys, which is built from CCr with some modifications as described below
(the “M” subscript stands for “modified” and/or “multiple robots”). The feature handler
watches C as it develops and communicates with other robots’ feature handlers to develop
colleague relationships and share data as coverage progresses. Under DCR, two robots are
considered colleagues when they have discovered the relative geometric transform between
their individual decompositions. Finally, the overseer induces cooperation by taking incom-

ing data from known colleagues and integrating these data into C during the performance of

LA simple rectangular environment will consist of a single cell regardless of the orientation of the robot.



o4 CHAPTER 3. COOPERATIVE COVERAGE

C‘Ol’
S
map Gr@afeo' e oo
data
info
Feature o
ata,
handler o[hré\rar%essage 5 robot 2

DC  (robot 1)

Figure 3.3: A schematic representation of the components of DCpr and the types of data
transferred between them.

coverage. A schematic representing the way the three components interact with each other

as well as with other robots also running DCF is shown in Fig. 3.3.

3.2.1 CCruy

As mentioned previously, the aim of this work is to produce complete cooperative coverage by
decoupling the cooperation process from the coverage process. CCgrys is therefore primarily
just CCgr. However, some additions must be made due to cooperation that both allow
coverage to continue and allow the proof of CCgrjs to follow directly from that of C'Cpr as
shown in Sec. 3.3. It should be pointed out that these are indeed strictly additions, not
alterations, so CCgrys (as a component of DCg or alone) will work for a robot performing
coverage alone, and behave identically to CCpg.

First of all, due to the expanded class of decompositions, the seed-sowing process must
be altered to take in to account vertically adjacent cells (such as in the GRD in Fig. 3.2b),
geometry that is never present in an ORD. When an incomplete cell has another cell along
its floor or ceiling, the seed-sowing strips must be ended artificially at the cell boundary,
rather than naturally by a collision. This is done in CCprps through the use of ezploration
boundaries. Exploration boundaries are virtual boundaries placed by the overseer at the
time of cooperation, and are located at the floor and ceiling of each complete cell in a
GRD wherever an environmental boundary is not present. The behavior of an exploration
boundary is such that a collision is effected when the robot tries to traverse it if and only
if the robot is in an incomplete cell. This induces the correct behavior for the seed-sowing

case, as shown in Fig. 3.4a, but also allows the robot to move through cells freely once the



3.2. COMPONENTS OF DCpg 95

(a) (b)

Figure 3.4: The effects of an exploration boundary (dash-dot line) when the robot is in (a)
an incomplete cell and (b) a complete cell.

current cell has been completed, as seen in Fig. 3.4b, maintaining the correctness of the path
planning process. The implementation of exploration boundaries depends on the system in
question. Two different methods are discussed in the context of DCp implementation in
Sec. 3.4.

This ability to perform seed-sowing in cells with vertical neighbors points out (and gives
rise to) an important property of cells in a GRD under construction — that each cell will
always have at least two attached edges that are on opposite sides. An attached edge is one
that is entirely adjacent to walls and/or complete cells rather than placeholders. This is
true because seed-sowing strips in a cell being explored must end at a wall or a complete
cell (because of the exploration boundaries). In addition, when a cell is transferred from one
robot to another, this property of attached edges is retained, as shown during the description
of the overseer below. This property will also be used in the correctness proof below.

In addition, seed-sowing must not only take into account vertically adjacent cells, but
interval creation and maintenance as well. Under C'Cp, intervals are built on the floors and
ceilings of each cell, but always point to walls for the known length of the edge, while in a
GRD, a cell may have one or more cells or placeholders above or below it. CCrjs therefore
must have the capability to create and maintain all types of floor and ceiling intervals. Due
to the oriented nature of the algorithm (i.e. seed-sowing will always be done with y-aligned
strips), the floor and ceiling intervals are not dealt with quite the same as the side intervals.
Side edges are explored all at once, directed by Rule 3 of the map interpreter, while floors
and ceilings will be explored piecemeal as seed-sowing progresses.

To maintain floor and ceiling intervals, C'Cprps includes a new function that is called
after each contact with the floor or ceiling of the current cell C.. This function, which

is described in more detail in Appendix A.3, first checks to see which cell (if any) C, lies



o6 CHAPTER 3. COOPERATIVE COVERAGE

e

Figure 3.5: A typical example of the maintenance of intervals between vertically adjacent
cells.

adjacent to the floor or ceiling just hit. This check is done by testing each cell in C to see
whether it contains a point just beyond p outside the current cell. If there is no other cell
present (C, = ), a wall interval is created or extended just as for a side wall. If another cell
is present, an interval is extended or created in C,. as appropriate, but the corresponding
interval in C, must also be updated. This will most often follow the process portrayed
in Fig. 3.5, which involves extending the interval in C, to match the one in C;, but also
shrinking a placeholder neighboring C,. The portion of the floor of C, that is now known to
point to C, was not previously explored, and so there must have been a placeholder there.
This placeholder can be found as C,’s neighbor and shrunk, and will eventually be deleted

when it reaches zero length.

The event handler must also correctly update horizontal intervals during the detection
and localization of interesting points. For example, when an interesting point is detected as
in Fig. 2.6, the interval on the floor of Cjy (which may or may not point to another cell) must
be split and shared between Cjy and C. Even when the interesting point is first discovered
and the cell boundary has not been localized, the disposition of the cell floor must be known
as far right as p;. Then, once the boundary has been localized, the ceiling intervals in the

cell across the floor of Cy and C; (if such a cell exists) are updated.

Finally, since placeholders can now be horizontal as well as vertical, the map interpreter
must be able to instantiate new incomplete cells from these horizontal placeholders that can
be entered and covered correctly. To do this, rather than building a cell that corresponds to
the entire length of the placeholder, the map interpreter first directs the robot to one end of
the placeholder, then builds a cell with zero minimum width above (or below, as appropriate)
the end of the placeholder. The robot will then enter this new cell and explore its near edge
before beginning seed-sowing across the width of the placeholder. The instantiation is done

in this way because a single horizontal placeholder may correspond to multiple cells in the



3.2. COMPONENTS OF DCpg o7

eventual GRD, and so starting with a thin cell and increasing its width one strip at a time
will allow the correct discovery of all interesting points and the correct development of C.

The details of these updates to the map interpreter are also given in Appendix A.3.

3.2.2 Feature Handler

The feature handler, by its very nature, is designed independently of the other two compo-
nents of DCg. It can be thought of as a “black box” that takes C and the list of beacons B
and produces colleague relationships for use by the overseer. A functional feature handler
has been developed for use in the current implementation of DC'g, and could be used as a
template for different feature handlers in other systems, but any algorithm that performs
this function (and two additional small functions described below) could be used in DCp.
In general, the feature handlers in each robot will communicate values of derived features in
an attempt to discover overlap between the maps. A derived feature is a number (or perhaps
an ordered tuple) that is generated in a consistent way from the data in C. Examples of
derived features are distance between unlabeled beacons (as used in the current system and
described below), lengths of boundary segments, beacon labels, distances from each beacon
to the nearest boundary, etc. Ideally, a derived feature is chosen for a system such that it
will be unique throughout the environment — this would allow two robots with a common
derived feature to immediately become colleagues. In general, this may not be possible,
but if a derived feature is chosen so as to generate few false matches, and the feature han-
dlers have a way to check potential matches (with additional data from C) before creating
colleague relationships, it should suffice.

It should be noted that the formulation of the overseer and proof of DCpr do not allow
for removal of area from C if a colleague relationship is later rescinded. Therefore, it is
important to be conservative when generating colleague relationships. The current system
uses distances between pairs of beacons as the basic derived feature, but does not make
a final judgment about colleague relationship until a third beacon is found to be common
to the two robots’ maps. For the particular system simulated and the sensor tolerances
assumed, this has yet to produce a false match in hundreds of simulations.

The feature handler currently in use makes use of only the beacons in the map rather
than the cells themselves. It was originally developed this way with an eye toward the
minifactory, in which the cells and environment boundaries will be defined by the platen
layout, and will therefore all look much the same. The derived feature used is simply the

distance between any pair of beacons, and so each robot’s feature handler keeps a list D



o8 CHAPTER 3. COOPERATIVE COVERAGE

1, Lo T e |

{A} o, {B} {A} {A

o d e N
}

(2) (b) (c) (d)

Figure 3.6: If (a) robot R4 and (b) robot Rp each have a pair of beacons at the same
distance d, their relative transform can take two forms: (c) the cis-form and (d) the trans-
form. Angles a; and (; are used to calculate the transforms.

of distances that have been reported by other robots, with each distance paired with the
robot that reported it. Then, for every beacon B; discovered by a robot, the feature handler

performs the following tasks:
e Report the location of B; (in its own coordinate system) to all colleagues.
e For each previous beacon Bj € {By...B;_1}:

— Compute the distance d;; between the new beacon B; and Bj.

— If d;; matches (within a prespecified tolerance) any distance already in D, con-
tact the robot responsible for that distance and compute relative transforms as
outlined below.

— Otherwise, report d;; to all other robots.

It is reasonable to expect that any feature handler would use much the same structure
regardless of the specific type of derived feature used, although this is not necessary for the
correctness of DCg. Other map matching methods that could be used by a feature handler
are discussed below.

Once a pair of beacons has been found to be common to two robots’ lists of beacons, a
pair of potential transforms is computed. Since the line segment defined by the two beacons
is not directed (as it would be if the beacons were labeled), the pair could match with two
different relative orientations. Here the two possibilities will be defined by one having the
two robots’ origins on the same side of the line segment and the other with them on opposite
sides of the segment — this definition is then the same for each robot, so no negotiation or
prioritization of robots is necessary. The two transforms are called the trans-form (opposite
sides) and the cis-form (same side), as shown in Fig. 3.6, and are out of SE2.

To generate the two transforms (from the point of view of robot R,; robot Ry will use



3.2. COMPONENTS OF DCpg 99

the same process but with the opposite symbols) robot R, uses its own two beacons 4b

(“tail”) and “b;, (“head”) and the two beacons from the other robot, still in that robot’s

t

coordinates, Pb, and Bb,. For each robot, beacon b; is assumed to lie at a smaller polar
angle than b, (and therefore at the “tail” of the counterclockwise-oriented segment). The
angles a; and f3; are calculated as oy = ZAbhAbtAO and B, = /By, P stO as shown in Fig.
3.6(a,b). The cis-form assumes that the each robot’s b; corresponds to the same real-world
beacon, and therefore that a; and (B; have the same origin and sign. To compute the cis-
form, the vector AT B is defined as a unit vector from B b; to Op, but in R,’s coordinates,
and angle 4O 75 is defined as the angle between R,’s z axis and ATB. The rotation of Ry’s

coordinate frame with respect to R,’s, 1©p, is then calculated as follows:

A@TB = A@T+7T—C¥t+,3t
A@B = A@TB+7F—B@A (3.1)

The location of Ry’s origin in R,’s coordinate system (“Op) is then calculated:

_ A9

arp - | cosUOrs) (3.2)
sin(40r13p)

A0 = b+ ||Pb||*TB (3.3)

405 and “Op can then be used to create a transformation matrix?. The trans-form is

computed in essentially the same way: simply reverse the roles of #b, and b, which can
be accomplished by setting 4@p = © —4 ©p instead of using (3.1) and completing the
computations in (3.2) and (3.3).

Once a pair of candidate transforms is found, they are first each checked to ensure that
the relative rotation is close to a multiple of 7/2. It should be noted that if this is true for
one of the transforms, it will be true for the other, since the relative angles of the trans-
form and cis-form always differ by exactly w. If this is true, the transforms are checked by
each robot to see if either or both results in the other robot’s B being consistent with its
own C and B. In order to do this, R gives its full list of beacons B4 to Rp (and vice
versa). Rp then transforms each beacon in B# by each potential transform, and checks
to see if either resulting location lies within its own C,jn, where Cinin is defined as the
union of the minimum areas of all cells in C [Cpin=U;(C;,)]. If a transformed beacon

location is inside Cp,jn, the transform that was used to generate this location is invalid.

’In DCR, the matrix is not explicitly computed, but rather a vector [Ox Oy ©] is maintained by each
robot for each of its colleagues



60 CHAPTER 3. COOPERATIVE COVERAGE

This is because if such a beacon existed, it would have already been discovered by Rp
and would have necessarily already generated a potential match with R4. If one or both
transforms survive this process, they are still considered potentially correct. To confirm one
or the other, a subsequent beacon must be found by either robot that matches a beacon in
the other robot’s B. Alternately, if a new beacon discovered by one robot is transformed
into a location that ends up in the other robot’s C,jn, this new beacon will invalidate
that transform. Therefore, after each robot finishes a seed-sowing strip, since its Cuin
will increase in area, it will recheck the other robot’s B to possibly invalidate one or both

transforms.

Even for this specific derived feature and related geometry, any of these double checks
could be eliminated or strengthened depending on the reliability and accuracy of the sensors
in the system. For example, if the accuracy of the beacon sensor is poor, false matches
between beacon distances will be more likely, and so a fourth matching beacon or some
other specified piece of geometry could be required before the colleague relationship would
be confirmed. Alternately, if the beacon sensor has some potential to miss a beacon, the
feature handler should not necessarily eliminate a transform if one robot’s beacon appears

in the other’s C,;n and not in its B.

For other systems, such as where beacons are sparse or nonexistent, or the robots’ sensing
is less accurate, feature handlers based on other types of data could be used. For example,
image mosaicing generally takes two complete images and finds overlaps between them.
Yi et al. [52] present a heuristic algorithm in which an initial estimate of relative pose is
not required, which is most attractive for cooperative coverage. Capel and Zisserman [53]
present an algorithm that explicitly ensures that the transforms around a loop of images will
be consistent. These algorithms (or ones derived from them) could be useful for applications
such as exploration of a warehouse where images of the floor could be obtained with a camera
and used either to generate transforms or to reduce the uncertainty of a transform generated
through simpler means. On the other hand, an algorithm similar to one presented by
Janssen and Vossepoel [54] designed to mosaic overlapping line drawings could also be used
to generate colleague transforms based on relatively sparse boundary information discovered

by each robot.

In addition to this system-specific colleague generation procedure, every feature handler
has two mandatory jobs — colleague referral and data transmission to colleagues. Colleague
referral can occur in any team greater than two robots when one robot (e.g. R4) becomes

colleagues with two others (Rp and R¢) before Rp and Rc are themselves colleagues.



3.2. COMPONENTS OF DCpg 61

Cs .
C2 Cnew Cnew : C5

(@) (b) () (d)

Figure 3.7: An example of adding new area by the overseer, in which the initial cell decom-
position is depicted in Fig. 3.7a and the incoming cell C)¢,, in Fig. 3.7b. The dot in each
section of the figure represents a common real-world point.

In such a case, it is the duty of R4’s feature handler to deliver the relative transform
S;T to Rp and ﬁT to R¢, from which R and Rc can then each calculate their relative
transform. This allows Rp and R to share data directly, which is important to ensure
finite communication among the team, as described in Sec. 4.2. If there is any potential
error in the relative transforms, simply chaining them together may not be the best option,
as discussed in Sec. 4.4.3, but it is certainly the most straightforward. The required data
transmission to colleagues simply involves the feature handler (as can be seen in Fig. 3.3)
delivering new cells to all colleagues immediately after completion to allow each robot to

maintain a consistent decomposition and to maximize efficiency.

3.2.3 Overseer

The overseer has the task of incorporating all data from colleagues into C, a job complicated
by the requirement that C must remain admissible to C'Crps. This has a few notable
implications — cells in a valid GRD must not overlap, so the overseer cannot simply add
the incoming cell as is, and the intervals between the incoming cell and existing cells must
be updated or added correctly. Also, any alteration of incomplete cells must be done such
that their resultant structure (for lack of a better phrase) “looks like” a cell that is being
explored by a robot working alone. In addition, to maximize efficiency, all area represented
by the incoming cell should be added to C.

The addition of an incoming cell C),¢,y to C is therefore done in three stages. In the first
stage, zero or more new cells are added to C to account for the area of Cp, that is not
currently contained in complete cells in C. Then, for each cell added in the first step, the
incomplete cells in C are altered so that they do not overlap the added cell. Finally, the

intervals of each added cell are assigned to walls, existing cells or newly created placeholders.



62 CHAPTER 3. COOPERATIVE COVERAGE

An example of the action of the overseer is shown in Fig. 3.7.

The cell Ceq arrives described in the coordinate system of the sending robot, and so
it is first transformed into the local coordinate system using the transform provided by the
feature handler. This transformation includes the reassignment of the intervals to their
correct side (“left,” “floor,” etc.), since the cell has been rotated, but the interval lists are
explicitly denoted by which side of the cell they lie along. Also at this time, all intervals
in Cpey that do not point to walls are modified to point to “unidentified free space” rather
than a specific cell or placeholder, since any such neighbor information in C),,, is meaningful
only to the robot that sent it.

To describe the overseer’s actions that determine the area of cells to be added to C, Ccom
is defined as the set of all complete cells in C, and Cjpe = C — Ccom. For the example in
Fig. 3.7a, Cecom = {Co, C1} and Cjne = {C2}. The overseer first compares Ce,, with each

cell in Ceom, altering Cjeqy and calling itself recursively as follows:

e VO, € Ceom:

— If C; N Chery = 0, do nothing.
— If Chew is wider (larger in z) than C;:
* If Chrew,right > Cirights make a copy of Chey called Cy, set Cyjert = Ci rights
and call the overseer with C,.
* Similarly (not “else”, since Cpey could extend past both sides of Cj) for
Cnew,left < Ci,left-
* If Chew is also taller than Cj, make a copy of Chey called Cy, set Cp e =
Ciert and Cy right = Cj right, then call the overseer with C.
— Else if Cjey is taller than C;, perform similar tests:
* If Cnew,ceil > Cz',cez'la make a Copy of Cnew called Cxa set Cx,floor = Uiceils
and call the overseer with C,.

