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Abstract

We consider the problem of planning sensor strate-

gies that enable a sensor to be automatically con�g-

ured for robot tasks. In this paper we present ro-

bust and e�cient algorithms for computing the re-

gions from which a sensor has unobstructed or par-

tially obstructed views of a target in a goal. We apply

these algorithms to the Error Detection and Recovery

problem of recognizing whether a goal or failure re-

gion has been achieved. Based on these methods and

strategies for visually-cued camera control, we have

built a robot surveillance system in which one mobile

robot navigates to a viewing position from which it

has an unobstructed view of a goal region, and then

uses visual recognition to detect when a speci�c tar-

get has entered the room.

1 Introduction

This paper introduces a computational framework in

which to study the problem of sensor con�guration,

and develops combinatorially precise algorithms for

computing partial and complete visibility maps.

A primarymotivation for this work is in the domain

of cooperating robots. Suppose robot A is perform-

ing a task, and robot B is equipped with sensors and

should \watch" robot A. Then our algorithms can

be used, for example, to compute the regions that B

should not enter, if A is to remain visible. Less gen-

erally, A and B could be part of the same robot, for

example, a physically distributed but globally con-

trolled system.

�Support for this work was provided in part by the Na-
tional Science Foundation under grants No. IRI-8802390, IRI-
9000532, IRI-9201699, and by a Presidential Young Investiga-
tor award to Bruce Donald, and in part by the Air Force O�ce
of Sponsored Research, the Mathematical Sciences Institute,
Intel Corporation, and AT&T Bell laboratories. The �rst au-
thor was additionally supported by an AT&T Bell Laboratories
Graduate Fellowship sponsored by the AT&T Foundation.

The Error Detection and Recovery Framework [12]

provides a natural problem domain in which to ap-

ply our strategies. An Error Detection and Recovery

(EDR) strategy is one that is guaranteed to achieve

a speci�ed goal when the goal is recognizably achiev-

able, and signals failure otherwise. Our algorithms

can be used in conjunction with an EDR planner to

compute where a sensor should be placed in order

to recognize success or failure of a motion plan. We

explore this problem in Section 5.

Many other applications of automatic sensor con-

�guration arise in the area of robot surveillance. In

particular, our algorithms apply to the problems of

intruder detection, execution monitoring, and robot

reconnaissance. A natural extension of our work can

be made to the problem of beacon placement for robot

navigation. In Section 6 we discuss a robot surveil-

lance demonstration system that we built using an

implementation of some of the algorithms in this pa-

per.

In this paper we restrict our attention to visibil-

ity and recognizability problems in the plane. We

show that even in the 2D case, the geometric compu-

tations are nontrivial and signi�cant computational

issues arise, making the 2D case a natural �rst con-

sideration. Furthermore, planning motions for a mo-

bile robot often reduces to a computation in 2D: a

mobile robot that maintains contact with the 
oor

usually navigates among obstacles that can be mod-

eled as swept polygons. When the 3D obstacles are

projected to the 
oor, their 2D footprints yield a map

in 2D. For these reasons, this and much other work

in the �eld of visual agents is in 2D.

1.1 Error detection and recovery

Much of the early work in robotics focused on devel-

oping guaranteed plans for accomplishing tasks spec-

i�ed at a high level. Such task speci�cations might

be of the form \mesh these two gears", or \place part
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Figure 1: An example setup for the problem of sensor

con�guration in EDR. A represents the target; its

reference point is indicated by the black dot. G is the

goal region and H is the failure region. The darkly

shaded polygons are obstacles. The problem is to �nd

a sensor placement from which A 2 G and A 2 H can

be distinguished.

A inside region B". It is not always possible, how-

ever, especially in the realm of assembly planning,

to generate guaranteed plans. For example, errors

in tolerancing of the parts might render an assem-

bly infeasible. The Error Detection and Recovery

(EDR) framework of Donald was developed to deal

with these inadequacies of the guaranteed planning

framework. EDR strategies will either achieve a goal

if it is recognizably reachable, or signal failure. Given

a geometrically-speci�ed goal region G, an EDR strat-

egy involves computing a failure region H and a mo-

tion plan that will terminate recognizably either in

G or H. The EDR framework guarantees that under

generalized damper dynamics1, the robot will even-

tually reach G or H. Furthermore, having entered

G or H, it will never leave. Given this guarantee of

reachability, we wish to strengthen it to a guaran-

tee of recognizability: we want to know which of G

and H has been attained. The visibility algorithms

presented in Section 3 will be used in showing how

a sensor can be con�gured to distinguish between a

target in G and a target in H. Figure 1 gives an

example of the problem we would like to solve.

1The generalized damper is a dynamical model speci�ed by

the relationship F = B(v � v0) between forces and velocities,
where F is the vector of forces and torques acting on a moving
object, v0 is the commanded velocity, v is the actual velocity,
and B is a damping matrix. For more details, see Donald [12].

1.2 Related Work

The sensor placement problem has previously been

addressed by Nelson and Khosla [22] and Kutu-

lakos, Dyer, and Lumelsky [18] for visual tracking

and vision-guided exploration. Several researchers

have explored the problem of optimal sensor place-

ment. Cameron and Durrant-Whyte [7] and Hager

and Mintz [15] present a Bayesian approach to opti-

mal sensor placement.

Hutchinson [16] introduces the concept of a visual

constraint surface to control motion. The idea is to

combine position, force, and visual sensing in order

to produce error-tolerant motion strategies. His work

builds on that of preimage planners by adding vi-

sual feedback to compensate for uncertainty. Details

on the implementation of vision-based control are de-

scribed by Hutchinson and Casta~no [9].

