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Abstract

We consider the problem of planning sensor strate-
gies that enable a sensor to be automatically config-
ured for robot tasks. In this paper we present ro-
bust and efficient algorithms for computing the re-
gions from which a sensor has unobstructed or par-
tially obstructed views of a target in a goal. We apply
these algorithms to the Error Detection and Recovery
problem of recognizing whether a goal or failure re-
gion has been achieved. Based on these methods and
strategies for visually-cued camera control, we have
built a robot surveillance system in which one mobile
robot navigates to a viewing position from which it
has an unobstructed view of a goal region, and then
uses visual recognition to detect when a specific tar-
get has entered the room.

1 Introduction

This paper introduces a computational framework in
which to study the problem of sensor configuration,
and develops combinatorially precise algorithms for
computing partial and complete visibility maps.

A primary motivation for this work 1s in the domain
of cooperating robots. Suppose robot A is perform-
ing a task, and robot B is equipped with sensors and
should “watch” robot A. Then our algorithms can
be used, for example, to compute the regions that B
should not enter, if A is to remain visible. Less gen-
erally, A and B could be part of the same robot, for
example, a physically distributed but globally con-
trolled system.
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The Error Detection and Recovery Framework [12]
provides a natural problem domain in which to ap-
ply our strategies. An Error Detection and Recovery
(EDR) strategy is one that is guaranteed to achieve
a specified goal when the goal is recognizably achiev-
able, and signals failure otherwise. Our algorithms
can be used in conjunction with an EDR planner to
compute where a sensor should be placed in order
to recognize success or failure of a motion plan. We
explore this problem in Section 5.

Many other applications of automatic sensor con-
figuration arise in the area of robot surveillance. In
particular, our algorithms apply to the problems of
intruder detection, execution monitoring, and robot
reconnaissance. A natural extension of our work can
be made to the problem of beacon placement for robot
navigation. In Section 6 we discuss a robot surveil-
lance demonstration system that we built using an
implementation of some of the algorithms in this pa-
per.

In this paper we restrict our attention to visibil-
ity and recognizability problems in the plane. We
show that even in the 2D case, the geometric compu-
tations are nontrivial and significant computational
issues arise, making the 200 case a natural first con-
sideration. Furthermore, planning motions for a mo-
bile robot often reduces to a computation in 20: a
mobile robot that maintains contact with the floor
usually navigates among obstacles that can be mod-
eled as swept polygons. When the 3D obstacles are
projected to the floor, their 2D footprints yield a map
in 2D. For these reasons, this and much other work
in the field of visual agents is in 2D.

1.1 Error detection and recovery

Much of the early work in robotics focused on devel-
oping guaranteed plans for accomplishing tasks spec-
ified at a high level. Such task specifications might
be of the form “mesh these two gears”, or “place part
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Figure 1: An example setup for the problem of sensor
configuration in EDR. A represents the target; its
reference point is indicated by the black dot. (' is the
goal region and H is the failure region. The darkly
shaded polygons are obstacles. The problem is to find
a sensor placement from which A € GG and A € H can
be distinguished.

K

A inside region B”. It is not always possible, how-
ever, especially in the realm of assembly planning,
to generate guaranteed plans. For example, errors
in tolerancing of the parts might render an assem-
bly infeasible. The Error Detection and Recovery
(EDR) framework of Donald was developed to deal
with these inadequacies of the guaranteed planning
framework. EDR strategies will either achieve a goal
if it is recognizably reachable, or signal failure. Given
a geometrically-specified goal region G, an EDR strat-
egy involves computing a failure region H and a mo-
tion plan that will terminate recognizably either in
G or H. The EDR framework guarantees that under
generalized damper dynamics', the robot will even-
tually reach G or H. Furthermore, having entered
G or H, it will never leave. Given this guarantee of
reachability, we wish to strengthen it to a guaran-
tee of recognizability: we want to know which of GG
and H has been attained. The visibility algorithms
presented in Section 3 will be used in showing how
a sensor can be configured to distinguish between a
target in G and a target in H. Figure 1 gives an
example of the problem we would like to solve.

YThe generalized damper is a dynamical model specified by
the relationship F' = B(v — vg) between forces and velocities,
where F' is the vector of forces and torques acting on a moving
object, vy is the commanded velocity, v is the actual velocity,
and B is a damping matrix. For more details, see Donald [12].

1.2 Related Work

The sensor placement problem has previously been
addressed by Nelson and Khosla [22] and Kutu-
lakos, Dyer, and Lumelsky [18] for visual tracking
and vision-guided exploration. Several researchers
have explored the problem of optimal sensor place-
ment. Cameron and Durrant-Whyte [7] and Hager
and Mintz [15] present a Bayesian approach to opti-
mal sensor placement.

Hutchinson [16] introduces the concept of a wvisual
constraint surface to control motion. The idea is to
combine position, force, and visual sensing in order
to produce error-tolerant motion strategies. His work
builds on that of preimage planners by adding vi-
sual feedback to compensate for uncertainty. Details
on the implementation of vision-based control are de-
scribed by Hutchinson and Castafio [9)].