* Similarly for Chew, fioor < Ci, floor-

Each cell that survives this process unaltered (of which there may be zero, one, or many
for a single original cell C},¢,,) will consist of area not previously contained in Ccom. In the
example in Fig. 3.7, the area added to C to account for C,¢, is a single cell shown in Fig.
3.7c which becomes C5 as shown in Fig. 3.7d. In addition, whether or not the area has been
divided, each cell will still have at least two attached edges — these cells will arrive with
attached edges (perhaps to other cells provided by the sender of C)¢y), and are only altered
by shrinking C},¢, to abut a complete cell, at which point they will be attached to that cell.



3.2. COMPONENTS OF DCpg 63

N N
! ©s
]
C E C
0 ECneW 0 .
G ' c,

Figure 3.8: In order for a new cell to be narrower than an incomplete cell, (a) the original
new cell Ce, must be taller than the incomplete cell (C) and therefore (b) the cell added
to C (C3) must be as tall as the incomplete cell.

At this point, the overseer checks for portions of the floor and ceiling of C,,.,, that are not
walls, and creates exploration boundaries for them, adding them to a list EB that is used
by CCRrar as described in Sec. 3.4.

Next, each new cell (which can themselves be called C,¢,, from this point) is intersected
with every cell C; € Ciue. This intersection process is designed to retain the full size of
Chew and eliminate any overlap with incomplete cells (shrinking or deleting the incomplete
cells as necessary). It should first be noted that since an incomplete cell must be attached
on its floor and ceiling, Cy¢qy cannot be taller than any C; € Cj,. — any complete cell that
defines the floor or ceiling of C; must have already reduced the size of C)¢y as well. In
addition, if Ce, is narrower than C; , the two cells must be the same height. As shown in
Fig. 3.8, the interesting point that defines Cj,¢,, must lie in the middle of the incomplete C;
(C1 in the example), and therefore must be “hidden” from C; by another complete cell (Cy
in the example). The original Cj,,, must have originally been taller than Cj, so that the
cell added to C was limited by the complete cell and is therefore the same height as C;.

The intersection of C,,.,, with the incomplete cells in C is therefore performed as follows
(note that it is not recursive, since Chey, is now fixed; also, after each “if” statement is an

implicit “else”, so that only one of the operations listed will be performed):

° VCi € Cinc3

— If C;, N Cpew = 0, do nothing.
— If C;, N Chew = 0, reduce C;, so that it does not overlap Cjeq-
— If C;, U Chew = Chew, replace C; with Chey.

— If Chew is the same height as C; (and since Cj,eyy does not completely subsume



64 CHAPTER 3. COOPERATIVE COVERAGE

Figure 3.9: To determine the cell(s) adjacent to an interval 7, a small distance d; is added
to the two ends of the interval i;,, and %pe;.

C;), there must be a partial overlap in the z direction, so reduce C;, (on either
its left or right as appropriate) to abut Cleyp.
— Otherwise, there must be partial overlap in the y direction:
* If Crew,ceit < Ciceit, replace C; with a cell Cy, set Cp fioor = Chew,ceit and
keep only placeholders attached to C,, and create an interval in C; to point
to Chew-

* Similarly (this time not “else”) for Chew, fioor > Ci, floor-

In the example, this process discovers that the new cell C5 partially overlaps Cs in vy,
and creates two new shorter cells C4 and C5 to represent the portion of Cy outside of Cj.
This results in the decomposition shown in Fig. 3.7d.

Once the areas of all cells have been determined, each unassigned interval ¢ in Cley is
given the correct neighbor(s). To do this, the overseer determines which cell’s maximum
extent (if any) is across from the two ends of 7. This is done (for the “top” end of 7) by taking
the point 44, and adding a small displacement §; away from Cpe, (e.g. a small amount in
—+2 for an interval on the right edge of Cjey, as shown in Fig. 3.9a — a second example is
shown in Fig. 3.9b). A cell Cy,p is then determined by checking all cells C; € C, and setting
Ciop = {Ci|(itop + 0;) € Cj}. Since cells cannot overlap, Cy,p will be at most a single cell.
A similar test is performed to determine Cj,;, the cell that lies across from the bottom of 4.

With these cells known, i is then assigned as follows:

e If Ciop = Chot = 0, build a new placeholder H,,; equal in size to i and set i’s neighbor
to Hm+1.
o If Ctop = Chot # 0:

— If Cjyp is complete, set i’s neighbor to Cj,py. Also, find the interval in Cy,, that

corresponds to ¢ and connect it to Cheq.



3.3. CORRECTNESS PROOF 65

— If Cjop is incomplete and 4 is horizontal, split 4, connect it to Cip for i N Ciop,
and build a placeholder for i N Cyqp, .

— If Cyop is incomplete and ¢ is vertical, connect i to Cyop over the y extent of Cigp,
as long as Cj,p, is within one robot width of 7, build a placeholder otherwise.
If Ciop,n adjoins Clyey, find the corresponding interval in Cy,, and connect it to
Chew-

o If Ciop # Chot, this should only occur if 4 is horizontal and Cj,, and Cj, are each
either an incomplete cell or (). In this case, split ¢ at the boundary of Cyyp and Cho,
connecting the successor intervals where adjacent to Ciep,,, Chot, to those cells, and

build placeholders for the remainder(s).

3.3 Correctness Proof

The goal of a distributed coverage algorithm is primarily to produce coverage more efficiently
than by a single robot alone. However, just as for CCg, while efficiency is a concern in
the development and implementation of the algorithm, a guarantee of complete coverage
is of primary importance. In the case of DCp, what must be shown is that a team of
any number of robots operating in any shared finite rectilinear environment will produce
complete coverage of that environment — that is, at least one robot will reach every point
in the environment. In addition, we will show that this ensures that each robot ends up
with a complete map of the environment to which it has registered itself.

The proof presented here makes use of the same separation of coverage and cooperation
that makes DCp feasible. First, it is proven that C'Cgras produces complete coverage in
the absence of cooperation. Since DCp for a single robot reduces to C'Cprjys, this is also
a proof for DCp for a team size of one. It is then shown that any cooperation does not
interfere with the ability to produce complete coverage. In other words, C'Crps will be able
to continue coverage after any type of cooperation and will not terminate until the team has
collectively covered the environment. These two statements together imply the correctness
of DCR as defined above.

Proposition 3.1 CCgry inherits the ability to completely cover any rectilinear environ-
ment from CCgr and will continue coverage in an enterable GRD (as may be created by

cooperation,).

The goal of this proposition is similar to that of Proposition 2.1, and is to show that

CCRrys will continue coverage to completion in any GRD in the absence of cooperation.



66 CHAPTER 3. COOPERATIVE COVERAGE

However, since a GRD that is not an ORD can only be created through cooperation, we
instead say that C'Crps will continue coverage in any GRD as created by cooperation if
there is no further cooperation. The concept of an enterable GRD is therefore defined as
a valid decomposition (non-overlapping cells with correct intervals) in which all incomplete

cells can be entered by the robot in a state represented in the FSM description of CCRray.

This proposition can be proven by first showing that the FSM that describes CCgrys is
structurally identical to that of C'Cpg, but in which each cell comes from a GRD rather than
an ORD. We then note that the structure of the current cell uniquely defines the state of
CCrpr for the first five rules, so that if the current cell is not changed by cooperation, the
state will not immediately change due to cooperation. In addition, when the robot is in a
complete cell, the current cell cannot be altered by cooperation (by definition). From this
state (node X in the FSM), when an incomplete cell is reentered for coverage, (C.,p) will
be in a state from which coverage will continue since the decomposition is enterable. Also,
any placeholders remaining in C will be correct as long as C is valid. Therefore, coverage

will be able to continue to completion.

We will now show that the FSM that represents the evolution of C under C'C'rjs has the
same states as the FSM representation of CCg. For the states of seed-sowing, exploration
boundaries will cause seed-sowing to continue in any GRD as in an ORD, and the additions
to the event handler ensure that the intervals between the current cell and a vertically
adjacent neighbor will be maintained. This analysis assumes as in CCg that there are no
overlapping incomplete cells — proving that this is the case under DCR is more complicated

than under C'Cp, and is shown separately below in Proposition 3.1.1.

Once an interesting point is discovered, the current cell (and its neighbors) must be
updated and/or created correctly. For an interesting point discovery of Case I (as shown in
Fig. 2.5a), the changes to the area of the current cell are as in CCg. However, if another
cell lies across from the current cell’s floor, their mutual interval will be extended to the
new interesting point and the placeholder that had been at that location will be shrunk
to zero length and deleted from H. This deletion of the placeholder is unlike anything in
CCR, since under C'Cp all placeholders are vertical and are removed all at once, either when

turned in to a new cell or when cells are connected around an obstacle.

Interesting point discoveries of Case II can only happen in the way defined by C'Cpr
and are handled exactly as in C'Cr. This is because if another cell C, was adjacent to the
floor of the current cell, C;, would not be attached on its ceiling (since the current cell is

incomplete and adjacent to its ceiling) and so would have to be attached on its right side.



3.3. CORRECTNESS PROOF 67

S NN NN
L\'ﬂ
5
N Y N \ — -
C0 CO C0

(a) (b) (c)

Figure 3.10: The discovery of interesting points in a GRD when the current cell has a
vertically adjacent neighbor.

The robot could therefore not move past the current cell’s floor or ceiling, since it would
instead hit whatever C, was attached to. In addition, if another cell adjoins the ceiling of
the current cell in this case, it will be unchanged by this type of discovery, so the handling
of this interesting point is correct.

The remaining cases (III, IV, and V) of discovery of interesting points are similar to
each other in that the newly discovered wall or non-wall (the discovery which indicated an
interesting point) cannot be adjacent to another cell. However, in each of these cases, the
floor of the current cell could be adjacent to another cell C,, as shown for each case in Fig.
3.10. In these cases the intervals on the ceiling of C, need to be updated when the interesting
point is discovered. The event handler of C'Crps will do this, although it should be noted
that this process does not immediately affect the FSM — the ensuing edge exploration in the
current cell will be identical regardless of the disposition of its vertically adjacent neighbors.
However, it is necessary to keep these intervals correct to maintain the validity of C. In all
of these cases, the intervals of the neighboring cell will now extend beyond the current cell.
In the case of Fig. 3.10b, a new cell will be created and the intervals along C,’s ceiling can
be split between the current cell and the new cell. In the other two cases, the portion of
C,’s ceiling that is beyond the final size of C. will have to end up pointing to a placeholder,
but this is not as difficult as it may seem. Since the right side of C. was unknown when
the interesting point was discovered, the portion of C, beyond the last strip shown must
still point to a placeholder. Therefore, when the boundary of C. is set, this placeholder can
simply be resized to extend to the true right side of C..

Once in node F of the FSM, in which the side of a cell is being explored, the progress

of CCRrys exactly matches that of CCr — since any cells encountered adjacent to the edge



68 CHAPTER 3. COOPERATIVE COVERAGE

being explored come from an enterable decomposition, the only entities that the robot will
encounter are walls, placeholders, or other cells that appear as in an ORD. Splitting cells,
which may involve a transition to node G, requires the splitting of intervals on the far side
of the cell (floor or ceiling), but since the widths of both cells are known immediately at the
time of the split, this is easily handled correctly.

Finally, once C'Cgas reaches node X (completion of the current cell), it will, as in CCp,
look for any incomplete cell or placeholder in which to continue coverage. From this state,
the robot must still be able to plan to and reenter any incomplete cell, thus the definition
of enterable. As long as C is enterable, the robot can enter any incomplete cell and resume
coverage. In addition, creation of cells from placeholders must be slightly different under
CCryr than CCpR in order for the next state of coverage to be contained in nodes A or
C. For vertical placeholders, the cell is built in the same way as under C'Cp, although
it is necessary to create zero-length intervals at the floor and ceiling (to walls or other
cells as appropriate) so that these intervals will be extended correctly during seed-sowing.
Horizontal placeholders are turned into cells as described in Sec. 3.2.1 above, which will also
allow correct interval extension while seed-sowing after first exploring an edge as directed by
node C (which need not change to accommodate this case). Planning paths to distant cells
will be done in the same way as under C'Cg, with the addition when looking for neighbors
of a cell to be successors in the path search, vertically adjacent neighbors are used as well.
However, the succession rules are still consistent from one planning instance to the next,
and so a consistent path will still be planned after each trajectory.

Finally, in order to complete the proof of this proposition, it must be assured that
there will be no cases in which seed-sowing will not be able to continue due to overlapping
incomplete cells. Because of the cooperation inherent in DCg, there may be an arbitrary
number of incomplete cells in a GRD during coverage. However, they will always have a

specific relative structure, as follows:

Proposition 3.1.1 No cell decomposition generated during DCr will contain overlapping

incomplete cells at the robot’s current position.

First, we will say that an incomplete cell with a known left side “faces” right, and with
a known right side “faces” left. Then, since the event handler limits each cell’s maximum
extent to lie outside of all other cells’ minimum extents, two incomplete cells can then
overlap in only two qualitatively different ways, as shown in Fig. 3.11. They may face each

other with a y point in common (Fig. 3.11a), or they may face the same way with a y point



3.3. CORRECTNESS PROOF 69

NN —_ —
NN\ :
C 2 :
8 ————pmen :
! | N T -
| N I
N— C, q
N Cb
______ N
's____

Figure 3.11: The two ways in which incomplete cells might overlap.

in common, in which case the cell Cy being faced must have an unknown floor or ceiling
(Fig. 3.11b). It will be shown that the former case will never occur under DCp, while the
latter will occur only when the robot is in Cj. In the latter case, the robot will extend Cj,
as it explores toward the unknown floor/ceiling, at some point crossing over the edge of
Cy,. When this occurs, the event handler will limit C,,, to abut C} so that the cells will no
longer overlap — since this is done after a move and before the map interpreter sees C, the

robot will never enter the overlap.

It now remains to be shown that two incomplete cells can never face each other, and that
if two incomplete cells face the same way and overlap, the robot must be in the one with the
unknown floor or ceiling. First of all, without cooperation (see Proposition 2.1), there can
be at most two incomplete cells in C. In addition, incomplete cells can only be proliferated
beyond this number by splitting an incomplete cell (such as shown in Fig. 3.7). At the
time of the first such split, Cj,. may have three structures: the cell Cy with two unknown
side edges, Cy and another cell C; (which will not overlap Cjy, as guaranteed in Proposition
2.1), each with one known side, or a single incomplete cell C; with one known side. The
last of these cases is the simplest to describe, and forms the basis for the other two. In
this case, which is the one taking place in Fig. 3.7 as well as in Fig. 3.12, the incomplete
cells created from splitting C; (C2 and C5 in Fig. 3.12) cannot overlap in y, since the new
complete cell will be between them, and will have the same known side at the same location
as C;. The robot will continue coverage in one of these cells, only creating additional cells
when discovering an interesting point of Case IV, in which the previous cell is immediately
completed, as shown as the creation of C4 in Fig. 3.12c. When such a successor cell is

created, it must therefore face the same direction as the originally split cell and will contain



70 CHAPTER 3. COOPERATIVE COVERAGE

NN AN NSNS
C, C, 4
c, e, | e, |
C, C,
AN A AN

Figure 3.12: Generation and handling of multiple incomplete cells.

the robot’s position upon creation. The robot will therefore remain in the last cell created
until it completes the cell or the cell is altered via cooperation.

If no further cooperation occurs after the incomplete cell is first split, the robot will
eventually complete one of the incomplete cells (or its successors, such as Cy in Fig. 3.12c)
and then return to another of the original incomplete cells and continue coverage in the same
fashion, ensuring that overlapping incomplete cells are not created. If, however, a successor
cell Cj is itself split by cooperation, it must still be shown that overlapping incomplete cells
are not created. Such a cell Cj can be split either before or after its ceiling is known (for
the orientation shown for Cy in Fig. 3.12c). Recalling that this cell was created through
the process of Fig. 2.6 (entering node C of the FSM above), if its ceiling is not yet known,
the robot must be exploring the known edge (i.e. still in node C), and therefore is at the
topmost point of Cj,. Any split of C; will therefore keep the robot in the cell with unknown
ceiling, as required, and any other cell created will necessarily have a known ceiling and
cannot overlap in y with the other original incomplete cell. Therefore, none of these cells
can overlap regardless of the timing or type of cooperation.

In the case where Cj and another cell C; are incomplete when one or both is split, these
two cells face away from each other (and can be considered to both face away from Cy’s
known side). Any incomplete cell created after the split (as in Fig. 3.12¢) will also face away
from Cj’s known side, as it will lie in the area faced by the previously covered cell and face
away from the boundary with that cell. Therefore, the existence of an incomplete Cy does
not allow overlapping incomplete cells.

Finally, the case where Cj has two unknown sides can be considered as equivalent to
the previous case by thinking of Cy as two abutting incomplete cells (like Cy and Cy) that
happen to be the same height. These cells together face both ways (as a Cy with no known

sides could be considered to), and so this case will be handled correctly as well.



3.3. CORRECTNESS PROOF 71

new

Figure 3.13: Intersection of added area in the context of the proof.

Proposition 3.2 The action of the overseer leaves (C,p) in the domain of CCryy.