Sharma and Hutchinson [26] de�ne a measure of

robot motion observability based on the relationship

between di�erential changes in the position of the

robot to the corresponding di�erential changes in the

observed visual features. Lacroix, Grandjean, and

Ghallab [19] describe a method for selecting view

points and sensing tasks to con�rm an identi�cation

hypothesis.

Cowan and Kovesi [10] study the problem of auto-

matic camera placement for vision tasks. They con-

sider the constraints on camera location imposed by

resolution and focus requirements, visibility and view

angle, and forbidden regions depending on the task.

Given values bounding these constraints, they com-

pute the set of camera locations a�ording complete

visibility of a surface in 3D. Zhang [31] considers the

problem of optimally placing multiple sensors.

A di�erent approach from the one taken in this

paper to the incorporation of sensor planning in the

EDR framework was �rst presented by Donald [12].

In that approach, an equivalence is established be-

tween sensing and motion in con�guration space. Ac-

tive sensing for a mobile robot is reduced to motion,

by exploiting the similarity between visibility and

generalized damper motions. In contrast, we present

here a framework that is closer to actual sensors.

Research in the area of art gallery theory has in-

troduced and addressed many problems pertaining

to polygon visibility. The art gallery problem is to

determine the minimum number of guards su�cient

to guard the interior of a simple polygon (see [23]

for more details). Sensor con�guration planning ad-

dresses the related question of where sensors should

be placed in order to monitor a region of interest. In

this case we are interested in external visibility of a

polygon rather than internal visibility. Furthermore,
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because we employ real sensors, considerations of un-

certainty must be taken into account.

The questions of detecting polygon visibility and

constructing visibility regions under a variety of as-

sumptions is a rich area of past and ongoing research

in computational geometry. We mention here a few of

the papers most closely related to our problem. Suri

and O'Rourke [27, 23] give an �(n4) algorithm for

the problem of computing the locus of points weakly

visible from a distinguished edge in an environment

of line segments. Their lower bound of 
(n4) for ex-

plicitly constructing the boundary of the weak visi-

bility region holds as well for our computation of rec-

ognizability regions under a weak visibility assump-

tion. Bhattacharya, Kirkpatrick and Toussaint [2] in-

troduce the concept of sector visibility of a polygon,

and give �(n) and 
(n logn) bounds, depending on

the size of the visibility wedge, for determining if a

polygon is weakly externally visible. The problem

of planar motion planning for a robot with bounded

directional uncertainty is considered by de Berg et

al. [11]. They give algorithms for constructing the

regions from which goals may be reached, and show

that the complexity of the regions depends on the

magnitude of the uncertainty angle.

Teller [29] solves the weak polygon visibility prob-

lem for a special case in 3D. Namely, he computes

the antipenumbra (the volume from which some, but

not all, of a light source can be seen) of a convex

area light source shining through a sequence of con-

vex areal holes in three dimensions. For an environ-

ment of total edge complexity n, he gives an O(n2)

time algorithm for computing the piecewise-quadratic

boundary of the antipenumbra, which will be non-

convex and disconnected in general.

Tarabanis and Tsai [28] examine the question of

complete visibility for general polyhedral environ-

ments in 3D. For a feature polygon of size m and

a polyhedral environment of size n, they present an

O(m3n3) algorithm for computing the locus of all

viewpoints from which the �xed feature polygon can

be entirely seen.

Guibas, Motwani and Raghavan consider an ab-

straction of the robot localization problem [14].

Given a simple polygon P (representing the map of

a known environment) and a star-shaped polygon V

(representing the portion of the map visible from the

robot's position), the problem is to �nd a point or set

of points in P from which the portion of P that is vis-

ible is congruent to V (i.e., given V , the robot must

determine its position in P ). They give a method of

preprocessing P so that subsequent queries V can be

answered in optimal time in the size of the output.

1.3 Outline of paper

The remainder of the paper is organized as follows.

In Section 2 we introduce our approach and de�ne

the notions of recognizability and confusability . Us-

ing point-to-point visibility as a model of detectabil-

ity, we present in Section 3 our algorithms for com-

puting recognizability regions for a target polygon at

a known orientation in the plane. The computed re-

gions can be restricted to account for the error charac-

teristics of the sensor, as shown in Section 4. In Sec-

tion 5 we apply these algorithms to the EDR frame-

work, and show how to compute the set of sensor

con�gurations so that readings that lead to confusion

of G and H are avoided. Our experimental results us-

ing mobile robots in the Cornell Robotics and Vision

Laboratory are presented in Section 6.

2 Preliminaries and de�nitions

We will start by introducing the notation used

throughout this paper, and by formalizing the prob-

lems to be solved.

An EDR plan is a motion plan that achieves ei-

ther G or H, and must be able to report which of G

or H has been reached. We develop a method here

of determining how a sensor should be con�gured so

that this goal recognizability can be achieved. The

basic idea is that the sensor should be positioned in

such a way that attainment of the goal G can be rec-

ognized, attainment of the failure region H can be

recognized, and attainment of G and H cannot be

confused.2 That is, given that we know target A is in

G [H, we can determine which of G or H contains

A.

Our target con�guration space is denoted Cr, and

in this paper we consider two types of planar motion.

We have Cr = IR2 when the target has two trans-

lational degrees of freedom and a �xed orientation.

When the target is allowed to both translate and ro-

tate in the plane, the target con�guration space is

IR2
� S1.

The sensor we employ is an idealized but physically

realizable model of a point-and-shoot sensor, such as

a laser range �nder. A sensor con�guration is speci-

�ed by a placement and a viewing direction, or aim.