Because the state of CCryr at any given time depends only on the structure of C, and
p, the proof of this proposition can be broken into two parts. First, based on the definition
given above, { C—C,} must remain an enterable decomposition, so that whenever the state of
CCRras reaches node X, coverage will continue correctly. Secondly, for C., after cooperation,
(C¢,p) must be represented in the FSM corresponding to the actions of CCrys. If these are
both true, then the result of cooperation will be to place CCrps somewhere in its FSM, and
such that it will be able to continue coverage once the current cell has been completed.

Each part of this proposition can now be proven independently as follows:

Proposition 3.2.1 The overseer produces an enterable decomposition outside of the robot’s

current cell.

This proposition in turn has several independent components: firstly, the cells created
and modified by the overseer must be non-overlapping and supersets (or potential supersets,
for incomplete cells) of SID cells. Secondly, the intervals between added and/or modified
cells must be correct. And finally, all altered incomplete cells other than C. must end up in
a state from which they can be entered and covered.

Proof that added area is correct is done by induction: before cooperation, all cells in
C are ORD cells, which are by definition supersets of SID cells. We then show that when
a cell is added to a decomposition where the cells are supersets of SID cells, the resulting
decomposition will also consist of supersets of SID cells. Since both the cells in C¢om and
the cell Cjey are supersets of SID cells, VC; € Ceom, (Crew — Cj) is also a superset of SID
cells. To confirm that the area added by the overseer from C)ey is in fact (Cpew — Ci),
Chew 1s written as C; U (), U C,., where Cj is the area to the left of C;, C, the area to
the right of C;, and C,,, the remainder of Cj,¢,, as shown in Fig. 3.13. C; and C, are each

rectangular supersets of SID cells, since they are divided at the edge of C}, itself a superset



72 CHAPTER 3. COOPERATIVE COVERAGE

\ N
Cax Crew .
el R
NI A NSERL

Figure 3.14: Potential types of adjacency for an interval ¢ in an added cell C)¢y-

of SID cells, and the extension of an SID cell edge will always define an SID edge, as shown
in Fig. 3.2. C} and C, will be fed back to the overseer if non-null, at which point they will
remain unchanged relative to C; (and added to C, as long as they do not intersect with
other complete cells). If Cp, is larger than Cj, it will also be given to the overseer, but will
be subject to the vertical intersection test, which in turn sends C,, — C; to the overseer.
Otherwise, C,, C C;, or equivalently C,, — C; = (. In either case, the total area added
based on Cpeyp and Cj is (Cy U C, U [Cy, — Ci]) = (Chew — Ci)-

For incomplete cells {C; : C; € Cine, C; N Chew # 0}, it must then be shown that after
Chew 1s added, all known edges of C; lie on edges of the SID. Since in all cases, edges of
C; that are moved will be coincident with edges of Cjey, which is a valid GRD cell, this
condition is also satisfied. Finally, the non-overlapping requirement (as well as the fact that
all area not previously in C is retained, purely an efficiency argument) can be shown as
follows: after Che, is tested against each cell in Ceom, the added area is (;(Cpew — Ci) =
Ni(Crew U Ci) = U; Crew U Ci = Crew U; Ci = Chew U Ceom = Crew — Ceom-

When a cell Cpeyy is added, the intervals on its four sides (and any intervals in C that
will correspond to them) are the only intervals that need be considered to show correct-
ness. Correctness implies that the full length of the boundary between any two complete
cells is represented by an interval in each cell, while all wall intervals in the incoming cell
are assumed to be correct and can remain unchanged (since all walls are identical). For
incomplete cells, intervals on their floor and ceiling must also span no more than the known
extent of the edge. The correctness of interval assignments can be shown by proving that
the overseer’s policy of using the cells opposite the interval’s endpoints will always find all
the cells (and only the cells) opposite the interval. If this is the case, and the assignment

and/or alteration is performed using the correct geometry, the intervals will be correct.



3.3. CORRECTNESS PROOF 73

For most cases of free-space intervals in C),¢y, it can be shown that only one cell already
in C can be adjacent to the interval. This relies on the property that all GRD cells have two
opposite attached edges and can be proven by contradiction. To do this, first assume that
an interval i in Cye,, has two cells across from it, as shown in Fig. 3.14a. These cells (C, and
Cp) must have unattached left sides, since if a complete cell or wall was adjacent to them
on the left, C)ey could not be, and so C; and Cp must have attached floors and ceilings.
However, for vertically adjacent cells, this is impossible — both cells would have had to be
originally covered by robots with the same sweep direction, but neither cell could have been
constructed with that height without the other existing to provide exploration boundaries to
limit seed-sowing. This applies whether these cells are complete or incomplete, but rotating
this picture 90° to get that shown in Fig. 3.14b gives a legitimate occurrence, if and only if
C, and Cj are both incomplete cells. In this case, C, and C, must be Cy and C; (the first
two cells created), which have been reduced in height by the addition of the complete Cheq .
If either C, or Cp was complete, it would have to have an attached ceiling and therefore
have already limited C¢, in x, preventing this possibility, as would have to be the case if
a complete cell was present between them. Therefore, a horizontal interval ¢ can have two

different cells as neighbors if and only if they are both incomplete.

Similarly, a single cell adjacent to any interval must reach both ends of the interval. To
prove this by contradiction, imagine a case similar to that of Fig. 3.14a, but without Cj
present. This is also impossible, since C); must have something attached to its floor, which

would also be a neighbor of 7.

Finally, it must be shown that any incomplete cell that is altered by the overseer can be
reentered by the robot and coverage continued in it. This includes cells that are created by
splitting an incomplete cell, as shown in Fig. 3.7, as well as modification of existing cells. To
prove this, it is first shown that any cell C; (other than the robot’s current cell C,) created
by CCras to which the seed-sowing rule (Rule 5) applied before alteration will be enterable,
regardless of the type or number of alterations. Such a cell will always have at least one
neighbor — either the cell into which the robot traveled from C; or the cell that split C;
from a larger incomplete cell, in which case the overseer will create an interval between these
two cells. The robot will therefore be able to plan a path to C; and enter it if C; is not
the current cell. At this point, Rule 5 of the map interpreter will take over and direct the
robot to the end of the minimum extent of the near edge, from which point it will pick up
seed-sowing with either motion 0 or motion 8. This reentry is then still possible after any

alteration, as follows: C; may be intersected in either x or y by additional incoming cells.



74 CHAPTER 3. COOPERATIVE COVERAGE

If intersected in x, it will become narrower if intersected at its known edge or complete if
intersected at its unknown edge. If C} is intersected in y, it will simply become shorter.
(It is also possible for C; to be completely subsumed by an incoming cell, in which case
enterability is not an issue.) In each of these cases, the resultant cell retains its properties
of a known and explored side, an unknown side, and a non-zero minimum width, and so
Rule 5 will take over. The cell will also still have at least one neighbor after alteration (the

cell that caused it to be altered) and therefore will still be enterable.

To show that all incomplete cells will be enterable, recall that in the absence of cooper-
ation, at most two incomplete cells will exist, one of which will be Cy. If Cy is incomplete
and does not contain p, it will have been left by the discovery of an interesting point of Case
IV, at which point Cjy will have one known and explored edge, making Rule 5 appropriate.
Cy will therefore always be enterable. The first time an incomplete cell other than Cj is
created that does not contain p must be when a cell is split by the overseer, such as Cs in
Fig. 3.12b. At this point, there are some restrictions on the structure of the new cell that
can be observed, based on whether the robot is exploring the first edge of the cell, exploring
the final edge, or performing seed-sowing. First of all, if the robot is seed-sowing in the cell,
Rule 5 will apply both before and after the split, as described above, and so the successor
cells will remain enterable. If the robot is exploring the final edge of the cell that is split, the
robot will always be at one end of the explored portion of the edge (cf. node F of the FSM).
Of the two incomplete cells that are created, then, only the one containing p will have a
partially explored edge — the other will have an edge that is either completely explored
(in which case the cell itself will be complete) or completely unexplored. In the latter case,
the new cell will have one known and explored edge and one unknown (although perhaps
limited) edge. This again is the condition for which Rule 5 applies, so these cells will also

be enterable.

Finally, if the robot is exploring the initially discovered side of a cell (and is therefore
in node C of the FSM), it is possible that an incomplete cell will be created that has one
partially explored edge (and one unknown edge). In this case, the overseer will create an
interval between the incomplete cell and the cell responsible for the split. The robot can
then reenter the incomplete cell through this interval (or another interval if present), at
which point Rule 3 will direct it to the nearest unexplored point of the known edge and the
robot will resume edge exploration in node C. This also holds if the cell is intersected by
additional incoming cells. If intersected in z, since the cell will have zero minimum width, it

will be replaced by the incoming cell. If intersected in y, it will either be shortened and have



3.3. CORRECTNESS PROOF 75

Cell relation description p € Chew P & Crew
CrewNCe, =0 no overlap — no effect (see text)
Chrew NC,, =10, overlap maxsize only | case 1 in text Continue in C,.

Cnew N CCx 7é (b
Chew NCe, Cy C¢, | top/bottom replaced in node X Continue in small C,

middle replaced as above, but see case 2 in text
Chew NCe, Cyz Ce, | left/right replaced in node X Continue in small C,
Chew N Ce, = C,, | cell subsumed in node X case 3 in text

Table 3.1: Effects of the overseer on the robot’s current cell C..

the incoming cell as its new neighbor, or will obtain a known floor or ceiling, in which case

it will have a completely explored edge and be ready for Rule 5, and therefore enterable.

Proposition 3.2.2 The action of the overseer leaves the current cell C. such that the state

(Ce,p) is represented in the FSM of Proposition 3.1.

The proof of this proposition can be derived from analyzing all qualitatively different
intersections of the incoming cell Cl,eq, with the current cell C.. The state that CCras will
find itself in after cooperation depends on whether C), overlaps the minimum extent of
C. or only its maximum extent, and whether p lies in the area defined by Cj,¢, (which has
just become a complete cell). The possible intersections are shown in Table 3.1.

First of all, if there is no overlap between the current cell and Cj,¢,, there is still some
potential change to the state of CCrps. If (and only if) Cpey exactly abuts C., some of
the intervals along their common edge may be updated. If the common edge is already an
explored edge of C,, this will have no immediate effect, but if the robot is currently exploring
the edge that abuts Cey, the state may be changed. Since the overseer adds intervals to an
incomplete cell where the interval overlaps the known area of the cell (when the edges abut),
the interval currently being explored may be suddenly extended. However, since intervals
are not added to C. where they would form a second (disconnected) component along the
edge (instead a placeholder is added along the edge of C)ey), exploration of the edge will
continue as in CCpg.

If, on the other hand, there is intersection between C),, and the maximum extent of
C. (while not affecting the minimum extent), two different cases can result. The generic
possibility is that the intersection simply limits the extent of C, (as in the instance shown

in Fig. 2.9) and has no effect on the state of coverage. If the overlap is closer to the explored



76 CHAPTER 3. COOPERATIVE COVERAGE

NONASSNNNNNNNNNN N & ANAANNANNNNNNNNNY NN
Cc l Cc Cnew Cc l Cnew
\ m
A AN
,~ AN AR
(a) (b)

Figure 3.15: Special cases of alteration of the current cell.

area, however (within w of the current position), an interval is added between C. and Cj,eyp
for the height of their y overlap. The reason this is done is the case referred to in Table 3.1
as case 1 and shown in Fig. 3.15a. If Cj, is close enough to C, , it is possible that the
robot ends up in Cjey, and since C, is not completely covered yet, the robot must return
to C.. Adding the interval (from which the adjacency graph is derived and path planning
performed) allows this. It should be noted as well that if the robot is not in Cj,¢, when the
mutual interval is added, this will not adversely affect CCrps — when this edge is finally
reached, the last seed-sowing strip will take place, but the edge will already be explored.
Alternately, if a yet-undiscovered small cell lies between C. and C),.,,, the split that creates

this cell will bring along the interval appropriately.

The next possible instance listed in Table 3.1 is if Cy,¢,, partially intersects C, iny. If p
is within C,¢,, when this occurs, by definition CCgps will then be in node X of the FSM —
the only possibility when the current cell is complete. However, the remaining cell(s) will be
still be enterable, as shown above, so coverage will be able to continue (and will immediately
continue in one of them). A similar argument holds for intersections in z. One important
point to keep in mind for the y overlap case (the situation referred to as case 2 in Table
3.1) is that when two or more incomplete cells are present in C, Proposition 3.1.1 must be
invoked to ensure that coverage will always be able to continue. On the other hand, if p is
not contained in Ci,, coverage will continue as if cooperation had not occurred. This is
because making a cell shorter will not alter the progress of ongoing seed-sowing (since the
z locations of the minima of C. are not altered), and if the robot is exploring a side of C.,

the side will either be made completely explored or will remain explored as far as p.

Finally, when the current cell’s minimum extent lies wholly within Cj,eq,, C, is removed
from C. At this point, if p lies within C),.,,, coverage continues from node X as expected.
However, when performing coverage, p need not always lie within C,, (and therefore C,ey).
Fig. 3.15b shows a case in which a robot performing seed-sowing is suddenly left entirely

outside C. C'CRrys is actually now in a state not previously required — one in which it is



3.4. IMPLEMENTATION 77

outside of C but within w of a cell, from which it is directed in £z into this cell (Cey). This
trajectory is generated by a rule added to the map interpreter of CCrps (Rule 0 mentioned
in Appendix A.3.3), which is added only for this occasion. After this trajectory CCprps will

then be in node X and be able to continue coverage.

Proposition 3.3 DCg produces complete coverage of a finite rectilinear environment by

any number of robots in the absence of inter-robot collisions.

This statement is essentially a combination of the previous propositions. First, from
the point of view of any individual robot in the team, Proposition 3.1 ensures that it will
continue coverage until the area of C is covered and its boundary known and closed, while
Proposition 3.2 ensures that this progress is not interrupted by cooperation. In addition, the
process of cooperation simply adds area to Ccom in a non-destructive way. (If an instance of
cooperation does not add to Ccom, it must be the case that the incoming cell was a subset
of Ccom, and so the cooperation has no effect.) Therefore, not only will each robot continue
running DCp until it sees a complete environment, but since every meaningful cooperation
will increasing the number of complete cells (the same measure of progress used for the FSM

in Proposition 2.1), it will eventually achieve complete coverage.

3.4 Implementation

DC'g as described in this chapter has been implemented in a simulation that allows a variable
number of robots to cooperate to cover their shared environment. Additional features such
as inter-robot collisions have been added to make it somewhat realistic, as discussed below,
although this means that there is significant potential for unsuccessful trials.

The simulation of DCg runs in a single thread, with each robot moving a small step in
turn. The “physics” is handled by a world modeler based on that developed for C'Cr that
checks for collisions with walls but also for collisions between two robots. In addition, if one
or more beacons are in the defined field of view of the robot’s “beacon sensor,” the location
of the beacon nearest the robot’s center is returned to the feature handler, which will then
perform the functions described in Sec. 3.2.2.

Screen shots of the simulation are shown in Fig. 3.16. It is similar to the simulation of
CCR, but has a window for each robot’s cell decomposition in progress. In addition, in the
window displaying the shared workspace, each robot can be shown in a different color, or for

the two robot case, with different hatching styles, as shown in Fig. 3.16a. This latter feature



78 CHAPTER 3. COOPERATIVE COVERAGE

Robot 1°'s view

%

XXX
Totetares
ISR
%(

5K
5
KKK

12

<

2

2B
2
I

3%
SRR
s

35t
R

35

X
9506%0

(a) (b) (c)

Figure 3.16: A screenshot of the simulation of DCy: (a) a representation of the entire
environment, (b) the decomposition C of robot 0 (rotated 90° clockwise from the orientation
in part (a)), and (c) the decomposition of robot 1.

allows the user to clearly see the efficiency of the algorithm by comparing the cross-hatched
area (that covered by both robots) to the simply hatched areas (that covered by a single
robot).

The basic structure of the simulation is similar to the first implementation of CCpg, in
that the world modeler moves a robot only a step at a time, rather than simulating an
entire trajectory at once, and leaves the event handler to determine when the trajectory has
completed. Sliding motions are also not used in this world modeler. This implementation
allows simple interleaving of robot motions within a single thread of execution. In addition,
exploration boundaries are handled in parallel with real boundaries in the world modeler.

The simulation therefore runs as follows:

e For each robot R;, R;’s event handler asks the world modeler to move the robot a

small step. The action of the world modeler is:

Calculate the next position for the robot p,, = p+ dd, where dd is in the direction

tg with length from a normal distribution about a nominal step size.
— If p, is in collision with a wall or exploration boundary, return “wall collision”
— If p,, collision with another robot R,, return “collision with robot 0.”
— Set p = py,. If a beacon is detected, return “beacon at (bs, b,)”, otherwise, return

null.

e The event handler then:



3.4. IMPLEMENTATION 79

— For null event (by far the most frequent occurrence), check to see if the maximum
distance t; has been traveled for the current trajectory. If so, this represents a
non-collision event, so update C appropriately and call the map interpreter to

generate a new trajectory.

— For “wall collision,” update C appropriately, then call the map interpreter to

generate a new trajectory.
— For “robot collision,” invoke collision avoidance routine as described below.

— For “beacon detected,” pass this datum on to the feature handler.

Note that in the world modeler, exploration boundaries are evaluated in parallel with the
physics model that determines collisions, with the result of the trajectory simply (real_collision
V exploration_boundary). The event handler of CCgjs therefore does not know which type
of collision has occurred, however, it does not need to know. On the other hand, inter-robot
collisions are returned explicitly as such with the identity of the other robot. This encap-
sulates the results of several messages passed between robots in a real system, one strategy
for which is outlined in Sec. 4.1.

It would also be feasible to implement exploration boundaries in the map interpreter,
by checking each trajectory ¢ against the list £ B before submitting it. In this case, if the
maximum distance of the trajectory would extend beyond an exploration boundary, the
distance would be decreased so that the robot could not travel beyond that boundary. A
flag would then be set for the event handler that if the maximum distance was achieved,
this would actually represent a collision. When implementing DCRr on a real robot system,
this would be the most reasonable option, since it allows for the trajectory to be executed
as a whole without requiring ongoing checks against the virtual exploration boundaries.

Collision handling has not been explicitly described to this point, and in fact the proof
as so far presented assumes that the robots will not collide. Clearly this is unreasonable
for most teams of mobile robots, and steps must be taken to correctly handle collisions.
The implemented DCr does include simulation of inter-robot collisions and some methods
to deal with them, the details and correctness of which are described in detail in Sec. 4.1.
However, in systems with more than a couple of robots, livelock and deadlock become serious
problems, and so the collisions can be turned off in the world modeler in order to increase
the success rate and more thoroughly investigate the pure algorithmic interactions among
a larger team.

Also, the simulation of DCY%, like that of CCf, incorporates (and usually correctly

handles) small amounts of non-cumulative position error. This manifests itself in all the



80 CHAPTER 3. COOPERATIVE COVERAGE

Figure 3.17: Problems caused by inaccurate colleague transforms: (a) A cell from a colleague
(Cy) may not reach the boundary, leaving a gap for the robot to enter; (b) Intersection of
an incoming cell Cy with an incomplete cell C'y may not eliminate the incomplete cell as it
should.

ways as noted in C'Cg, but in addition, adding a colleague’s cell can result in other types of
structural problems. For example, when a cell is added from a robot with a perpendicular
orientation, the added exploration boundaries and cell edges may not align with real-world
boundaries, as shown in Fig. 3.17a. If not corrected, this could cause the robot to slip
between the new cell and the obstacle, causing at least inefficiency and possibly error, if the
gap is very thin. Alternately, in the situation shown in Fig. 3.17b, an incomplete cell is not
subsumed, as it should be, but is instead made very thin. This could also potentially lead
to error if the robot (due to motion tolerances) cannot enter the thin leftover cell, either to

complete it or as a step along a path to another cell.

As an attempt to handle this type of position error, as well as to ease the updating of
intervals during coverage, the current implementation of DCFg uses explicit corner objects
which lie on the corners of SID cells — each interval points to two corners, and the cell
no longer has an explicit maximum but rather one derived from its intervals. The original
intent of using these corners was that when cells are intersected by the overseer, it should
be possible to explicitly match corners in the incoming cell to corners in C and prevent
problems such as the ones in Fig. 3.17. The overseer was not exactly implemented as
such, but the use of the corner objects did require more careful handling of cells and their
intersections, and was therefore somewhat beneficial. This stemmed from the fact that since
the edges of the cell’s maximum extent are defined by four corners, the corners must form a
rectangle. Therefore, when updating a cell, especially when discovering an interesting point
or intersecting cells, their relative relationships must be preserved. A function was written

that aligns the two corners of a cell’s edge along the appropriate axis (z or y). However,



3.4. IMPLEMENTATION 81

N

Figure 3.18: An additional environment used for efficiency testing. The black square repre-
sents the size of the robots.

Single robot Two robots Three
|| orient. | L orient. | robots
Number of trials 35 20 15 10
Average cf 2.273 1.560 1.440 1.161
Avg. maximum cf N/A 1.708 1.521 1.250
Avg. cf difference N/A 0.3398 0.1959 —

Table 3.2: Performance of DCR in the environment of Fig. 3.18.

since these corners may also belong to other cells, the function also “walks” along the SID
edge defined by these corners, updating all other cell edges to the new location of this edge.
This allows an incoming cell to be integrated with the existing cells, but may move cell

edges an arbitrary amount, and is therefore not proposed as a final solution to this problem.

3.4.1 Performance reports

DCg was first run on both one and two robot “teams” in the environments used to test
C'Cg shown in Fig. 2.18. Another environment shown in Fig. 3.18 was also used. A number
of trials were performed for each case, with random initial positions and orientations of the
robots as well as randomly located beacons. Again the coverage factor was used as the
metric, in this case used to determine the efficiency gained by the use of multiple robots.
Since in general the optimum coverage factor for sensor-based coverage is difficult if not
impossible to compute, we have chosen to compare the cooperative performance to the
single-robot case in the same environment.

Overall results for the series of experiments in the environment of Fig. 3.18 (an environ-

ment originally created to test the correct handling of narrow corridors in floors and ceilings



82

CHAPTER 3. COOPERATIVE COVERAGE

Single Two robots Three robots Five Ten

robot | || orient. | L orient. | w/ coll | w/o coll | robots | robots
Number of trials 50 15 15 10 10 10 10
Average cf 1.986 1.309 1.294 1.134 1.093 0.922 | 0.698
Avg. maximum cf — 1.408 1.365 1.268 1.205 1.096 | 0.790
Avg. cf difference — 0.2192 0.1417 — — — —

Table 3.3: Performance of DCp in the environment of Fig. 2.18a. Note that all runs with 2
robots include include inter-robot collisions while all runs with 5 and 10 robots do not.

of cells) are shown in Table 3.2. Not included in these results are several runs that failed
to complete successfully, mostly due to problems arising from collisions. Livelock in and
around the narrow corridor was one notable case, in which (for example) one robot would
repeatedly attempt to enter the corridor, preventing another robot from completing cover-
age of the corridor, then back out of the corridor only very briefly. Another type of problem
seen occasionally was repeated collision in a corner as two robots were each attempting to
complete a cell. However, these cases did not seem (to the human eye) to be noticeably
more or less efficient than the cases included in Table 3.2. The results are generally about as
expected — the average robot in a two-robot team travels only about 65% as far as it would
if working alone. On the other hand, if the total time required is of concern, the relevant
statistic is the largest coverage factor of any robot on the team. For the two robot case, this
was generally about 70-75% of the time taken by the single robot. In fact, in some cases,
one of the robots in the pair would take longer than the solo case, if it ended up covering
the entire environment while also taking time to avoid its colleague. (These cases generally
occur when the robots begin near each other and one robot ends up with little to do.) For
the three robot case, the increase in efficiency is even greater, with each robot spending just

over 50% of the time required by the solo robot.

These data also seem to indicate that (at least for this environment) there is some
distinction between the cases where the robots have parallel orientations (that is, where
their x axes are parallel) and the cases where they have perpendicular orientations. Namely,
the parallel case seems to take slightly longer on average but generally because one robot is
doing more than its fair share of the work (this is indicated by the larger difference between
the two robots’ coverage factors). This can most likely be explained by noting that in the
perpendicular case, more cells will be created, and the robots can therefore assist each other

more often and divide up the area of the environment more equitably.



3.4. IMPLEMENTATION 83

Single Two robots

robot | || orient. | L orient.
Number of trials 50 10 11
Average cf 3.557 1.936 1.981
Avg. maximum cf — 1.947 1.985
Avg. cf difference — 0.0218 0.0373

Table 3.4: Performance of DCp in the environment of Fig. 2.18b. R is the relative rotation
between the coordinate systems of the two robots.

Results for similar tests in the environment of Fig. 2.18a are shown in Table 3.3. In this
environment, the coverage factor for a single robot is less than in the previous environment,
but the increase in efficiency for the two robot case is about the same, namely about 30-35%.
Again there seemed to be better division of labor in the perpendicular orientation cases,
although the overall efficiency (in terms of either average or maximum coverage factor) was
about the same as for the parallel orientation cases. In this environment, tests were also
run with five and ten robots (without inter-robot collisions), as well as with three robots
both with and without collisions for comparison. Somewhat surprisingly, even with ten
robots the overall efficiency for each robot continued to increase — there were still enough
cells in the environment such that the division of labor could be done in a useful manner.
Certainly these cases benefited qualitatively from the absence of collisions between robots,
and quantitatively as well (so that in fact there may be diminishing returns with this many
robots). However, for the three robot case, it can be seen that the experiments run without
collisions were not much less efficient than those with collisions.

Finally, DCRr was tested in the challenging environment of Fig. 2.18b. The complex
nature of this environment actually proved a boon to DCpg. Since either ORD of this
environment (and therefore any GRD) will contain many small cells, the division of labor
could be done easily and very equitably. This can be seen quite clearly in the data in Table
3.4 — the difference between the two robots’ coverage factors was essentially zero most of
the time, meaning that neither robot was ever idle and waiting for the other to finish the
only incomplete area. The efficiency improvement was likewise greater than for the other
environments, with each robot in the team of two requiring only 55-60% as much time as the
solo robot. The division of labor was also equally useful regardless of the relative orientation

of the robots, again presumably due to the large number of cells available for coverage.



Chapter 4
Algorithm Extensions / Discussion

As detailed in the previous chapter, DCg will produce complete coverage under certain
assumptions about the robot system. However, some of these assumptions are unrealistic
when applied to a team of robots in the real world. In this chapter, some of those assump-
tions will be examined and lessened. One important assumption for the proof of DCp is the
absence of inter-robot collisions (although the simulation can generate such collisions), and
some techniques for collision avoidance will be presented here. In addition, an extension
of DCR to a class of rectangular robots will be presented, which is necessary for the mini-
factory. Also presented in this chapter is a discussion of the propagation of data between
robots and how it relates to the scalability of the algorithm.

The end of this chapter includes some discussion of potential extensions to this work.
One type of extension would be to larger classes of robot systems, such as traditional
circular mobile robots operating in polygonal (or more unstructured) environments. A
second extension would be to tethered robots such as the minifactory couriers. Another
class of future work discussed is extensions to the proof of the current implementations of
CCpgr and DCR, most notably in terms of small position uncertainty in the robots’ sensing,
as well as generalization to a wider category of cooperative robot algorithms. Finally,
the specific applicability of these algorithms to the minifactory self-calibration problem is

discussed.

4.1 Collision handling

When two robots collide while performing coverage, they must first realize that the collision

experienced is with another robot rather than a part of the environment. Having achieved

84



4.1. COLLISION HANDLING 85

this, the robots must then avoid each other so that each can continue coverage. Ideally, this
will be done in a way that does not interfere with the correct progress of coverage, although
it will be shown that this (at least at present) can only be guaranteed for certain situations.

In the current simulation of DCg, the world modeler solves the first of these problems
by simply reporting to each robot’s event handler that an inter-robot collision has occurred.
Clearly in a real-world system it will not be so simple, but a straightforward solution should
suffice, as follows: when a robot experiences an unexpected collision, it should send a
message across the network to that effect (the “ouch” message). Then, if a second robot also
experiences an unexpected collision at about the same time (some experimentation would
need to be performed to determine the appropriate time window for any given system), the
two could reasonably expect that their collision was mutual. This does require that the two
robots will detect collisions at nearly the same time — if this is not the case for a particular
system, the time window for the “ouch” messages may have to be large enough that some
collisions are presumed to be between two robots when they are simply two robots each
colliding with a wall. In this case, additional motions would be required of one robot to
ensure that the collision was indeed mutual.

If a pair of robots collide before they have become colleagues, the collision offers an
ideal opportunity to determine their relative transform. However, since the robots under
consideration have only contact sensing with which to detect each other, additional motion
beyond the first collision is necessary. Once they have become colleagues, they then each
have knowledge of the other’s location (and perhaps desired direction of travel) and must
maneuver around each other. A strategy for each of these processes is described in more

detail here.

4.1.1 Colleague relationship generation

The ability of a pair of robots to determine the relative transform between their coordinate
systems and thereby become colleagues is limited by the ability of their underlying collision
detection system. For instance, it is assumed here that both robots can sense a collision,
even when one is hit broadside (and therefore may not be impeded along its intended
trajectory). However, it may be the case that the robots can report only that they are not
where they are supposed to be — not from which direction they were hit. Under DCR’s
world modeler, since only one robot moves at a time, one of the colliding pair will know
that its progress along the trajectory has been impeded, and it is assumed that the other

robot simply recognizes a bump, but not from a specific direction. If both robots are moving



86 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

t, ‘J{A} LO

{0}

—_

(a) (b)

Figure 4.1: Utilizing collisions to generate a colleague relationship.

independently (as in a real system) and experience a head-on collision, one is chosen to act
as the “impeded robot” — perhaps the one that sent out the first “ouch” message, although

any unique selection criterion could be used.

Under these circumstances, the robot that has been impeded (Ry for the sake of ar-
gument) knows one coordinate of where the other robot (R;) is, namely, one robot width
ahead of itself, as shown in Fig. 4.1a. However, in order to compute their relative transform,
it must first discover the relative rotation ({©) between their coordinate systems. (If R;
knows from which direction it has been hit, such as may be possible in the minifactory
system, this next step is unnecessary.) R; first takes a small step in the direction it had
been traveling (tp,) — if this results in collision with Ry, the original collision was head-on.
Otherwise, it steps back, then in each of the other three directions, one at a time, until
a collision with Ry is detected. When this occurs, the last direction traveled by R; (cy,)
will be the opposite of cp,, the direction traveled by Ry at the time of the initial contact
as shown in Fig. 4.1a. The relative rotation between the two robots’ coordinate systems is

therefore calculated as follows:

0000 = 0091 + 7
Ocg = 9O +1cy, +

0 0 1

1© = “cg,— cp, + (4.1)

To calculate the translational part of the relative transform, Ry has knowledge of its
own position %py and R;’s position (in R;’s coordinates) 'p;. In addition, from the initial

collision, it knows a single coordinate of R;’s position in its own coordinates:



4.1. COLLISION HANDLING 87

Ocp, | knowledge

0 p1, =0 po, +w
/2 | °p1, =% po, + w
T Oplw =0 Po, —w

3m/2 Oply =0 Po, — W

However, since the robots have no extrinsic contact sensing, the relative lateral position
of R; remains unknown. R; therefore remains at its current position (as the impeding robot,
it knows that this is the required action, so no messages need to be passed) while Ry moves
in a path as shown in Fig. 4.1b. It first moves a distance w in a direction p perpendicular to
its previous travel direction. There are two choices for p, so whichever direction permits a
move of length w given known environmental constraints is chosen. Ry then moves a short
distance in its initial colliding direction cp, and back in —p until collision. At this point,
knowledge similar to that given in the previous table is obtained, except that the other
coordinate of %p; is known to be w ahead of Ry’s current position. Ry then knows all of
p1, and along with the rotation determined above, the translation between the two robots’

origins can be derived as follows:

Opr = T'p;
Opo, _ op Op1, 0X,
0 -1 0 T
Po, | D1, RO
0X, B Opo, 0p Op1,
= -1
Vi | %po, I Op1, |

where (OX 1,0 Y1) is the location of Ry’s origin in Ry’s coordinates and ?R is a rotation matrix
corresponding to the relative rotation 9O calculated above. The translation and rotation
can then be used to generate a transformation matrix Y7. Ry then gives this transform to
Rq, which calculates (IJT and adds Ry as a colleague.

There is one important caveat with this technique — namely, that it requires a certain
amount of free space around the robots at the time of initial collision. Because of this,
this technique has not been integrated into the implementation of DCFg (instead, the robots
are simply told the correct relative transform by the world modeler). In cases where the
robots collide for the first time in a narrow corridor, a different technique would be required,
perhaps having each robot simply remember the information that is available (that presented
in the small table above) and move toward an area with enough open space to complete the

colleague generation process.



88 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

v —>

| | |

(a) (b) (c)

Figure 4.2: Some of the possible geometries of colliding robots.

4.1.2 Collision avoidance!'

If two robots are already colleagues (or have just become colleagues), they must then ma-
neuver around each other. In order to retain the reactive nature of DCp, this will not
involve multiple-step plans, although this choice limits the types of collisions that can be
easily avoided. Instead, the collision avoidance routine will look for a single motion that
will best allow the robots to avoid each other and continue coverage correctly. To make this
happen under DCRp, the first step is that a prioritization is imposed upon the robots. This
is done arbitrarily by choosing the robot with the smaller value of a unique identifier (e.g.
Ethernet addresses) as the more “important,” at least initially. It is then the job of the lower
priority robot to step out of the way of the higher priority robot, using information such as
the higher priority robot’s position and desired travel direction. However, this prioritization
is not a strict one, as explained below, and the robots may switch roles in order to most

easily avoid each other.

It should be noted that the discussion and methods presented here apply only to two
simultaneously colliding robots, not three or more, where simultaneous means that the third

collides before the first two are done waiting and have moved on.

When two robots take steps to avoid each other during the operation of DCpg, they
should attempt to move such that the intended progress of coverage is not disturbed. One
way to ensure this is by moving such that no additional knowledge of the environment is
obtained. The correctness of this technique is not necessarily obvious, but is made possi-
ble by the reactive nature of CCrpys and carefully written rules (namely, ones that make
few assumptions about the robot’s current position when they fire, which in turn expands
the equivalence classes for that rule, allowing recovery from wherever the robot may have

stepped aside to).

! This is somewhat of a misnomer, as the task is mutual avoidance after an initial collision.



4.1. COLLISION HANDLING 89

waits

opposite

E move made

iS R17 beside [\ pls wait W
sorry,
my tyis ..\ (roles swap)

Where |ahead waits

try to move

Figure 4.3: A schematic description of the “script” followed by a pair of robots after colliding,
in which the decisions made by R,, are shown in rectangles and those made by R; in ellipses.
Lines between these figures represent messages passed by the robots.