When in a particular con�guration, the sensor returns

a distance and normal reading to the nearest object,

which is accurate to within some known bound. Such

a ranging device has been developed in our robotics

2This is similar to the notion introduced by Buckley [6] of
a confusable set in the context of motion planning. There, two

contact points x and y are said to be confusable if they are ca-
pable of generating the same position and force measurements.
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SV (�)

p

 

Figure 2: An example sensitive volume for a general

sensor at con�guration � = (p;  ). The sensor is

placed at position p and pointed in direction  . The

sensitive volume is the lightly shaded region SV (�).

It is partly bounded by obstacles (darkly shaded).

laboratory at Cornell, and has been used for both

map-making and robot localization [4, 5].

We denote the space of sensor placements Csp
=

IR2 and the space of sensor aimsCsc
= S1. Our sensor

con�guration space is Cs = Csp
�Csc

= IR2
� S1. For

a given sensor con�guration (p;  ), the sensor returns

distance and normal readings for a subset of IR2. We

call this subset the sensitive volume of the sensor,

and denote it by SV (p;  ). Figure 2 illustrates an

example of the sensitive volume for a general sensor

at position p 2 Csp
and pointed in direction  2 Csc

.

In what follows, we restrict our attention to questions

of visibility within the sensitive volume.

For a region X in the target object's con�gura-

tion space, let R(X) denote its recognizability region,

that is, the set of all sensor placements from which

the sensor can detect an object A in region X. Let

C(X;Y ) denote the confusability region, that is, the

set of all sensor placements from which the sensor

cannot tell A 2 X and A 2 Y apart. To guar-

antee goal recognizability for an EDR strategy, we

wish to �nd a sensor placement p 2 Csp
such that

p 2 R(G) \ R(H) � C(G;H). Figure 3 illustrates a

case in which A 2 G and A 2 H may be confused.

Before we can solve the problem of sensor planning

in the EDR framework, we must develop the nec-

essary strategies for computing visibility maps and

make the notion of detectability more concrete. In

the next section we will present algorithms for com-

puting visibility maps under two models of visibility,

and will use these algorithms in subsequent sections.

G

H

A

A

p

Figure 3: An instance of confusability. A represents

the target; its reference point is indicated by the black

dot. G is the goal region and H is the failure region.

The darkly shaded polygons are obstacles. A 2 G

and A 2 H are confusable from sensor placement p.

3 Visibility algorithms

In Sections 3.1 and 3.2, we give algorithms for com-

puting the recognizability region of a target in a goal

under two di�erent notions of visibility. We justify

our use of visibility as a model for detectability by

noting that the recognizability region of a target given

most sensors is a subset of the region from which the

target is visible. For an idealized ranging device, the

visibility region of the target is equivalent to the rec-

ognizability region. The visibility regions can be re-

stricted to account for the error characteristics of the

sensor, as shown in Section 4.

Our algorithms explicitly construct the locus of

points from which a polygon is visible, and we an-

alyze how these visibility regions change as the dis-

tinguished polygon moves.

3.1 Complete visibility

In this section we consider a simpli�ed version of the

target detection problem, in which the computed sen-

sor placements are those that allow an unobstructed

view of the target. We give algorithms for detecting

a stationary target, and for detecting a target at any

position and orientation within a goal region.

Our result is the following:

Theorem 1 The recognizability region of a target

translating and rotating through a goal with k ver-

tices can be computed in time O(n�(n) + nk) in an

Page 4



Figure 4: Shadows cast by obstacle B with respect

to target G in the complete visibility model. The

shadows regions are shown darkly shaded.

environment with n vertices in the complete visibility

model.

3.1.1 The complete visibility algorithm for a

stationary target

We say that target A at con�guration q = (x; y; �)

is completely visible from sensor placement p 2 Csp

if for no point y on the boundary of the target does

the segment py intersect an obstacle. Note that py

may intersect Aq. If Aq is completely visible from p

in the presence of the obstacles then we say that the

sensor at p has an unobstructed view of the target

at con�guration q. Our algorithm assumes that no

obstacle lies within the convex hull of Aq, i.e.,

[

i

(CH(Aq) \Bi) = ;:

The idea is that each obstacle casts shadows with

respect to the target. Each shadow is a subset of the

sensor placement space Csp
from which the target is

partially occluded. See Figure 4 for an illustration.

To compute the set of placements from which the

target at con�guration (x; y; �) is completely visible,

we use the following algorithm:

Complete visibility algorithm for a stationary target

1. Construct all local inner tangents between the

obstacles and the target. Represent each tangent

as a ray anchored on a vertex of the target.

2. Extend each tangent ray starting at the point of

tangency with an obstacle until it hits an edge

Figure 5: The segments of the tangent rays used in

the arrangement computation are shown solid.

Figure 6: The arrangement cell containingG is shown

lightly shaded.

of the environment (an obstacle or the bounding

polygon). We call these segments visibility rays.

See Figure 5 for an illustration.

3. Consider the arrangement of all the polygons in

the environment, along with these visibility rays.

Compute the single arrangement cell that con-

tains the target polygon. Figure 6 gives an illus-

tration.

Complexity of the complete visibility algorithm

Let A be a polygon representing the target, and

Bi be a polygonal obstacle. If A has m vertices
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and obstacle Bi has ni vertices, we can compute the

O(ni) local inner tangents between A and Bi in time

O(mni). For an environment of obstacles with n ver-

tices overall, we can compute the O(n) local inner

tangents in time O(mn). Computing a single cell in

an arrangement is equivalent to computing the lower

envelope of a set of line segments in the plane, which

for a set of size n takes time O(n�(n)), where �(n) is

the inverse Ackerman function [24]. Thus, the over-

all time for computing the recognizability region of a

stationary target in the complete visibility model is

O(n�(n) +mn).