Therefore, when a collision between robots is detected, the preferred action is for the
robots to avoid each other without leaving the confines of previously explored space, which
has been previously denoted as C.,j,. It should be noted that two colliding robots may
not have the same Cyin, even if they are already colleagues and have shared all complete
cells, since a cell currently being covered by one robot may not be present in its colleague’s
decomposition. Therefore, a strict prioritization of the robots’ importance is unwise, since
one robot may be able to successfully step aside when the other cannot. Instead, the robots
alternate importance in order to determine what course of action will be most efficient while
allowing both robot to avoid leaving C,;, if at all possible.

In the current implementation of DCFg, when two robots collide, they are both aware
of the identity of the other, although as mentioned above, this is not necessary, but merely
a convenience. After the collision, therefore, each robot knows its importance relative to
the other, and so the less important robot (R;) can give its current position to the more
important (R,,;). R, then calculates where Ry lies relative to its current travel direction —
ahead and to the left (as in Fig. 4.2a), ahead and to the right (as in Fig. 4.2b), on the left
side, or on the right (as in Fig. 4.2¢). Note that R;’s travel direction is not considered in
making this determination. R, then begins the process of discovering a safe way for the
robots to avoid each other, as shown schematically in Fig. 4.3.

R, first makes a request of R; — either to move to the side a specific distance (sufficient
for R; to be out of the way of R,,) if R; is it its way, or otherwise simply for R; to wait for
it to pass by. In the latter case, the request will always be granted, but in the former, R;
checks to see if such a move will cause it to leave its Cpj,. If not, the move is executed,
and an affirmative response is given to R,,, who waits for that move to be executed before

continuing. (In DCp as implemented, all robots move at the same speed at all times, so



90 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

N

Figure 4.4: A difficult, but possible, collision avoidance.

R, can simply wait a calculable period of time rather than requiring a message from R;.)
If this safe move is not available to Ry, it will immediately look to step out of the way of
R, in the opposite direction. If such a move would also take it out of C,in, it replies to

R,, that no good move is available, and also tells R, its current direction of travel.

If R; cannot move out of R,,’s way and responds with such a message, the roles of the
two robots are essentially reversed, with R,, now trying to step aside from R; in either
direction. If this is possible, R,, makes such a move while telling R; to wait for it. If such a
move is not possible, the state indicated by the question mark in Fig. 4.3 has been reached,
and there is no single move that is guaranteed to be successful. Therefore, in general more
complicated assessments must be made of the situation to come up with the correct action.
For example, in the situation shown in Fig. 4.4, Ry (the “more important” robot) must
move backward a long distance before moving aside into another cell so that the other robot
can pass by. In other cases, such as the one shown in Fig. 4.8 in which the robots collide
soon after they start covering, there is no possible series of motions that the robots can
take to avoid each other without at least one leaving its C,in. In these cases, the correct
thing to do is not readily obvious. The current implementation of DCFg takes the following
approach: R; will move aside as requested initially regardless of the nature of Cp,i,, unless
a known or newly discovered wall or walls will prevent this motion. If it cannot move, R,,
will then attempt to move aside without regard for Cp,in. Finally, if none of these moves
are available (such as would be the case in the situation in Fig. 4.4), R; will move in the
direction that R,, wishes to move (i.e. away from R,, rather than aside). It is possible
that none of these motions (or concatenations of the motions) will successfully allow the
robots to continue coverage. In these cases, the robots will be deadlocked until a third robot

happens to pass along data that alters one or both robot’s strategy.



4.2. DATA PROPAGATION 91

4.2 Data propagation

It is important under DCR to transfer all data to all colleagues in order to maximize effi-
ciency and maintain consistency of each robot’s cell decomposition. However, these transfers
must be done in a way that does not produce redundant messages. For example, assume
two robots R; and Ry are colleagues, as are Ry and R3. When R3 has a new datum to
give out, such as a complete cell or beacon location, it will give it to R;. It then might be
reasonable to expect R; to pass this datum along to Ry and the remainder of its colleagues.
However, Ry has no way of knowing whether Ry and R3 are themselves already colleagues,
in which case its message would be redundant. Therefore, the policy has been implemented
that each robot will only give out data that it has discovered (or generated) itself. This in
turn mandates that when a pair of robots become colleagues, they not only share their data,
but their colleague lists as well. This will allow each pair of robots to become colleagues
as soon as possible (so that in the example here Ry and R3 would be certain to already be
colleagues), at which point each may give the other all of its own data.

In general, however, for n robots, this means that n? —n colleague relationships will have
to be generated, which is clearly at odds with the notion of scalability. However, for many
systems with large numbers of robots, such as the minifactory, the workspace of each robot
will not extend over the full workspace of the team. In these instances, as long as each robot
knows at least a bound on the extent of its workspace, colleague relationships need only be
generated between robots with potentially overlapping workspaces. This does not violate
the need of each robot to obtain all data relevant to it (and enough for its decomposition to
remain consistent), since all data obtained by robots whose workspaces do not overlap its
own would necessarily be outside its own workspace.

An alternative solution, which may be sensible for system with a large number of robots
in a single common workspace, is to set up the colleague relationships in a well-defined (but
not complete) way. For example, a spanning tree could be incrementally constructed over
the robots, with each edge in the tree corresponding to a colleague relationship. This tree
would grow as coverage progresses and more robots become colleagues with each other, and
methods exist to create such trees in a distributed fashion [55]. Then, instead of having each
robot only transfer data that it has generated itself, the following policy would be instituted:
when one robot generates a new datum, it sends it off to its (very few) colleagues. Each
other robot then takes that datum, adds it to its own information and passes it along to each
of its colleagues other than the one from which it received the datum. Since the colleague

relationships form a spanning tree (which by definition does not contain any loops), this



92 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

will result in a finite number (and in fact the optimal number) of transfers of the data.

4.3 Non-identical and rectangular robots

In chapter 2, CCgr was defined in the configuration space of the robot performing coverage.
Then in chapter 3, DCRr was defined in terms of C'Cg, and assumed that the maps of the
overall environment generated by each robot would end up the same geometrically. Taking
these two facts together implies that the configuration space of the robots in the team must
be identical, or equivalently (for this system) that the robots be square and the same size.
While this may in fact be the case for some systems, it turns out to be a more restrictive
(although perhaps easier to understand) assumption than necessary.

CCy is perfectly capable of operating on a rectangular robot, and in fact the current
implementation allows for this circumstance. Since the algorithm operates in configuration
space, and is generally concerned only with the robot’s width, no alterations needed to be
made to accommodate a rectangular robot rather than a square one. However, under DCg,
the correct sharing of cells between robots relies on the underlying SID being identical for
both robots. If the robots are of different sizes, this will not be the case, and in fact, as
shown in parts (b) and (c) of Fig. 4.5, the SID may undergo structural changes. However,
for certain environments and heterogeneous robot teams, we can show that the SIDs of
the configuration space of each robot will still be structurally identical, such as those in
Fig. 4.5(a,b). It will be shown that cells from such decompositions can be easily shared
under DCpg, and these decompositions be will termed compatible as defined below. All
the configuration spaces in Fig. 4.5 are for square robots, and so the robots’ orientations
are irrelevant, but configuration spaces for two rectangular robots (even identical ones) in
different orientations can exhibit the same effect. The derivation of conditions for robots
to have compatible SIDs will first be shown for square robots of different sizes before being
extended to rectangular robots.

For a given rectilinear environment F, two square robots R; and Ry will have configu-
ration spaces £' and E?, which can be generated by shrinking E from its boundary by an
amount ' and % respectively. E' and E? can themselves each be treated as rectilinear
environments, and SIDs S' and $? can be constructed from each of these. S' and S? are
then considered to be compatible if for each cell in S' there exists a cell in S? generated
from the same workspace boundary segments on the same sides of the cell. This is in turn

true if (but not only if) the boundary segments in S* and S2 obey the same left-to-right and



4.3. NON-IDENTICAL AND RECTANGULAR ROBOTS 93

(2) (b) (c)

Figure 4.5: Configuration spaces (solid lines) and their SIDs (dashed lines) for different
sized square robots in the same environment.

top-to-bottom ordering. This argument also extends to any number of robots — as long as
all pairs of SIDs are compatible, cells can be shared among the team.

A vertical boundary segment b; at x = x; in E with free space on its right will be at
bl1 =20+ w;/2 in E' and b12 = z0+wy/2 in E?. (Assume for this discussion that w; < ws.)
Similarly, a facing boundary segment b, (one with free space on its left) at z = z, will be
at bl = 2, — w1 /2 in E* and b? = 1, — w9/2 in E?. For E' and E? to be compatible, we
enforce the ordering of b; and b, and say that it is therefore sufficient that b} < b} if and
only if b7 < b? for any such pair of facing boundaries in E:

by <b: & b <b?

+ U T w2
o+ = <xTr— — T+ =<z ——
™9 D) ™9 D)

W < Tp —x] & Wy < Tp— I
This is in turn true if and only if the statement:
w) < Tp — 2 < W2

is false. Since the robots are square, this argument (and restriction) applies to horizontal
boundary segments as well. Therefore, for two robots to have compatible configuration
space decompositions in a given environment F, no two facing boundary edges in E (the
original environment) can be separated by more than w; but less than w,.

For rectangular robots, the same arguments apply, except that instead of a width for each
robot, both a width w; and height h; must be considered. The configuration space of each
robot is created by shrinking the free space by a different amount in each direction, but since
the robot may be in either orientation, the distance that a given boundary segment is moved

is different for each orientation. For a given boundary segment, then, this is equivalent to



94 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

N AN
N )
L S
+— T |
S «— —»
- —>
< T N $oren
N < T
| |
v v
N\ N

Figure 4.6: Construction of workspace cells for sharing between robots of different sizes.

a system with two square robots with sides of length h; and w; respectively. The criterion
for compatible configuration spaces is then that no two facing boundary edges can be closer
than max(max(h;,w;)) but farther apart than min(min(h;,w;)). Height and width are
interchaz,ngeable in this context since the orientationl of the robot relative to the environment
cannot (usually) be determined a priori. However, the height and width must obviously be
taken into account individually when generating real-world cells from configuration space

cells.

It is then straightforward to transform cells that come from one configuration space to
a compatible configuration space. This can be done by having the sending robot implicitly
generate the workspace cell that is responsible for the configuration space cell. This prevents
each robot from having to know any other robot’s dimensions. In order to do this, each
edge of the cell is assigned a direction to move so that it will align with the real world
boundary that generated it, as shown in Fig. 4.6. Each edge should move outward (away
from the center of the cell), except for edges that are entirely adjacent to free space. For
those edges, the correct direction is inward, except that if a cell already has a neighbor
along that edge, the edge should be assigned the opposite direction of its neighbor’s edge.
In an ORD, the correct direction is always inward, but as shown for the bottom right cell of
Fig. 4.6b, in an SID this may not always be the case. Since cells are created one at a time,
there is never a question about which direction is correct for any given edge (cells given by
a colleague will have the directions already assigned and will be correct for any robot, since

the decompositions are compatible).

Once each edge has been assigned a direction, the real world cell’s extent can be easily

calculated by the sending robot by moving each edge by h/2 for top and bottom edges



4.4. FUTURE EXTENSIONS 95

and w/2 for side edges. The intervals must also be altered to appear like their workspace
equivalents, which can be done by moving their endpoints in the direction of movement of
the SID edge propagating away from that endpoint. This simplifies to moving all endpoints
between a wall interval and a non-wall interval toward the wall interval and all points at cell
corners to the appropriate configuration space cell corner (thereby requiring only occasional
inspections of any other cell). The receiving robot can then turn this real-world cell back
into one that matches its configuration space based on its own height and width.

One remaining issue is configuration space cells that are smaller than the width of the
robot in which both sides need to move inward. This type of cell (such as the middle SID
cell in Fig. 4.5¢) does not correspond to a workspace cell with the same neighbors (or in
other words, the configuration space is not compatible with the underlying environment).
However, the system criterion defined above will ensure the cell will have a corresponding cell
with the same intervals in the configuration space of any robot which receives it. Therefore,
the cell extent is computed as if there was no problem, and transferred with (for example)
its left side farther to the right than its right side. When the receiving robot transforms
the cell back in to its configuration space, the correct cell boundaries and intervals will be
restored.

Finally, it must be noted that DCr assumes that there are no parts of the environment
that can be sensed (i.e. entered?) by one robot but not another. Any system (robots and
environment) that adheres to the restrictions presented in this section will not invalidate
that assumption, as any such corridor would by definition have facing edges closer than the

width of the largest robot but larger than that of the smallest.

4.4 Future extensions

While DC'g is a self-contained algorithm, as a first step into the area of cooperative coverage,
it could provide the starting point for a great deal of continued work. Clearly extending it
to a wider range of environments would be of benefit, as most mobile robot systems operate
in relatively unstructured environments. On the other hand, the minifactory system would
most benefit from extensions that deal with tethered robots. In addition to these extensions,
incorporating currently implemented enhancements such as collision handling and position

uncertainty into the correctness proof would be powerful in terms of providing a proven

2“Sensible” and “enterable” are equivalent except for robots with range-limited workspaces, for which in
this case “sensible” is the correct term.



96 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

algorithm suitable for a real-world robot system. Finally, while this system was developed
with an eye toward solving the minifactory self-calibration problem, and does go a long way
toward a solution, there are several remaining practical issues. Some thoughts as to the

directions of each of these pieces of future work are given in some detail here.

4.4.1 Environmental extensions

One extension to DCg that would be very useful for a variety of mobile robot systems
would be extension to environments with arbitrary polygonal or C? boundaries. For a single
covering robot, sensor-based coverage for these types of environments has been implemented
in various ways [4, 16, 17], and extension of any of these algorithms to keep complete maps
and to allow robots with only intrinsic contact sensing could be relatively straightforward.
Alternately, extending C'CRras to these classes of environments would require new underlying
cell representations and a map interpreter that could output any direction (as well as a wall-
following controller for the robot) but the overall reactive structure could remain the same
as well as the intent (and many of the details) of the rules of the map interpreter. The
robot could still use seed-sowing paths to cover each cell and detect various types of critical
points to determine cell boundaries.

Once an appropriate single-robot algorithm is in place, it becomes theoretically feasible
to implement the type of distributed sensor-based coverage presented here to the larger
class of environments. To do this, regardless of the single-robot algorithm used, it would be
important to keep a detailed map of the environment in order to allow map sharing. Maps
are not necessitated by all previous coverage algorithms, but in general it would not be
difficult to add map building. More importantly, to implement cooperative coverage with
a strategy similar to that of DCp, the underlying coverage algorithm would need to be
history-independent, like CCRryps. This might make extending C'Crjs preferable to adapting
a previous algorithm for the basis for cooperative coverage.

It is certainly the case that the success of DCr depends heavily on the restricted nature
of the system under consideration. Specifically, both the behavior of the overseer and the
proof of correctness rely heavily (although not explicitly, in the overseer’s case) on the
existence of an underlying SID of the decomposition, which in turn relies on the fact that
the robots’ orientations can only take on one of four distinct values. The fact that the
environmental boundaries align with these orientations makes the decomposition and the
algorithm simpler, although perhaps not fundamentally so. (Certainly the converse is the

case — if the robots’ orientations are arbitrary, there is no SID per se, and so coming up



4.4. FUTURE EXTENSIONS 97

(a) (b)

Figure 4.7: Two system-specific sweep-invariant decompositions for a specific system of
three robots, based on (a) the trapezoidal decomposition and (b) the boustrophedon de-
composition.

with a decomposition and algorithm would be difficult regardless of the simplicity of the
environment.)

One possible solution is to keep DCpr much the same, and perform cell intersections
in the overseer in much the same way — intersect complete areas, retaining new incoming
areas and shrinking incomplete cells to abut the incoming area, requiring the addition of
a polygon intersection routine. In this case, rather than creating a decomposition based
on supersets of SID cells, the overseer would create one based on supersets of cells of a
decomposition that could be called the SSID (system-specific SID). An SSID can be created
by overlaying the oriented decompositions of all the robots in a given system, and clearly
depends on the specific orientations of the robots in the team as well as the environment
itself. In polygonal environments, there are two simple ways to decompose the environment
for sensor-based coverage — the boustrophedon decomposition of the type shown in Fig.
2.2b and the trapezoidal decomposition, which is similar but instead divides cells at each
boundary and obstacle vertex. SSIDs based on these decompositions are shown in Fig.
4.7, with each decomposition for three robots with x axes 0°,+40°, and —80° from the
picture’s horizontal. The boustrophedon decomposition also works in the same manner for
arbitrary curved environments, unlike the trapezoidal decomposition, and would therefore
be necessary for some systems.

One important issue is then what sort of decomposition to use for this extended al-
gorithm. In the trapezoidal SSID, each cell is a convex polygon of up to 2n sides for n
robots. Therefore, cells in a generalized decomposition would not necessarily themselves be
trapezoids (at least for n > 3), and a more complex type of cell would be required. This

would require additional tests in the event handler since obstacle vertices always indicate



98 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

cell boundaries but intersections of exploration boundaries (which may look like obstacle
vertices depending on how the exploration boundaries are handled) should not. On the other
hand, using an SSID based on the boustrophedon decomposition means that the cells would
not be convex, requiring a more complex intersection routine in the overseer and a more
complex cell representation. In addition, in this case, a cell given by a colleague may cross
over a critical point and therefore take a shape that would not otherwise be seen, requiring
(at a minimum) more complex path planning to get through it. Also, in either case, while
the SID of a rectilinear environment is unique for a given environment, the SSID is not.
Since the proof of DCR uses the existence of a unique SID, it would not carry over directly
to this generic case, although this does not appear to be a fundamental problem. From a
more practical sense, the proliferation of cells in the SSID (especially for the trapezoidal
decomposition) with an increasing number of robots presents a potential problem with cells
becoming smaller and less efficient to cover. In addition, exploration boundaries would need
to be explicitly handled in the map interpreter so they could be followed.