3.1.2 Complete visibility over a region

We now consider sensor placements with an unob-

structed view of the target at any position or orienta-

tion within a goal region G. We model the target as

a connected polygon, with a reference point that lies

inside the polygon. Note that the target is said to \lie

in the goal" if and only if its reference point lies in

the goal. The idea is that a sensor placement is valid

if and only if, as its reference point moves within the

goal, the entire swept area covered by the target is

visible. We present two algorithms below.

Complete visibility algorithm for a translating target

First consider the case where the target has a �xed,

known orientation. We further restrict the target's

motion to pure translation. Denote the target at

orientation � by A�. Consider the Minkowski sum

A� �G. A� � G is the set of points A� can occupy

when the reference point lies in G. The complete vis-

ibility region for the polygon A� � G is the set of all

sensor placements from which A� can be completely

seen when its reference point lies anywhere in G.

To compute the shadow boundaries, we introduce

local inner tangents between each obstacle and the

convex hull of A� � G, denoted CH(A� �G). Note

that this is not an approximation; only the outermost

tangents with the distinguished polygon (in this case

A� �G) generate shadows in the complete visibility

model.

We can compute the convex hull of A� � G e�-

ciently by exploiting the fact that for polygons A and

B [20]

CH(A)�CH(B) = CH(A� B):

Note that A and B do not need to be convex. So in-

stead of computingCH(A� �G) explicitly, we simply

convolve CH(A�) and CH(G).

If inner tangent e is locally tangent at obstacle ver-

tex v, then we again introduce a visibility ray that

M(G,A)

G

A

Figure 7: Target A, goalG, and the swept goal region

M (G;A).

extends e away from vertex v. The arrangement of

the visibility rays and the environment now partitions

Csp
into shadow regions and visibility regions, i.e.,

regions from which A� � G is partially occluded or

entirely visible. But instead of computing the entire

arrangement, we again note that it su�ces to com-

pute a single cell in the arrangement, namely the cell

containing the goal.

Complete visibility algorithm for a translating and ro-

tating target

Now consider the case of a target rotating and

translating through the goal. We want the set of

placements from which no portion of the target's

boundary is occluded by obstacles no matter what

position or orientation the target has within the goal.

We take the longest Euclidean distance from the tar-

get's reference point to a vertex of the target. We

call this distance the radius of the target. Suppose

the target has a radius of r and its reference point

lies at w. Then the disc of radius r centered at w

is equivalent to the area covered by the target as it

rotates around its reference point.

Hence, for target A with radius r, the Minkowski

sum of the goal G with the disc of radius r represents

the swept area covered by the target as it translates

and rotates through the goal. Call this Minkowski

sum the swept goal region M (G;A). See Figure 7

for an illustration. We now compute the set of sensor

positions that have an unobstructed view ofM (G;A).

To compute the shadow boundaries, we introduce

local inner tangents between each obstacle and the

convex hull of M (G;A). This can be accomplished

by simply computing all inner tangents between each

obstacle and the disc of radius r at each vertex of G,
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then taking the outermost tangents at each obstacle.

Once we have these inner tangents, the rest of the

algorithm is the same as above.

Complexity of the complete visibility algorithm over a

region

In the translation-only case, we �rst compute the

convex hull of A� � G. If A has m vertices and G

has k vertices, CH(A�) and CH(G) can be com-

puted in O(m logm) and O(k logk) time, respec-

tively [13]. So CH(A� �G) = CH(A�)� CH(G)

has complexity O(m + k) and can be computed in

time O(m logm + k logk).

Computing the O(n) local inner tangents between

CH(A� � G) and the environment can be done in

time O(n(m + k)). The complete visibility region

is the arrangement cell containing CH(A� � G). As

mentioned above, computing a single cell in an ar-

rangement is equivalent to computing the lower enve-

lope of a set of line segments in the plane. So the over-

all time to compute the visibility regions for a target

translating through the goal is O(n�(n)+ n(m+ k)).

In the case of a target rotating and translating

through the goal, the only di�erence between the al-

gorithm given here and the one given in Section 3.1.1

for a stationary target is that instead of computing

tangents between a stationary target and the obsta-

cles, we convolve a disc with the goal and compute

tangents between the result of this convolution and

the obstacles. In terms of complexity, the algorithms

di�er only in that the goal complexity rather than

the target complexity is relevant. Assuming that we

know the target radius r, we can compute M (G;A)

for a goal G of size k in time O(k). If obstacle Bi has

ni vertices, we can compute the O(ni) local inner tan-

gents between Bi and the convex hull of M (G;A) in

time O(kni). For an environment of obstacles with n

vertices overall, we can compute the O(n) local inner

tangents in time O(kn). So the overall time for com-

puting the recognizability region for a target rotating

and translating through the goal in the complete vis-

ibility model is O(n�(n) + nk).

3.2 Partial visibility

We turn now to the question of computing recogniz-

ability regions in the partial visibility model. First we

consider the problem of detecting a stationary target

within a polygonal obstacle environment. We then

apply these tools to the problem of detecting a trans-

lating target as it enters the goal.

We will show the following:

Theorem 2 In the partial visibility model, the recog-

nizability region of a target translating through a goal

of size k can be computed in time O(kmn3(n + m))

for an environment of complexity n and a target of

complexity m.

3.2.1 The partial visibility algorithm for a

stationary target

We say that target A is partially visible from sensor

placement p 2 Csp
if at least one point in the closure

of A is visible from p.

For target A at con�guration q 2 Cr, we construct

the partial visibility region using an approach similar

to that given by Suri and O'Rourke for computing

the region weakly visible from an edge [27]. Our al-

gorithm is as follows:

Partial visibility algorithm for a stationary target

1. Construct the visibility graph for the entire envi-

ronment, consisting of distinguished polygon A

and obstacles B.