Extending this algorithm from the polygonal to the C? case would require some addi-
tional ingenuity in terms of data representation, transformation and cell intersection by the
overseer. Also, a wall following controller would certainly be a necessity, since the floor or
ceiling of a cell could take an arbitrarily complex shape without necessarily indicating a
coverage event (and necessary replanning).

Another issue with use on more traditional mobile robot systems is the nonholonomy
inherent in many mobile bases, which may make the seed-sowing path inefficient as well as
difficult if not nearly impossible to follow. While work has been done on covering known
environments with nonholonomic robots [56] by heuristically concatenating achievable path
segments, it is not entirely clear how this could be extended to the sensor-based case. One
concept worth consideration is to use a different atomic path component (e.g. a spiral rather
than seed-sowing) and then to use a different decomposition which is compatible with this
type of path in the same way that the rectilinear or boustrophedon decompositions are
compatible with seed-sowing paths. Choset et al. [57] suggest how this could be done with

the use of various nonlinear sweep functions through an environment.

4.4.2 Tethered robots

Clearly one of the limitations of DCr when compared to the minifactory system is that
tethers are not dealt with, even implicitly. Even for a single robot, tethers can be problematic

in terms of workspace limitation and binding against obstacles, although when testing CCr



4.4. FUTURE EXTENSIONS 99

on the courier the obstacles used were very low and could be easily cleared by the robot’s
tether. With multiple robots, not only is tangling of two robots’ tethers an issue, but even
collision of one robot with another’s tether could easily lead to confusion, or even a robot

being pulled away from its desired position.

Previous work on tethered robots has focused on a centralized plan for a team of robots
that allows them each to get to a certain goal without undue tangling. Algorithms have
been written by Hert and Lumelsky both for robots in the plane [58] and in IR3 [59] which
take a start and goal configuration for the robots and produce an ordering of the robots.
In the planar case, the tethers are tangled, but in a prespecified way, and the problem is
to find an ordering for the robots’ motions such that the goal is reached with the specified
tether locations. In the spatial case (applicable to multiple underwater vehicles), the tethers
remain untangled, and the problem is to find an order in which to move the robots such
that tangling does not occur. A different approach to motion planning for tethered robots
in the plane was presented by Sinden [60], in which tethers are not allowed to cross and each
robot reaches one or more goal locations sequentially. The focus of this work was to describe
the problem in the language of graph theory and thereby come up with arrangements of
robot bases and task locations that are amenable to a team of tethered robots. These
algorithms are useful for certain problems (potentially including an operating minifactory),
but somewhat unsatisfactory for the coverage task, as the hope here is to eliminate the need
for group planning (at least beyond a single motion) as well as a central controller. However,
handling the interactions of tethered robots in the context of a more general motion plan is

a daunting task.

To solve the problem of recognizing robot-tether collisions during the minifactory cover-
age task, one potential solution would be to put slight tension on the tethers and instrument
them to measure their length between the courier’s forcer and a home position. Then, if
the length became significantly larger than would be expected for the forcer’s position, a
collision would be supposed. Synchronized motions of other robots would then be used to
determine which robot was in contact with the tether, without requiring any courier to have

an accurate disturbance force measurement.

Once a pair of robots are colleagues, it is then presumably possible to have them negotiate
their motions to avoid tether tangling while continuing the process of coverage. One way
this could be done is by dividing up the shared workspace into smaller areas, ideally with
one successor area on the same “side” of the environment as the fixed point of each robot’s

tether. Each robot would then be able to cover a portion of the environment without having



100 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

to worry about its colleague’s tether. This is somewhat similar to the “reservation area”
concept used to generate collision-free courier motion in an operating minifactory, in which
the platen area is divided into geometric parcels that can be claimed and released by each
courier in an asynchronous manner as it moves to a goal location [61]. However, decomposing
the environment along lines that are not due to the environment is fundamentally opposed
to the proof presented earlier, and would have to be done in a restricted fashion to avoid
invalidating the proof.

From the software point of view, DCr can actually gain efficiency from the knowledge
that tethered robots generally have workspaces limited by their tethers, and that a team
of tethered robots may in fact have only partially overlapping workspaces. First of all, as
long as each robot has some idea of its workspace (even if it is a large upper bound), the
colleague referral process can take that into account: if one robot has colleagues on either
side of it that can never share area, it can avoid referring them to each other. Also, when
robots share information about covered area, they can do so only when it is meaningful
to their colleague. That is, if one robot’s cell has a null intersection with its colleague’s
workspace, it need not be passed on. In addition, when a robot’s overseer gets a new cell
that only partially lies within its robot’s workspace, the intervals of that new cell that point
to unreachable free space can be designated as such. These intervals would then be treated
as walls by CCgras to avoid planning paths to attempt to reach these areas. Such a policy
would not interfere with the correctness of DCp: since each point in the environment would
still be reachable by (and therefore in the decomposition of) at least one robot, the complete
coverage of the entire workspace would still be assured.

An alternate solution to the entire tethered robot problem, at least for the minifactory,
is to remove the tethers from the robots. Research is currently ongoing in the Micrody-
namic Systems Laboratory (primarily by Ralph Hollis) on development of tetherless couri-
ers. These robots will use closed-loop control to allow them to consume significantly less
power than under their traditional open-loop operation (and therefore be feasible to oper-
ate from battery power), and may operate on customized platens with integrated passive
microvalves for feasible in-platen air bearings to eliminate the need for high pressure air to

be provided to the forcer.

4.4.3 Proof extensions

Some of the additions to DCr described above work correctly in many situations, but are

not proven to work in all cases. Specifically, collision handling in constricted environments



4.4. FUTURE EXTENSIONS 101

() (b) (c)

Figure 4.8: An example of two robots colliding at the outset of coverage, in which robot 1
has to learn something about the environment before the robots can avoid each other.

and handling of small position uncertainties are areas that have been addressed in simulation
but could be of greater benefit if proven to be correct in the context of DCg. In addition,
generalizing the proof structure to a larger class of cooperative algorithms could allow for
proofs of these algorithms as well as give direction for algorithm development for other
cooperative robotic tasks.

When two robots collide with each other, it is often possible for them to avoid each
other while not leaving previously explored area and therefore make progress in a provably
correct fashion, as described above. However, in many circumstances, this is simply not
possible. For example, consider the case shown in Fig. 4.8, in which two robots that have
just begun coverage collide. Since neither has completed their first trajectory, neither can
knowledgeably step aside. When R; moves to the side in Fig. 4.8b, it runs into a wall which
will now describe one point on the right of Cy. R; cannot completely ignore this information,
since it needs to recognize that it must now move to the left to avoid Ry3. However, when
this information is added to C, there may be a detrimental effect on coverage, since the
discovery of a side edge before the floor or ceiling of a cell are known does not correspond
to a transition previously defined in the FSM of CCgrys. In this particular case, assuming
no further inter-robot collisions, R; will successfully explore this new edge of Cy and start
seed-sowing to the left, but there are more complicated cases that have yet to be proven,
and in fact even the enumeration of such cases is an interesting challenge. For instance, if
the motion in Fig. 4.8c also ended in collision, both robots would have to move to opposite
sides of the corridor in order to pass by, at which point R; would have a cell with two known

and unexplored sides but unknown floors and ceilings — definitely a case not considered in

3Tt may be possible to remember this information only as long as necessary to avoid the other robot, but
then the “all clear” event signaling the end of the avoidance process must be explicitly detected.



102 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

the proof of CCg.

The provably correct handling of position uncertainty would also be a great boon for
the implementation of both CCr and DCg. In order to do this, first for CCr (and CCryy),
the FSM representation would have to be scrutinized to show what additional transitions
could occur with position uncertainty (such as the situation shown in Fig. 2.17b). Also,
it would be important to show that each transition will occur independent of the position
uncertainty, given the types of concessions made in the event handler as implemented in
simulation. It is quite likely that this strict enumeration of possible events would uncover
subtle problems in the current implementation of C'C'g, which would in turn help improve

the way position uncertainty is handled.

For DCR, the proof under position uncertainty would still be built in the same way
from the proof of CCg. Even with that in place, however, it would still remain to show
the correctness of the overseer’s and feature handler’s actions. The current instantiation
of the feature handler is based on beacons which, under the present world modeler, do not
have any uncertainty in their position. However, it is reasonable to consider adding such
uncertainty, in which case the potential error in the transform (in X and Y, since © can
be assumed to be an exact multiple of 7/2) must be computed and incorporated into the
potential errors in the cells added by the overseer. In this case, since incoming cells are
added to C destructively, it may be better to wait for more data to arrive before settling
on a transform between two colleague robots. Alternate methods of map matching, such as
some of the image mosaicing algorithms described in Sec. 3.2.2, incorporate large amounts
of inaccurate data and compute a relative transform using statistical techniques such as
maximum likelihood estimation, and as such, it may be possible to define probabilistic

measures of transform error based on sensor error models.

Once a colleague transform is produced, the overseer is adding cells that have error both
from their creation and from their transformation. It must then be shown that given the
error models for each process, the cells are added in such a way that a valid GRD results
and that it is representative of the underlying environment. This latter statement refers
to the potential mismatch of cells by the overseer, creating cell corners and placeholders
where none should exist. Finally, when one robot is referred to another through a mutual
colleague, the error in the two transforms has the potential to accumulate. This effect can be
minimized if the two referred robots base their transform (at least in part) on environmental
features that both have detected, but this will not always be feasible. In general, the error

in a transform generated by chaining two other transforms together will be simply additive



4.4. FUTURE EXTENSIONS 103

— since the rotation of each transform under DCR can be set to an exact multiple of 7/2,
the only error is in translation, which is out of JR? and can therefore be added together.
The maximum possible error for a team of n robots is then simply n — 1 times the maximum
error in any one transform, although in general the error will be much smaller, and depends
on the order in which the colleague relationships are generated.

Finally, the development of the proof of DC'r, while intimately involved with the particu-
lars of the various algorithmic components, has an inherent structure that may be applicable
to other cooperative robotic algorithms. The fact that the single-robot algorithm can be
represented by a finite state machine (including all possible environmental interactions) en-
ables the proof, and the limited ways in which cooperation can occur allows each to be
analyzed in the context of the FSM of the single-robot algorithm. This in turn allows the
implicit generation and analysis of a state machine representing the cooperative task, which
can then be shown to have the same properties as the original single-robot FSM. This sur-
face analysis of the proof is perhaps not specific enough to be useful for directing other
algorithms and proofs, however, more thorough analysis may produce a formal structure
for such algorithms which would show in what ways a correct single-robot algorithm could
be made cooperative regardless of the specific underlying task. This structure could then
also influence single-robot algorithms during development to make them more amenable to

cooperation in a provable framework.

4.4.4 Application to minifactory

As an attempt to tackle the self-calibration problem for the minifactory, the algorithms
presented in this dissertation form the backbone of a solution, but some important com-
ponents remain. First of all, the goals of the self-calibration procedure must be specified,
and they are twofold. The first goal of self-calibration is for each courier to have a precise
map of its local environment (including all platen boundaries and overhead devices) and be
able to automatically use that map to perform the correct motions during the operation of
the factory. The other goal of self-calibration is to produce an accurate global map that
is annotated with the identities of all agents in the factory that can be used by the AAA
interface tool [10] (the software in which the factory is designed, simulated, and monitored)
to render a graphical representation of the minifactory during operation.

The requirements for each courier can be divided into the generation of a correct anno-
tated local map and the integration of that map into its minifactory program. The former

can be dealt with by having each courier perform the coverage algorithms described here.



104 CHAPTER 4. ALGORITHM EXTENSIONS / DISCUSSION

However, in the minifactory setting, the tethers of the robots are a significant challenge to
this task, as mentioned above. In addition, not only must a courier localize each overhead
beacon, but a communication process (either using the beacon itself as a communication
channel or over a network) would be required to annotate the beacon with the identity
of the robot to which it belongs. Additional local calibration techniques may be required
to discover the complete kinematic relationship of the overhead robot with respect to the
courier. With these components in place, however, the output of DCr would be a geometric
map annotated with the names of the other robots the courier would be able to interact
with. Then, with the appropriate extraction of information from the annotated beacons
and cells, the courier’s second task of integrating the data into its assembly program is
straightforward. The AAA software already developed by Jay Gowdy enables this process
— under the AAA protocol, all programs are specified in terms of positions relative to fixed
agents and are only instantiated into numerical representations at run time [61], so as long
as the beacon annotations match the robot names given in the program, the integration
will be performed correctly. If the names do not match, this is a good indication that the
factory has not been constructed as specified, and human intervention would be required to

either rebuild the factory or alter the couriers’ programs.

In terms of generating a global map to be used to monitor the progress of the operating
factory, DCp is also close to the required software (assuming the ability of the couriers to
perform it). Under the current implementation, each covering robot will develop a complete
map of the environment, and so with appropriate annotation, any courier’s map could be
used by the interface tool. Alternately, if the data propagation under DC% is limited by
the workspace of the couriers as described in Sec. 4.2 above, the interface tool could still
easily obtain a complete global map. It could simply add itself to the DCr community
as a coverer with an infinite workspace and an origin coincident with one of the couriers’,
thereby obtaining a complete map from the couriers as they performed coverage. In either
case, however, in a large factory, the error developed in chaining together a large number
of transforms between the couriers could be significant. This could perhaps be mitigated
once the coverage process is complete by using all data in each courier’s map to develop
a maximally likely transform between each pair (or more) of couriers. It should be noted,
however, that it is sufficient for the map used by the interface tool to be moderately close to
that of the actual factory, since it is used only for rendering for the human monitor, and the
actual assembly process uses the couriers’ own accurate local maps. Assuming the beacons

are annotated as mentioned above, this map should be able to be directly transformed into



4.4. FUTURE EXTENSIONS 105

one usable by the interface tool. The interface tool is already able to contact agents to
obtain their physical geometry, which is used to build up the rendering of the factory, and
software is currently present with which the location of a beacon (or two) on a robot is used
to automatically generate the correct location of the robot with respect to the rest of the
factory [10].



Chapter 5

Conclusions

When a team of robots needs to share a workspace to achieve a common goal, there is a
need for a common map, and often an autonomously generated map is desirable, either for
accuracy or efficiency concerns or simply to perform a tedious task in place of a human
operator. In this thesis, algorithms have been presented with which a homogeneous team of
robots in a specific system can cooperatively perform complete sensor-based coverage of their
shared workspace, generating a complete common map in an efficient manner. The systems
to which these algorithms apply belong to a class derived from the minifactory system, and
are those in which square robots with only intrinsic contact sensing operate in rectilinear
environments. The cooperative coverage process is done in a geometrically exact manner (or
as exact as the robots themselves allow), and is correctly performed in all finite rectilinear
environments under assumptions of position accuracy and lack of inter-robot collisions. In
addition, the efficiency of the coverage process has been shown to increase for each robot in
a team (at least for reasonably small teams) compared to a robot working alone, as would
be hoped for a divisible cooperative task. Also importantly for robotic applications, the
robustness of the system to individual robot failure is quite high, since there are no explicit

plans or an a priori division of labor.

To implement cooperative coverage, a novel algorithm for a single robot was first re-
quired. The algorithm developed, C'Cg, performs coverage of arbitrary rectilinear environ-
ments using intrinsic contact sensing without using time-based history or more than single
step plans. These attributes are crucial to the cooperation technique used, as they allow
the map that is used to direct coverage to be altered at any time without interrupting or
confusing the coverage process. CCpgr was then proven to produce complete coverage by

developing and analyzing a finite state machine that represented all possible ways in which

106



5.1. CONTRIBUTIONS 107

coverage could progress. Finally, it was successfully implemented on a minifactory courier
operating in a variety of structured environments. Cooperation was then affected by adding
two algorithmic components (to form the algorithm DCp) that alter the internal state of
CCr without interfering with its ability to perform coverage. This decoupling of the coop-
eration form the coverage process also enabled the development of a proof of correctness of
DC'g, which itself is similarly decoupled. This proof first shows that the states of the finite
state machine that represents the progress of coverage are the same in the cooperative case,
and then shows that any added transitions due to potential cooperation do not induce new
cycles or lead to states not included in the finite state machine.

In addition, DCRF is seen as an early step toward more general robust cooperative peer-
to-peer exploration, and various avenues of future work in this direction have been discussed.
From a practical robotics standpoint, extensions of DCr have been implemented that allow
for small position errors and collision avoidance, and extensions to a wider variety of robots
and environments have also been discussed. From a theoretical view, there is also the idea
that the cooperation methodology that allowed for the proof could be generalized to other

cooperative robotics tasks, which could then also be proven to be correct.

5.1 Contributions

There are several contributions of this thesis, as follows:

e Development of the first cooperative sensor-based coverage algorithm that does not

take advantage of initial knowledge or environmental modifications.

While there has been research into cooperative exploration and sensor-based coverage,
the concept of a team of robots with unknown relative initial positions (such as will
occur in the minifactory system) was little investigated — the only such work known
uses dense marking of the environment to achieve cooperation, which is difficult (if not
impossible) to implement. The algorithm developed here, DCp, achieves cooperative
coverage without the use of a central controller or marking of the environment. This
required not only the creation of an appropriate sensor-based coverage algorithm for a
single robot in the team, but also the development of run-time techniques for detection
and calculation of the robots’ relative positions and division of labor of the coverage

task in a completely distributed fashion.

e Correctness proofs of the single-robot and cooperative (in the absence of collisions)

coverage algorithms.