2. Extend each edge of the visibility graph maxi-

mally until both ends touch an edge of the envi-

ronment. If neither of the endpoints of the ex-

tended visibility edge lie on the polygon A, dis-

card the visibility edge. Otherwise, clip the edge

at its intersection with A and call this piece a

visibility ray .

3. For each vertex v in the environment, perform

an angular sweep of the visibility rays incident

to v. If A remains visible to v throughout the

swept angle between two adjacent visibility rays

anchored at v, then the triangular swept region

is output as a visibility triangle.

The union of these visibility triangles forms the re-

gion from which A is partially visible. The comple-

ment of the union of triangles and the environment is

a collection of holes in the visibility region, which we

call shadows. Figure 9 shows the shadows for an ex-

ample environment. This example demonstrates the

fact that in the partial visibility model, shadows are

not necessarily bounded by tangents between an ob-

stacle and the goal.

Complexity of the partial visibility algorithm

Suppose the obstacles and bounding polygon to-

gether have n vertices, and the target has m ver-

tices. The visibility graph for this environment, the

basic data structure used in the algorithm, has size
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A

B2

v

B1

Figure 8: An angular sweep between two visibility

rays at vertex v. The lightly shaded regions are visi-

bility triangles.

Figure 9: The shadows cast by obstacles B1, B2, and

B3 are shown shaded. The complement of the shad-

ows, the obstacles, and the target forms the partial

visibility region of target A.

O(n(n+m)). Note that we are not interested in vis-

ibility edges between the vertices of the target itself.

The extended visibility graph will, in practice, have

fewer edges than the basic visibility graph, since we

only keep the edges whose extensions intersect the

target. Its worst-case complexity, however, remains

O(n(n + m)). Each vertex of the environment has

O(n+m) visibility rays incident to it. Therefore each

vertex contributes O(n + m) visibility triangles, so

we have O(n(n + m)) visibility triangles overall. In

general, the union of these triangles has complexity

O(n2(n + m)2). As was mentioned in the paper by

Suri and O'Rourke [27], the triangles can be output in

constant time per triangle: Asano et al. have shown

that the visibility edges at a vertex v can be obtained

sorted by slope in linear time with Welzl's algorithm

for computing the visibility graph [30, 1]. Thus, the

overall time for explicitly computing the boundary of

the partial visibility region for target A at any �xed

con�guration q is O(n2(n+m)2). The region can be

given as a union of triangles, without computing the

boundary, in time O(n(n+m)).

3.2.2 Partial visibility over a region

The algorithm above solves the problem of detect-

ing a stationary target in the partial visibility model.

We now address the problem of maintaining line-of-

sight contact with the target as it moves within the

con�nes of a particular polygon, for example, as the

target moves within the goal. How do the visibility

triangles and shadows change as the target moves? To

answer this question, we need to introduce some ad-

ditional terminology. Let e be a visibility edge whose

associated visibility ray intersects the target at point

x. The endpoint of e lying closer to x (possibly x

itself) is de�ned as the anchor vertex of e, while the

further endpoint is called the attachment vertex of e.

If a vertex of the shadow (considering the shadow as

a polygon) lies in free space, i.e., if it lies inside the

bounding polygon and is not on the boundary of an

obstacle, then we call it a free vertex of the shadow.

As the target translates, free shadow vertices trace

out point conics if their generating edges are anchored

on the target [3].

3.2.3 Swept shadows in the partial visibility

model

We have shown how to compute shadows for any �xed

target position, and have discussed how these shad-

ows change as the target translates. In order to detect

the target as it enters the goal, we must compute the

shadows swept for all positions of the target in the
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goal. We de�ne a swept shadow of the goal in the

partial visibility model to be a maximal connected

region of Csp
such that for each point p in the re-

gion, there exists a con�guration of the target in the

goal from which the target is totally occluded.

We compute swept shadows for the target at a

�xed orientation anywhere in the goal by translat-

ing the target polygon along the edges of the goal

polygon. The boundary of a swept shadow is com-

posed of obstacle segments and the curves (lines and

conics) traced by free vertices. Discontinuities in the

boundary of a swept shadow occur at critical events.

We characterize the critical events as follows:

1. A moving visibility ray becomes aligned with a

�xed edge of the visibility graph.

2. A free vertex of a shadow intersects an obstacle

edge or the bounding polygon.

3. Two moving visibility rays bounding a shadow

become parallel.

Below we present our algorithm for computing the

partial visibility region of a target as it translates

through the goal at a known orientation �. This gives

us the set of all sensor placements from which at least

one point on the boundary of the target can be seen,

no matter where the target is in the goal.

Partial visibility algorithm for a translating target

1. Let e be any edge of goal G. Consider A� to be

placed on one of the endpoints of e. Call this

con�guration q. Construct the partial visibility

region of target A at con�guration q.

2. Translate A� along e. As the shadows cast by

the obstacles change, call the area swept out

by a shadow a swept shadow. Between critical

events, the vertices of each shadow move along

lines or conics. The equations of these curves can

be computed algebraically given the positions of

the obstacles in the environment and the visi-

bility rays. Update the boundary of the swept

shadows at critical events.

3. Translate A� along all other edges ei, 1 � i � k,

of G, repeating step 2 for each edge.

4. Compute each swept shadow independently as

described in the above steps. The complement

of the union of all the swept shadows, the target,

and the obstacles is the partial visibility region.

The output of the algorithm is the set of swept

shadows. Note that the boundary of a swept shadow

is piecewise linear and conic.

Complexity of the partial visibility algorithm over a

region

The extended visibility edges bounding the shad-

ows are all either external local tangents between an

obstacle and the target, or internal local tangents be-

tween obstacles. Since the obstacles are �xed, the

visibility edges between them remain �xed. As the

target moves, the only visibility edges that move are

those that are anchored on a vertex of the target.

With n vertices in the environment and m target

vertices, there are O(mn) moving visibility edges. As

the target translates along an edge of the goal, a visi-

bility edge anchored at target vertex ai and attached

at obstacle vertex bj could become aligned with each

of the O(n) �xed visibility edges at obstacle vertex

bj. This gives O(mn
2) critical events of the �rst type

as the target translates along an edge of the goal.

There are O(m2n2) free vertices tracing out curves,

which may intersect each of the O(n) obstacle seg-

ments. This gives O(m2n3) critical events of the sec-

ond type. When the third type of critical event oc-

curs, a free vertex disappears. There are O(m2n2) of

these events.

At a critical event of the �rst type, a visibility ray

appears or disappears, causing a visibility triangle to

appear or disappear. The total cost of handling all

updates of this type is O(mn3(n + m)). Only local

change is caused by events of the second type and

third type.

Between critical events, we simply grow the shad-

ows, either along lines or conics. Note that the shad-

ows never shrink: A point p 2 Csp
is in a shadow

with respect to a polygonal goal if there exists some

target con�guration such that the target is not at all

visible from p. The computation of swept shadows

is done by translating the target polygon along the

edges of the goal, updating the boundary at critical

events. The total running time of the algorithm for a

goal with k vertices is O(kmn3(n +m)).

4 Uncertainty in sensor place-

ment and aim

A real sensor cannot be con�gured exactly. Rather,

it will be subject to both errors in placement and er-

rors in aim. These errors depend on the sensor plat-

form (e.g., a mobile robot). Therefore we would like

to compute sensor strategies that take uncertainty in

sensor con�guration into consideration. In this sec-

tion, we sketch how the computation of visibility re-

gions can be extended to handle this type of sensor
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Figure 10: A narrow visibility triangle anchored at

vertex v is shown lightly shaded.

error. Our approach does not address the problem of

sensor measurement error.

Positional uncertainty characterizes the sensor

placement error. Let �pos denote the worst-case po-

sitional uncertainty of the sensor. If the commanded

sensor placement is p, the actual sensor placement

could be any position in the disc of radius �pos cen-

tered at p. We handle positional uncertainty by grow-

ing the shadows by the uncertainty ball of radius �pos.

The complement of the union of these grown shadows

and the environment will be the visibility region that

accounts for uncertainty in sensor position.

Directional uncertainty characterizes the sensor

aim error. Let � denote the maximum angular error

of the sensor aim. That is, if the commanded sens-

ing direction is  , the actual sensor heading could be

any direction in the cone ( � �;  + �). The e�ect of

sensor directional uncertainty is that we must disal-

low angularly narrow wedges of visibility. This type

of uncertainty is most relevant in the case of partial

visibility. See Figure 10 for an illustration of a narrow

visibility triangle. This triangle does not become part

of the visibility region when directional uncertainty is

considered.

After we compute the visibility rays as described in

Section 3.2.1, we visit each vertex in the environment,

and combine adjacent visibility triangles that end on

the same polygon. We make the following de�nitions:

1. The maximal union of adjacent visibility trian-

gles anchored on a single vertex v and ending on

the same polygon is called a visibility polygon.

By construction, visibility polygons are simple.

2. The core triangle of a visibility polygon anchored

at v is the maximal inscribed triangle whose apex

is v.

If the angle at the apex of such a maximal visibility

triangle is less than our angular uncertainty bound �,

we discard the polygon. Otherwise, we classify the

maximal visibility triangle as an �-fat triangle. After

this processing, we now have O(n(n+m)) fat visibility

triangles. We can now use a result of Matou�sek et al.

[21] on the union of fat triangles. Their result bounds

the number of holes in a union of fat triangles. In our

case, the \holes" are shadows in a union of visibility

triangles. Their theorem states that for any �xed

� > 0, and any family F of n �-fat triangles, their

union has O(n=�O(1)) holes. When we restrict our

visibility triangles to be at least �-fat, we have at

most O((n(n +m))=�O(1)) shadows.

When � is a �xed constant, we have at most

O(n(n+m)) shadows. In e�ect, this means that con-

sidering directional uncertainty actually lowers the

complexity of computing the recognizability region.

Note that our construction yields a conservative ap-

proximation to the recognizability region under un-

certainty.

The next section extends the sensor placement al-

gorithms presented here to the domain of Error De-

tection and Recovery by avoiding placements that

could give ambiguous readings.

5 Avoiding confusable place-

ments

The set C(G;H) is the set of all sensor placements

that could lead to confusion ofG andH. A placement

p is in the confusable region if the only visible portion

of the target polygon could be due to an edge of A in

G or an edge of A in H.

Note that a sensor reading that confuses a target

Aq in G with a target Aq0 in H is due to an edge of

Aq being colinear with an edge of Aq0 . See Figure 11

for an example.

For each pair of edges (ei; ej) having the same ori-

entation, we compute the overlap region O(ei; ej) =

(ei � G) \ (ej �H). We de�ne O� to be the union

of all O(ei; ej) for all pairs of edges (ei; ej) having

orientation �. See Figure 12.

The confusable region is de�ned as

C(G;H) = fp j 9q 2 G [H; 8 : (SV (p;  ) \Aq)

� O(ei; ej) for some (ei; ej):g:
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p

H

G Aq

Aq0

Figure 11: A sensor reading that confuses Aq 2 G

and Aq0 2 H is due to an edge of Aq being colinear

with an edge of Aq0 . The darkly shaded rectangles

are obstacles.

A e

H

G

e� G

e �H

O�

Figure 12: Edge e at orientation � of target A is

convolved with G and H. The darkly shaded region

is the overlap O�. Sensor readings in O� can lead to

confusion of G and H.