108

CHAPTER 5. CONCLUSIONS

For any sensor-based coverage algorithm, an assurance of complete coverage is ex-
tremely important. This was achieved first for the single-robot case, and this proof
was built upon to create a proof of the cooperative algorithm. From a different perspec-
tive, this work has also provided a new type of provable distributed robotic algorithm,
which is a contribution to that field, as the range of distributed tasks for which proven

algorithms exist is still fairly restricted.

Development of sensor-based coverage for robots with only intrinsic contact sensing

in rectilinear environments.

Sensor-based coverage algorithms tend to apply to particular types of robot systems.
Only the work of Acar and Choset [16] describes complete sensor-based coverage with
contact sensing of any type, and does not consider the case of only intrinsic contact
sensing. While perhaps not directly applicable to many other robot systems, the
development of such an algorithm was required for the task at hand, and could be
the foundation for algorithms for similarly equipped mobile robots in less structured

environments.

Performance of complete sensor-based coverage of unknown environments on a real

robot using only intrinsic contact sensing.

To date, very little sensor-based coverage work has included experimental results,
primarily because most mobile robots have poor sensing, both of obstacles (when using
sensing such as sonar) and of their own position, due to well-known problems of dead
reckoning. The one application where robots have performed coverage is randomized
lawn mowing, in which no map is kept, and guarantees of complete coverage are
statistical in nature when present at all. The couriers of the minifactory provided a
system in which these problems were moot, and so the algorithm developed was able
to produce correct coverage (and complete maps) of various structured environments,
both simply and non-simply connected, demonstrating that geometric sensor-based
coverage can be successfully implemented on a robot with sufficiently accurate position

and obstacle sensing.
Extension of the cooperative coverage algorithm to include certain types of collisions
and position uncertainty.

In order for cooperative coverage to be usable and robust for a real team of robots,

it must include handling of collisions between robots, and techniques have been put



5.1. CONTRIBUTIONS 109

forth to deal with this problem. In addition, although the minifactory couriers have
very accurate position sensing, it is still not perfect, and the algorithm as implemented

does allow for small amounts of inaccuracy without impeding the progress of coverage.



Appendix A

Algorithmic detalils

The full description of CCr (and C'Cgyy) is given in this appendix.

First, definitions of a few terms:

o C;, dir is the value of the (dir) edge of Cj,
e Cj, right = min(tr,br), C;, o5t = max(tl,bl)
e Known(C;,dir) if C;, 4ir = Ci,, dir
e Finite(C;,dir) if 0 < |Gy, gir — C;
e Explored(C;,dir) if the intervals on the (dir) side span the edge from floor to ceiling

 dir| < 00

e Exploredto(C;,dir,to_dir) if the intervals on the (dir) side reach C;, to_dir-

e Coveredto(C;,dir) if Cj, gir = Ci, dir

e iy is the direction of travel of the trajectory that has just ended

e t4 is the direction of contact (if any) of the trajectory that has just ended

e p = (ps,py) is the robot’s position and w its width

e —dir is the direction opposite to dir

e (. is the cell robot’s “current” cell (which gets set by the map interpreter as described
below)

A.1 (CCpg event handler

For the description of the event handler, the direction of the last trajectory (¢y) is required,
as well as the result of the last trajectory (collision, loss of contact, or maximum distance
achieved), whether it was a sliding motion or free-space motion, and the robot’s position p

at the time of the coverage event.

110



A.l1. CCr EVENT HANDLER 111

If t4 # 0, compute a point p. = p — ety, extend the nearest wall interval on the side
being contacted to p..

For collision events:
e If the ty edge of C, is unknown:

— If ty = £y and p is outside C., put short wall interval just beyond current
(placeholder) interval, exit.
— Set the ty edge of C. to p, or p, as appropriate.
— If ty = £z (side edge discovery):
* If C. has a cell neighbor along the ty edge, set its (m — ty) edge and extend
its floor and ceiling intervals to pg.
x Else if C, has a holder neighbor across the ty edge, move it to z = p,.

* Else, add a wall interval to the ty edge of C. at p,.
e Else, if p is at the ¢y edge of C,:

— If ty = £z, extend a wall interval to py.

— Otherwise, extend the near corner of C,, to p, if possible, and if there is a strip

in progress, extend C.,, to include the strip and deactivate the strip.
e Else (edge known but p not there — unexpected collision):

— If ty = L2, something has gone wrong, exit.

— If p is near a partially explored side edge of C, (as in Fig. 2.8a, assume right edge
for explanation), add a new cell Cy, 11 from p, to the floor or ceiling of C, with
the intervals from C.’s right edge and C¢, . ,, = Cn+1,,.; = Ce,,. (Uncertain

edge between cells.)

— Otherwise, add a new placeholder from p, to the floor (if ty = +y) or ceiling
(tg = —y) of C, set the near side of C., to py.

For non-collision and loss of contact events:

o If p, > C.

z,ceil *

-, ., <ps <C split C.: create a new cell C, 4 on the side of C,

n,right?
nearer to p with the boundary between C,. and Cj4; at p,. Copy the intervals
from the changed side of C, to Cj, 41 and create mutual intervals in C, and Cj, 1

over the height of C..



112 APPENDIX A. ALGORITHMIC DETAILS

— Else if C,, < py < C,,, (case of Fig. 2.5d), create a new cell Cy41 with zero
minimum width at p, and minimum height equal to that of C.. Let dir = side
of C,, closer to p, set C., 4ir = py and Cyq1, —gir = Ce, dir-

— Else if near side of C, has at least one interval, must be finishing holder that

extends to C

Cx ceil *

Extend holder to p,, add strip (if present) to covered area.

— Else set side of C,. and add new placeholder and corresponding interval in C,

(case of Fig. 2.5b).

1

z, floor

e Similarly for p, < C.
o Ifp, > C.

z,right*

— If there is another cell C, abutting C, (containing p), find the interval in C,
containing p,, change it to point to C.. Also add a similar interval in C, and

delete the placeholder corresponding to the old interval in C,.

— Otherwise, create a new (zero-length) placeholder at (C., ;. ,,,Py)-
e Similarly for p, < C,

z,left”

e Otherwise (p € C,,), no change to C.

A.2 (CCpi map interpreter

The decision process of the map interpreter can be represented by the following pseudo-code,
with the first applicable rule determining the robot’s trajectory. This means that after every

“if,” an “else” is implied.
1. If p is in two cells’ maximum extents C,, and Cp,:

o If C,, is taller than ()}, , move in x toward C,,,, .

e Move in z toward Cj,.
Otherwise, p should be in only one cell, call that cell C..
2. If Finite(Coefe):

o If p, < C,, teft, move in +x into C,,.

!This is actually done with a for loop in the event handler.



A.2. CCr MAP INTERPRETER 113

e If the left side interval at p, points to free space, move in y just past the end of

the interval.

e Move in —zx.
Do the same for Finite(Co rignt)-
3. For the side d of C¢, nearer p, if Known(C, 4) and not Explored(C. 4):

o If Dy > ch,ceila move in —y, if py < ch,floora move in +y.

e If there is no interval at py on the d side of C¢, then if there is any interval on the
d side, move in £y to the nearest point of the nearest interval, otherwise move
in £z (d).

e If the interval at py is a wall, move into contact with the edge, then move in +y

toward the unknown portion of the edge while maintaining contact.

o If the (free-space) interval at p, has a known endpoint in the direction of the

unknown portion of the edge, move in +y to that endpoint.
e Move to a point just outside C g4, then in +y toward the unknown end of the
interval.

4. If C; has unknown ceiling or floor, move in +y or —y respectively.

5. If not(Coveredto(C., ight)) Or
(Known(C¢ right) and not (Exploredto(Cq ceiiright) and Exploredto(Ce fioor,right))):
e If not near the floor or ceiling, move to the nearer one.

e For the nearer of the floor and ceiling, let d, = the z value of the right end of

the rightmost interval minus C,,,.

e If d, < w, go to the end of the interval, then move in 4+z while maintaining

contact with the edge.

e Move in +y away from the nearby floor/ceiling.
Same for C, .

6. If Cy is incomplete, plan a path to it as described below and take the first step along
that path.

7. If C. has at least one placeholder neighbor:



114 APPENDIX A. ALGORITHMIC DETAILS

e For each placeholder neighbor of C,, calculate the manhattan distance from p to

the nearest point in the placeholder.
e For the placeholder H, with the smallest distance:
— If py > Hy 4op, move in —y
— If py < Hy pottom, move in +y

— Move in £ to a point just outside C.,, and create a new incomplete cell

Ch+1 with Cp 41, the same height as the placeholder.

8. If there is any placeholder in H, for the first placeholder in H, plan a path to the cell
it adjoins and take the first step on that path.

To plan a path from C,. to a cell Oy, first define N(C;) as the set of cells that neighbor
C; and V a global list of cells that have been visited during the search. Then find the first

cell on the path as follows:

Plan_path(Cy,C.):

— If C; € V, return §).

— Add Cy to V.

— If C, € N(Cy), return Cjy.

— Otherwise, for each cell C; in N(Cy), call Plan_path(C;,C.) If this returns any-
thing other than (), return it.

This is perhaps not entirely intuitive, but produces a depth-first search of a spanning
tree of C, returning the cell adjacent to C, to which the robot should travel to eventually

reach C,;. Then, to reach this next cell C,ep¢:

e If p ¢ C., move in £x (may be required after finishing exploration of a placeholder
when moving to an incomplete cell).

o If p, > Chreat,top, move in —y.

o If py < Cheat bottom, MOVE in +y.

e Move in £z to a point just inside Chegt,, -

A.3 CCpgry updates

As described in Sec. 3.2.1, several changes are required to the above algorithm in order to

function in generalized rectilinear decompositions. These changes are as follows:



A.3. CCgry UPDATES 115

A.3.1 Vertical neighbor handling

A new function is added to the event handler that is called at any collision when ¢y = +y.

It works as follows:

e Check all cells other than C. to see if one is across the ty edge of C, at py. If such a
cell (C,) exists:

— If there is no interval along the ¢y edge of C., add a zero-length interval pointing to
C, and replace what should be a piece of a placeholder in C, with a corresponding
interval?.

— If there is no nearby non-wall interval in C;, add intervals in C, and C, that
point to each other. Find the placeholder in C, adjacent to the new interval and
shrink it to p;.

— If there is a non-wall interval in C, near p,, extend it and its corresponding
interval in C, to p;, and shrink the placeholder adjacent to the interval in C,. If

this causes the placeholder to have zero length, delete it.

e If there is no interval on the ty side of C, or no nearby interval with a wall neighbor,

add a zero-length interval at p, pointing to a wall.

e Otherwise, extend the nearby wall interval to p,.

A.3.2 Event handler

In addition to calling the above function at every collision in y, the event handler must add

the following functionality:

e When colliding with a finite edge of C,., adjust the floor and ceiling intervals to reach
only as far as p;. If there is is a vertically adjacent neighbor at p,, find its interval
+ whose neighbor is C, then set ¢’s extent to that of C;, and move the ends of i’s

neighbors to abut 4.

e For unexpected collisions in +y, if splitting C,, copy the intervals on the —t4 edge of
C. to the same edge of the new cell C), 1, and if there is another cell across that edge,

split its interval into two, pointing to C; and Cj .

e For non-collisions in +y, if splitting C,, copy intervals as above.

%Since p, may be in the middle of C,, this may involve the splitting of one placeholder into two short
ones.



116 APPENDIX A. ALGORITHMIC DETAILS

A.3.3 Map interpreter

The map interpreter adds a small rule to handle an immediate result of cooperation and

updates two others to deal with vertically adjacent cells.

0. If p, is not in any Cj, but is within w of one cell C,, move in +z into C..
7. (Add) If the closest placeholder Hy is horizontal:
— If py > H yight, move in —z.

— If py < Hy jeft, move in +.

— i py — Hgjeps > € or Hy pight — pe > €, move in £z to the nearer end of Hy.

Create a new cell C), 1 with zero minimum width at the side of H nearer p, add

an interval near the end of H pointing to Cj 4.

8. Once a destination cell Cy is chosen (as previously), if it is a vertical neighbor of C,,

move first in £z if necessary, then in £y into Cj.



Appendix B

Couriler sensors

The minifactory couriers possess two novel sensors that enable the implementation of sensor-
based coverage as described in this thesis. A summary of the operation of each sensor is

provided in this Appendix.

B.1 Magnetic platen sensor

To determine the relative position of the courier’s forcer with respect to the platen (and
therefore with respect to its environment), the forcer incorporates a novel ac magnetic
position sensor. This sensor was developed by myself, Al Rizzi and Ralph Hollis [11] and is
capable of sensing the position of the forcer with resolutions of 0.2 ym in translation and
0.0015° in rotation (1o). A picture of this sensor integrated into the forcer of a production
Northern Magnetics planar motor is shown in Fig. B.1.

The basic principle of the sensor is to use the structure of the platen surface to deter-
mine the position of the forcer relative to the platen. The platen is composed of .020 in.
(0.508 mm) square steel teeth in a .040 in. (1.016 mm) grid (in a pattern like that of a waffle
iron) which are surrounded by an epoxy backfill to provide a very flat surface. These teeth
are used as the stator component of the planar motor of which the forcer is the moving
member. The forcer contains toothed linear motor segments through which magnetic flux
is steered to step the forcer across the platen.

The position sensor uses a similar toothed structure, shown as the end view of a pair
of sensors in Fig. B.2, to resolve position. The forcer contains four pairs of sensors, two
of which sense translation in z and two which sense y. In order to generate a position-

dependent signal, a 100 kHz sine wave current is driven through the drive coils which in

117



118 APPENDIX B. COURIER SENSORS

Tether
connector

; orifice
Integrated

3-DOF se Single
1-DOF
sensor

Figure B.2: End view of a pair of magnetic platen sensors.

turn induces a 100 kHz magnetic field in the platen teeth. This field then couples into each
of the two sense teeth in varying amounts depending on the relative position of the platen
and sensor teeth as shown in Fig. B.2. Coils are wound around these sense teeth such that
they obtain a current proportional to the difference of the magnetic flux through the two
sense teeth. The sensor on the left of Fig. B.2 represents a case where the field couples
entirely through one sense coil, and the sensor output is therefore maximal, while the sensor
on the right shows the case in which an equal amount of flux is present in each sense tooth

and so the sensor output is zero.

The output of the sense coils is a low amplitude 100 kHz sine wave whose amplitude is
dependent on the position of the forcer. This output can be given by a function of the form
Vs(z,t) = As(z) xsin(2m fgt), where Ag(z) is the position dependent magnitude of the signal
and fg; = 100 kHz. This signal V; is amplified, demodulated and integrated with custom
low-noise electronics to extract As;. The electronics also include digital timing circuitry

triggered by the courier’s computer such that DC values representing sensor position are



B.2. OPTICAL COORDINATION SENSOR 119

returned at the desired commutation frequency of the motors.

The function Ag(z) can be reasonably approximated by a sine wave whose period is
that of the platen teeth. Since this function is not one-to-one with respect to position,
however, a pair of sensors are used to determine position within the period of the teeth of
the platen. This quadrature pair of sensors is located 1.25 teeth apart, as shown in Fig. B.2
and is similar in construction to a quadrature optical encoder (as well as the forcer motors
themselves). This pair of sensors returns a sine and cosine with respect to position, so that
their arctangent can be used to determine forcer position (within a single platen tooth). In
practice, since the outputs are not exactly a sine and cosine, a polynomial calibration is
used to modify the result of the arctangent calculation. The computed sensor positions of
the four sensor pairs are used to determine the position and orientation of the forcer, which
are used to perform closed-loop control of the courier.

The sensor that was designed and built for the couriers is unique in that it contains four
sensor pairs (sufficient to obtain the full 3-DOF position of the forcer) in a single rigid body,
as can be seen in Fig. B.1. The eight sets of drive and sense teeth are ultrasonically machined
from a single piece of ferrite material, and the coils that wrap around them are provided by
a single flexible circuit board for each sensor pair. This allows for easy manufacturability as
well as ensuring that the four sensor pairs are aligned with respect to each other with very

high precision.

B.2 Optical coordination sensor

The other sensor carried on board the forcer is the optical coordination sensor, developed
by Jimmy Ma, Ralph Hollis and Al Rizzi [15]. This is an upward-looking sensor based on a
position sensitive photodiode (PSD) that can return the position of a light spot falling on
the photodiode to sub-micron resolution.

The mechanical construction of this sensor is shown in Fig. B.3 (figure courtesy Arthur
Quaid [50]). The photodiode is at the base of the sensor, with a lens above it to focus the
light from LED beacons onto the sensor surface. This allows the LEDs (effectively point
light sources at the distances of interest) to be seen from a fairly large area compared to the
size of the PSD. The PSD itself is a duolateral device that has two = outputs (z; and x2)
and two y outputs (y; and y9). The position of the center of the light spot in z is computed
as (1 — z2)/(z1 + x2) and similarly for y. Therefore, when the light is centered over the

PSD, the four outputs will be equal, and the calculated position will be (0,0).



120 APPENDIX B. COURIER SENSORS

Cc

X

Ll] LED Beacon
h X

optical filter T
P motor

lens —

lateral effect |
position-sensing
diode

platen

Figure B.3: Mechanical schematic of the optical coordination sensor.

The key feature of this sensor is that it allows LED beacons to be detected and localized
in the presence of other light sources, such as sunlight and overhead fluorescent lights. This
is done through both optical and electronic filtering. The first line of defense against other
light sources is a colored glass filter placed at the top of the sensor housing which eliminates
virtually all visible light while allowing infrared light to pass through.

The second and more important method of screening out other light sources is through
modulation of the LED beacon. In the current system, the LED is driven by a 5 kHz square
wave. The sensor outputs are therefore also approximately 5 kHz square waves, and are
sent to a phase lock loop circuit which recovers signals of this frequency and produces a
clean square wave in phase with the LED signal. This signal is then used to synchronously
demodulate the sensor signals, which are further filtered with standard low-pass filters,
summed and differenced with analog amplifiers and read by precision analog to digital
converters in the courier’s control computer. The resulting measurements are divided as
shown above to produce values that correspond to the position of the light spot on the
PSD, which is used to compute the angles between the LED-lens axis and the vertical axis,
shown in Fig. B.3 as 9, (¢, is also obtained). To localize the beacon in z and y it is merely
necessary to drive these angles to zero (and a controller has been implemented by Arthur
Quaid to do precisely that [50]), whereas to determine the height A of the beacon a simple

triangulation process is used.



Appendix C

Acknowledgements, revisited

When my thesis proposal was first announced, it was pointed out that all of my committee
members have eleven letters in their full names. As an occasional crossword puzzle con-
structor, this seemed like an opportunity too good to pass up. And when I discovered the
way the long answers could cross symmetrically in the middle, it became inevitable. And
so I humbly present the following puzzle. [I would also like my committee to note that
the puzzle was constructed over two evenings several months ago — it does not represent a

significant use of my recent time.]

121



122

ACROSS

1.
6.

12.
18.

19.

20.
21.

22.

24.
25.
27.

28.

30.
. Love
33.
37.
39.

41.

43.

44,
45,
46.

47.
. Legal item
50.

52.
53.

Fire residue
Sarge’s
command
Flexible

Where to find 1
Across, perhaps
Southern
Connecticut
town
Disagreeableness
Rapunzel's
home

...FOR THEIR
HELP,
SUPPORT,
AND

CAMARADERIE...

Vivele "
Lite

Challenge at a
luau

Fashion
designer Cassini
Parisian summer

Exploited
Deal with
...ESTEEMED
COMMITTEE
MEMBER...
Where I've
spent most of
my life?
One way to
learn

Ababa
Old hag
Roman ruin
features
Negative prefix

Chinese dish
with pancakes
__ glance
Siestas

57.

59.

61.
62.

63.

64.

66.

67.

69.

70.
72.

75.
76.
77.

81.
82.
83.
84.

86.
89.
91.

93.
94.

99.

APPENDIX C. ACKNOWLEDGEMENTS, REVISITED

Native 101. Eva Peron’s
Americans of maiden name
the Rockies 102. Looking at
WITHOUT 103. Shortstop
WHOM | Smith or Guillen
WOULDN'T BE  104. Group of nine
HERE... 105. Lipton

Joy competitor
Chocolate—-chip 106. Tends to the
cookie baker soup, perhaps
Hollis

Frozen DOWN

Small game 1. Jane &

birds George’s dog
Long—distance 2. Bar perch
photocopy, in a 3. ...ESTEEMED
way COMMITTEE
Marriage, e.g. MEMBER...
Goldfinger’s 4. First woman
first name 5. Belgrade native
Actor Peter 6. Own up (to)
"See you," in 7. Sip

Sonora 8. Stanley
Neighbor of Gardner
Vietnam 9. Hurt

Wild mushrooms  10. One of seven in
...FOR ALL HIS the world
SUPPORT, MY 11. As awhole
ADVISOR... 12. Common

Was indebted undergrad
Annoys major, for short
Homerian epic 13. Gentle animal
50’s presidential  14. Putting back in
candidate play, as a

Like some basketball
exams 15. Excellent serve
Chinese 16. Neither’s
province partner

Wipe away 17.__ -80

Wall climber 23. Swamp

..MY 26.Rodand
UNDERSTANDING29. Hockey player
GIRLFRIEND... not known for
Epitome of his skills
sharpness

31

32.
34.
35.
36.

38.
39.

40.

41.

42.

43.

46.

47.
48.

51.

52.
54.

55.

56.

58.

60.

65.
68.

...FOR
PROVIDING
AN
EXPERIMENTAL
PLATFORM...
Membership fee
Blue

Inventor
Whitney
Dentist’s
degree (abbr.)
"Inferno," e.g.
Former South
African premier
Cheerios
component
Wash
thoroughly
Largest Greek
island

Harsh, as a
voice

State park in
Monroeville
Topmost room
League in which
Pele played
Leave out
Novelist Nin
...FOR
CHALLENGING
ME, AND
HAVING ALL
THE
ANSWERS...
Gem from the
sea

Battle of the

Western English
county

What marks will
be replaced with
Deliberate

Like -like

69.__ breve (2/2

time)

Black-and—

white dessert

Jackie O’s

second

Singer—

songwriter

Williams

74. Type

76. Homer’s
favorite
hangout

. Insinuated

.Oilof

. Tree known as
basswood

. Jim Carrey’s
"Me, Myself &

71.

72.

73.

85.
87.

Milne character
To have, in Le
Havre

Ancient
stringed
instruments
Flushing
Meadows org.
Revise

Cupid, across
the Adriatic

B train?
Roman invader,
once

Tried to get
elected

Grain used in
Canadian
whiskey
Affirmative

reply

88.

90.

91.
92.

94.
95.

96.

97.

98.

100. HIV drug



123

I’d like to thank...
1 2 3 4 5

11 12 |13 (14 (15 |16 [17

18

21

24

28




APPENDIX C. ACKNOWLEDGEMENTS, REVISITED

124

D

R S

RL AlN C O R

N A P S

O R R| E

O R A L

RLAlZ O R

E

M Y P, Al R El NNT S

E|l Y E

N E S| T

S T Y D R Y D E| N

L

A

C H R

Dl U A R T| E

E/l NN NN E|] Al D




Bibliography

[1]

2]

[10]

[11]

Y. S. Suh and K. Lee, “NC milling tool path generation for arbitrary pockets defined
by sculptured surfaces,” Computer Aided Design, vol. 22, no. 5, pp. 273-284, 1990.

M. Ollis, Perception algorithms for a harvesting robot. PhD thesis, Carnegie Mellon,
1997.

M. Held, On the Computational Geometry of Pocket Machining. Springer-Verlag,
Berlin, 1991.

J. Y. Park and K. D. Lee, “A study on the cleaning algorithm for autonomous mobile
robot under the unknown environment,” in Proc. of IEEE Int’l Workshop on Robot
and Human Communication, pp. 70-75, Sept. 1997.

D. W. Gage, “Randomized search strategies with imperfect sensors,” in Mobile Robots
VIII, pp. 270-279, 1993.

D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida, “Cooperative sweeping by multiple
mobile robots,” in Proc. of IEEE Int’l. Conf. on Robotics and Automation, pp. 1744—
1749, April 1996.

R. L. Hollis and J. Gowdy, “Miniature factories for precision assembly,” in Int’l Work-
shop on Microfactories, (Tsukuba, Japan), pp. 9-14, 1998.

R. L. Hollis and A. E. Quaid, “An architecture for agile assembly,” in American Society
of Precision Engineering 10th Annual Mtg., October 1995.

A. A. Rizzi, J. Gowdy, and R. L. Hollis, “Agile assembly architecture: An agent-based
approach to modular precision assembly systems,” in Proc. of IEEE Int’l. Conf. on
Robotics and Automation, pp. 1511-1516, April 1997.

J. Gowdy and Z. J. Butler, “An integrated interface tool for the architecture for agile
assembly,” in Proc. of IEEE Int’l. Conf. on Robotics and Automation, pp. 3097-3102,
May 1999.

Z.J. Butler, A. A. Rizzi, and R. L. Hollis, “Integrated precision 3-DOF position sensor
for planar linear motors,” in Proc. of IEEE Int’l. Conf. on Robotics and Automation,
May 1998.

125



126

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

A. E. Quaid and R. L. Hollis, “3-DOF closed-loop control for planar linear motors,” in
Proc. of IEEFE Int’l. Conf. on Robotics and Automation, May 1998.

A. E. Quaid and A. A. Rizzi, “Robust and efficient motion planning for a planar robot
using hybrid control,” in Proc. of IEEE Int’l. Conf. on Robotics and Automation, May
2000.

W.-C. Ma, “Precision optical coordination sensor for cooperative 2-DOF robots,” Mas-
ter’s thesis, Carnegie Mellon, 1998.

W.-C. Ma, A. A. Rizzi, and R. L. Hollis, “Optical coordination sensor for precision
cooperating robots,” in Proc. of IEEE Int’l. Conf. on Robotics and Automation, May
2000.

E. Acar and H. Choset, “Critical point sensing in unknown environments for mapping,”
in Proc. of IEEE Int’l Conf. on Robotics and Automation, April 2000.

S. Hert, S. Tiwari, and V. Lumelsky, “A terrain covering algorithm for an AUV.)”
Autonomous Robots, vol. 3, pp. 91-119, 1996.

A. Pirzadeh and W. Snyder, “A unified solution to coverage and search in explored and
unexplored terrains using indirect control,” in Proc. of IEEE Int’l. Conf. on Robotics
and Automation, pp. 2113-2119, April 1990.

R. C. Chandler, A. A. Arroyo, M. Nechyba, and E. Schwartz, “The next generation
autonomous lawn mower,” in Florida Conf. on Recent Advances in Robotics, May 2000.

B. R. Donald, J. Jennings, and D. Rus, “Information invariants for distributed ma-
nipulation,” International Journal of Robotics Research, vol. 16, no. 5, pp. 673-702,
1997.

L. E. Parker, “ALLIANCE: An architecture for fault tolerant, cooperative control of
heterogeneous mobile robots,” in Proc. of IEEE Int’l Conf. on Intelligent Robots and
Systems, (Munich), pp. 776-83, Sept. 1994.

P. Stone and M. Veloso, “Task decomposition, dynamic role assignment and low-
bandwidth communication for real-time strategic teamwork,” Artificial Intelligence,
vol. 110, pp. 241-273, June 1999.

T. W. Min and H. K. Yin, “A decentralized approach for cooperative sweeping by
multiple mobile robots,” in Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems,
(Victoria, B.C.), pp. 380-85, October 1998.

B. Yamauchi, “Decentralized coordination for multirobot exploration,” Robotics and
Autonomous Systems, vol. 29, no. 2, pp. 111-18, 1999.

I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein, “MAC versus PC: Determinism
and randomness as complementary approaches to robotic exploration of continuous
domains,” Int’l Journal of Robotics Research, vol. 19, pp. 12-31, January 2000.



BIBLIOGRAPHY 127

[26]

[27]

Y. Huang, Z. Cao, S. Oh, E. Kattan, and E. Hall, “Automatic operation for a robot
lawn mower,” in Mobile Robots, (Cambridge, MA), pp. 344-54, October 1986.

V. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path planning in sensor-based
terrain acquisition,” IEEE Trans. on Robotics and Automation, vol. 6, no. 4, pp. 462—
472, 1990.

H. Choset and P. Pignon, “Coverage path planning: The boustrophedon decomposi-
tion,” in Proc. of Intl. Conf. on Field and Service Robotics, 1997.

E. Rimon. Personal communication, 2000.

Friendly Robotics, RL500 Owner Operating Manual. Available at
http://www.friendlyrobotics.com/um/RL500_manual.pdf.

Friendly Robotics, “RoboSim: RL500 simulator.” Available at
http://www.friendlyrobotics.com/sim/RoboSim.exe.

T. Balch and R. C. Arkin, “Behavior-based formation control for multiple mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 14, pp. 929-39, De-
cember 1998.

J. H. Reif and H. Wang, “Social potential fields: A distributed behavioral control for
autonomous robots,” Robotics and Autonomous Systems, vol. 27, pp. 171-94, May 1999.

H. Osumi, “Cooperative strategy for multiple mobile manipulators,” in Proc. of Int’l
Conf. on Intelligent Robots and Systems (IROS), (Osaka, Japan), pp. 554-9, Nov. 1996.

J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and rescue with a
team of mobile robots,” in Proc. of the 8th Int’l Conf. on Advanced Robotics, pp. 193—
200, July 1997.

H. R. Everett, G. A. Gilbreath, T. A. Heath-Pastore, and R. T. Laird, “Controlling
multiple security robots in a warehouse environment,” in Proc. of the Conf. on Intelli-
gent Robotics in Field, Factory, Service and Space (CIRFFSS), (Houston), pp. 93-102,
March 1994.

A. C. Sanderson, “A distributed algorithm for cooperative navigation among multiple
mobile robots,” Advanced Robotics, vol. 12, no. 4, pp. 335-49, 1998.

I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot exploration of an unknown environ-
ment, efficiently reducing the odometry error,” in Proc. of Int’l Joint Conf. in Artificial
Intelligence, (Nagoya, Japan), pp. 1340-1345, August 1997.

S. Kato, S. Nishiyama, and J. Takeno, “Coordinating mobile robots by applying traffic
rules,” in Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems, (Raleigh, NC),
pp- 153541, July 1992.

A. Drogoul and J. Ferber, “From Tom Thumb to the dockers: Some experiments with
foraging robots,” in From Animals to Animats II, pp. 451-460, MIT Press, 1993.



128

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

L. E. Parker, “Cooperative motion control for multi-target observation,” in Proc. of
IEEE Int’l Conf. on Intelligent Robots and Systems, (Grenoble), pp. 1591-7, Sept.
1997.

E. Moraleda, F. Matia, and E. A. Puente, “ARCO: Architecture for autonomous mo-
bile platforms cooperation in industrial environments,” in Proceedings of Intelligent
Autonomous Vehicles, (Madrid), pp. 651-5, March 1998.

F. R. Noreils, “Toward a robot architecture integrating cooperation between mo-
bile robots: Application to indoor environments,” Int’l Journal of Robotics Research,
vol. 12, pp. 79-98, Feb. 1993.

B. L. Brummitt and A. Stentz, “GRAMMPS: A generalized mission planner for multiple
mobile robots in unstructured environments,” in Proc. of Int’l Conf. on Robotics and
Automation, (Leuven, Belgium), pp. 1564-71, May 1998.

A. Cai, T. Fukuda, F. Arai, and H. Ishihara, “Cooperative path planning and navigation
based on distributed sensing,” in Proc. of Int’l Conf. on Robotics and Automation,
(Minneapolis), pp. 2079-84, April 1996.

N. Rao, V. Protopopescu, and N. Manickam, “Cooperative terrain model acquisition
by a team of two or three point-robots,” in Proc. of IEEE Int’l. Conf. on Robotics and
Automation, pp. 1427-1433, April 1996.

K. Singh and K. Fujimura, “A navigation strategy for cooperative multiple mobile
robots,” in Proc. of IEEE Int’l Conf. on Intelligent Robots and Systems, (Yokohama),
pp. 283-8, July 1993.

Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Contact sensor-based coverage of rectilinear
environments,” in Proc. of IEEE Int’l Symposium on Intelligent Control, Sept. 1999.

M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” ASME
Trans. on Dynamic Systems, Measurement and control, vol. 103, pp. 126-33, June 1981.

A. Quaid, A Planar Robot for High-Performance Manipulation. PhD thesis, Carnegie
Mellon, July 2000.

Z. J. Butler, A. A. Rizzi, and R. L. Hollis, “Distributed coverage of rectilinear en-
vironments,” in Proc. of the Workshop on the Algorithmic Foundations of Robotics,
(Hanover, NH), March 2000.

J. Yi, M. S. Lee, and J. Kim, “A map mosaicking method using opportunistic search
approach with a blackboard structure,” in Document Analysis Systems: Theory and
Practice, vol. 1655 of Lecture Notes in Computer Science, pp. 322-35, Springer-Verlag,
Nov 1999.

D. Capel and A. Zisserman, “Automated mosaicing with super-resolution zoom,” in
Proc. of Conf. on Computer Vision and Pattern Recognition, (Santa Barbara), pp. 885
91, June 1998.



BIBLIOGRAPHY 129

[54]

[55]

R. D. T. Janssen and A. M. Vossepoel, “Computation of mosaics from separately
scanned line drawings,” in Proc. of Workshop on Applications of Computer Vision,
(Sarasota, FL), pp. 36-43, Dec 1994.

R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-
weight spanning trees,” ACM Transactions on Programming Languages and Systems,

vol. 5, no. 1, pp. 6677, 1983.

C. Hofner and G. Schmidt, “Path planning and guidance techniques for an autonomous
mobile cleaning robot,” Robotics and Autonomous Syst., vol. 14, pp. 199-212, 1995.

H. Choset, E. Acar, A. Rizzi, and J. Luntz, “Exact cellular decompositions in terms
of critical points of Morse functions,” in Proc. of IEEE Int’l Conf. on Robotics and
Automation, April 2000.

S. Hert and V. Lumelsky, “The ties that bind: Motion planning for multiple tethered
robots,” Robotics and Autonomous Systems, vol. 17, pp. 187-215, 1996.

S. Hert and V. Lumelsky, “Motion planning in R? for multiple tethered robots,” IEEE
Transactions on Robotics and Automation, vol. 15, pp. 623-39, August 1999.

F. W. Sinden, “The tethered robot problem,” Int’l Journal of Robotics Research, vol. 9,
pp- 122-133, February 1990.

J. Gowdy and A. A. Rizzi, “Programming in the architecture for agile assembly,” in
Proc. of IEEE Int’l. Conf. on Robotics and Automation, pp. 3103-8, May 1999.