5.1 Discrete goal and failure regions

Before turning to the problem of handling polygonal

goal and failure regions, we �rst consider the case in

which the goal and failure regions are discrete points.

Our technique for computing the set of good sensor

placements is to �rst compute the set of overlap re-

gions, and then compute the recognizability regions

for the non-overlap portion of A in G and the non-

overlap portion of A in H. The algorithm is as fol-

lows:

1. Compute all overlap regions O(ei; ej) for all pairs

of edges (ei; ej) having the same orientation.

Note that in the case of point-sized goal and fail-

ure regions, the overlap regions consist of edge

segments.

2. Perform the following steps for A in G and A in

H:

(a) Construct a new target A0 by deleting the

overlap segments from A. Figure 13 illus-

G H

A 2 G A 2 HA0

Figure 13: The set of thick solid edges comprises A0

for A 2 G. The dashed line outlines the target poly-

gon in the failure region H. The thick dashed line is

the overlap region.

A0

G H

B1

B2

v

Figure 14: An angular sweep between two visibility

rays at vertex v. The lightly shaded regions are vis-

ibility triangles. The thick solid edges comprise A0,

and the dashed line is the overlap region.

trates the overlap for a point-sized goal and

failure region. The new target consists of a

set of edge segments, where each edge seg-

ment has an associated outward-facing nor-

mal, so it is visible only from one side.

(b) Compute the set of visibility triangles for

target A0 using the partial visibility algo-

rithm for a stationary target as described

in Section 3.2. Figure 14 gives an illustra-

tion of some visibility triangles.

(c) Compute the union of the visibility trian-

gles formed above. This is the partial visi-

bility region for the non-overlap portion of

A at this con�guration.

3. Compute the intersection of the two visibility re-

gions computed for A in G and A in H in steps

2(a){2(c) above. This gives the set of all sensor

placements from which both A in G and A in H

can be recognized, but not confused.
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5.2 Polygonal goal and failure regions

In the case of polygonal goal and failure regions, the

computation of R(G) \R(H) �C(G;H) is an incre-

mental one. Recall that each overlap region is due to

an edge of A in G being colinear with an edge of A in

H. In this case, the overlap region (ei � G)\(ej �H)

for parallel edges ei and ej is formed by a line sweep-

ing through a region determined by G and H.

To determine the set of placements from which G

and H can be distinguished but not confused, we do

the following:

1. Compute the set of overlap regions O� for all

orientations � of the edges of A.

2. Place A at a vertex of G. Let A0(q) = Aq �

(Aq \ ([O�) be the set of edge segments of A at

con�guration q not intersecting any O�.

3. Compute the partial visibility region of A0(q) as

it sweeps through G, as described in Section 3.

Note that the endpoints of the edges of A0(q) are

not �xed, but vary during the sweep.

4. Repeat steps 2 and 3 for A sweeping through H.

5. Take the intersection of the regions computed for

A sweeping through G and H, respectively.

The resulting region is the set of all placements

from which A at any position in G [ H can be de-

tected, but A 2 G and A 2 H can not be confused.

6 Experimental results

The algorithms for computing the complete and par-

tial visibility regions of a polygon have both been

implemented and used in conjunction with existing

packages for graphics, geometric modeling, and plane

sweep.

We used the implementation of the complete vis-

ibility algorithm to build a demonstration of robot

surveillance using two of the mobile robots in the

Cornell Robotics and Vision Laboratory. The au-

tonomous mobile robots are called Tommy and Lily.

The task was for Tommy to detect when Lily en-

tered a particular doorway of the robotics lab. Ini-

tially Tommy is at a position from which this door-

way cannot be seen. Below we describe the various

components of the system.

6.1 The visibility component

We constructed by hand a map of our lab, and used

that map as the input environment to the complete

visibility system. The map and the computed visibil-

ity region of the doorway are shown in Figure 15.

Tommy's task was to monitor the doorway, which

is marked in the Figure with \G". The dark gray re-

gions are obstacles representing real objects in the

room | chairs, desks, couches, bookshelves, etc.

Given that most of the objects are regularly shaped

and resting on the 
oor, the idea of using polygons as

\footprints" of 3D objects turned out to give a good

approximation of the 3D geometry. Given this map,

our algorithms give us the exact placements from

where the doorway can be monitored. The lightly

shaded region in Figure 15 is the complete visibility

region for this environment | the exact set of place-

ments from where the doorway can be entirely seen

with a sensing device such as a CCD camera.

6.2 Choosing a new placement

Based on the visibility region and the initial con�g-

uration of Tommy, a new con�guration is computed

inside the visibility region. A motion plan to reach

that new con�guration is generated along with the

distance from there to the goal.

In particular, we do the following to choose such

a placement. We �rst shrink the visibility region to

account for model and sensor uncertainty. The proce-

dure to perform this shrinking returns a list of edges

making up the shrunk visibility region. We now want

to choose a new point inside this shrunk visibility re-

gion, one that is closest to the current position of the

robot. We use the following heuristic to �nd such a

point: we discretize the edges of the shrunk visibility

region, obtaining a list of candidate points. We then

sort this list of points by distance from the current

position of the robot. Then test each of the points,

searching for one that is reachable from the current

position in a one-step motion. The �rst such point

found is returned as the new con�guration. If no

such point is found, this is signaled. This could be

due to two reasons: a point reachable in a one-step

motion was missed due to the discretization being

too coarse, or no one-step motion plan exists (i.e.,

the robot would have to move around corners, or can

not reach the visibility region at all). While the for-

mer case could easily be �xed by iteratively re�ning

the discretization, the latter case requires the use of

a full-
edged motion planner.

Figure 16 shows the shrunk visibility region and

one of the starting points we used, as well as the new

placement which was computed using the method de-

scribed above.
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Figure 15: The map and complete visibility region for the robotics lab.

Figure 16: The shrunk visibility region, the computed new con�guration and the one-step motion.
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Figure 17: Our model of Lily.

6.3 Computing the viewing direction

The planner computes a viewing direction depend-

ing on the new placement and information obtained

from the map. We �x a coordinate frame for the lab

with the origin in one corner of the room. Then we

compute the vector between the new computed place-

ment and the centroid of the goal. The � component

of the new con�guration is simply the angle of this

vector. The �nal output from the planner is a vector

containing the x-, y-, and �-components of the new

con�guration, along with the distance in world coor-

dinates from this new con�guration to the centroid of

the goal.

6.4 Locating Lily

Lily's task is to move into the doorway and wait

for Tommy. Lily is run without a tether. She is

programmed to translate a �xed distance and stop

(in the center of the doorway). She then waits until

her bump sensors are activated. When a bumper is

pressed, Lily translates a �xed distance in reverse,

rotates by 180 degrees, and then translates forward a

�xed distance in order to leave the room.

Here is how the surveillance and recognition parts

of the system work.

We �rst built a calibrated visual model of Lily. We

used the Panasonic CCD camera mounted on Tommy

to take a picture of Lily from a known �xed distance

(4 m). We then computed the intensity edges for that

image using an implementation of Canny's edge de-

tection algorithm [8]. The actual model of Lily that

we created and used is shown in Figure 17. We did

not alter the intensity edges that Canny's algorithm

output, and experimentation demonstrated that our

results are relatively insensitive to the particular im-

age taken.

Based on the distance information from Tommy's

Figure 18: Intensity edges for the cropped image.

new con�guration, the model edges are scaled to the

expected size of Lily's image as seen from this con�g-

uration, using the fact that the image size is inversely

proportional to the distance.

The video camera on Tommy is used to repeat-

edly grab image frames, which along with the scaled

model are input to a matcher that operates on edge

images. The following loop is performed until a match

is found:

1. Grab a frame.
2. Crop it, keeping only the portion of the image

where Lily is expected to be.
3. Compute intensity edges for the cropped image.
4. Run the matcher to �nd an instance of the scaled

model in the cropped image.

Figure 18 shows the intensity edges for a crop of one

of the images that was grabbed with Tommy's video-

camera once Tommy had moved into the computed

con�guration.

The matcher used in the experiment is based on

the Hausdor� distance between sets of points and was

written by WilliamRucklidge [25] and has been used

extensively in the Cornell Robotics and Vision Lab-

oratory for image comparison, motion tracking, and

visually-guided navigation [17].

The particular matcher used here is a translation-

only matcher that uses a fractional measure of the

Hausdor� distance. Matches are found by search-

ing the 2D space of translations of the model, and

computing the Hausdor� distance between the image

and the translated model. A match occurs when the

Hausdor� distance of a certain fraction of the points

is below some speci�ed threshold. All translations of

the model that �t the image are returned.

The dark gray outline in Figure 19 shows all

matches that were found between the scaled model

of Lily and the image in Figure 18.
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Figure 19: Matches found between the image and the

scaled model.

Based on where Lily is found in the image,Tommy

�rst performs a rotational correction so that Lily is

centered in the image. An estimated value for the fo-

cal length of the camera was used to perform a rota-

tion to correct for errors in dead reckoning. Tommy

then moves across the room to where Lily is using a

simple guarded move.

6.5 Analysis

We videotaped several runs of the system. For these

runs, we used two di�erent starting positions for

Tommy, on di�erent sides of the room, both from

where the goal doorway could not be seen. We

also demonstrated the robustness of the system by

having people enter and leave through the doorway

while Tommy was monitoring it. The system per-

formed consistently well. Tommy never reported a

false match | neither when the doorway was empty,

nor when other people stood in the doorway. Once

Lily was in position, the recognition component (on

a SPARC 20 running Solaris) typically took 2{4 sec-

onds to locate Lily. Disk access time accounted for

some of this time (saving and loading image �les) and

could be eliminated by using a di�erent �le access

strategy.

7 Conclusion

In this paper we explored the problem of automatic

sensor placement and control. We presented methods

for computing the placements fromwhich a sensor has

an unobstructed or partially obstructed view of a tar-

get region, enabling the sensor to observe the activity

in that region. In particular, we have presented al-

gorithms for computing the set of sensor placements

a�ording complete or partial visibility of a stationary

target, complete visibility of a target at any position

or orientation within a goal, and partial visibility of

a target translating through a goal at a known ori-

entation. The algorithms account for uncertainty in

sensor placement and aim.

The Error Detection and Recovery (EDR) system

of Donald [12] provides a framework for construct-

ing manipulation strategies when guaranteed plans

cannot be found or do not exist. An EDR strategy

attains the goal when the goal is recognizably reach-

able, and signals failure otherwise. Our results extend

the guarantee of reachability to a guarantee of recog-

nizability for the case of a polygon translating in the

plane. In future work we plan to address the problem

of planning sensing strategies when the target poly-

gon may translate and rotate, resulting in unknown

orientations of the target in G and H.

The implementation of the complete visibility algo-

rithm was used as the planning component in a robot

surveillance system employing both task-directed and

visually-cued strategies. The system plans and exe-

cutes sensing strategies that enable a mobile robot

equipped with a CCD camera to monitor a particu-

lar region in a room, and then react when a speci�c

visually-cued event occurs. Our experimental results

demonstrate both the robustness and applicability of

the visibility algorithms we have developed. They

show that complete visibility of a goal region can be

computed e�ciently, and provides a good model of

detectability in an uncluttered environment. We be-

lieve that this successful e�ort has validated our prin-

cipled approach to planning robot sensing and control

strategies.
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