Sharma and Hutchinson [26] define a measure of
robot motion observability based on the relationship
between differential changes in the position of the
robot to the corresponding differential changes in the
observed visual features. Lacroix, Grandjean, and
Ghallab [19] describe a method for selecting view
points and sensing tasks to confirm an identification
hypothesis.

Cowan and Kovesi [10] study the problem of auto-
matic camera placement for vision tasks. They con-
sider the constraints on camera location imposed by
resolution and focus requirements, visibility and view
angle, and forbidden regions depending on the task.
Given values bounding these constraints, they com-
pute the set of camera locations affording complete
visibility of a surface in 3D. Zhang [31] considers the
problem of optimally placing multiple sensors.

A different approach from the one taken in this
paper to the incorporation of sensor planning in the
EDR framework was first presented by Donald [12].
In that approach, an equivalence is established be-
tween sensing and motion in configuration space. Ac-
tive sensing for a mobile robot is reduced to motion,
by exploiting the similarity between visibility and
generalized damper motions. In contrast, we present
here a framework that is closer to actual sensors.

Research in the area of art gallery theory has in-
troduced and addressed many problems pertaining
to polygon visibility. The art gallery problem is to
determine the minimum number of guards sufficient
to guard the interior of a simple polygon (see [23]
for more details). Sensor configuration planning ad-
dresses the related question of where sensors should
be placed in order to monitor a region of interest. In
this case we are interested in external visibility of a
polygon rather than internal visibility. Furthermore,
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because we employ real sensors, considerations of un-
certainty must be taken into account.

The questions of detecting polygon visibility and
constructing visibility regions under a variety of as-
sumptions is a rich area of past and ongoing research
in computational geometry. We mention here a few of
the papers most closely related to our problem. Suri
and O’Rourke [27, 23] give an O(n?) algorithm for
the problem of computing the locus of points weakly
visible from a distinguished edge in an environment
of line segments. Their lower bound of (n*) for ex-
plicitly constructing the boundary of the weak visi-
bility region holds as well for our computation of rec-
ognizability regions under a weak visibility assump-
tion. Bhattacharya, Kirkpatrick and Toussaint [2] in-
troduce the concept of sector visibility of a polygon,
and give ©(n) and Q(nlogn) bounds, depending on
the size of the visibility wedge, for determining if a
polygon is weakly externally visible. The problem
of planar motion planning for a robot with bounded
directional uncertainty is considered by de Berg et
al. [11]. They give algorithms for constructing the
regions from which goals may be reached, and show
that the complexity of the regions depends on the
magnitude of the uncertainty angle.

Teller [29] solves the weak polygon visibility prob-
lem for a special case in 30. Namely, he computes
the antipenumbra (the volume from which some, but
not all, of a light source can be seen) of a convex
area light source shining through a sequence of con-
vex areal holes in three dimensions. For an environ-
ment of total edge complexity n, he gives an O(n?)
time algorithm for computing the piecewise-quadratic
boundary of the antipenumbra, which will be non-
convex and disconnected in general.

Tarabanis and Tsai [28] examine the question of
complete visibility for general polyhedral environ-
ments in 3D. For a feature polygon of size m and
a polyhedral environment of size n, they present an
O(m3n3) algorithm for computing the locus of all
viewpoints from which the fixed feature polygon can
be entirely seen.

Guibas, Motwani and Raghavan consider an ab-
straction of the robot localization problem [14].
Given a simple polygon P (representing the map of
a known environment) and a star-shaped polygon V
(representing the portion of the map visible from the
robot’s position), the problem is to find a point or set
of points in P from which the portion of P that is vis-
ible is congruent to V (i.e., given V, the robot must
determine its position in P). They give a method of
preprocessing P so that subsequent queries V' can be
answered in optimal time in the size of the output.

1.3 Outline of paper

The remainder of the paper is organized as follows.
In Section 2 we introduce our approach and define
the notions of recognizability and confusability. Us-
ing point-to-point visibility as a model of detectabil-
ity, we present in Section 3 our algorithms for com-
puting recognizability regions for a target polygon at
a known orientation in the plane. The computed re-
gions can be restricted to account for the error charac-
teristics of the sensor, as shown in Section 4. In Sec-
tion 5 we apply these algorithms to the EDR frame-
work, and show how to compute the set of sensor
configurations so that readings that lead to confusion
of G and H are avoided. Our experimental results us-
ing mobile robots in the Cornell Robotics and Vision
Laboratory are presented in Section 6.

2 Preliminaries and definitions

We will start by introducing the notation used
throughout this paper, and by formalizing the prob-
lems to be solved.

An EDR plan is a motion plan that achieves ei-
ther G or H, and must be able to report which of G
or H has been reached. We develop a method here
of determining how a sensor should be configured so
that this goal recognizability can be achieved. The
basic idea is that the sensor should be positioned in
such a way that attainment of the goal G can be rec-
ognized, attainment of the failure region H can be
recognized, and attainment of G and H cannot be
confused.? That is, given that we know target A is in
G U H, we can determine which of G or H contains
A.

Our target configuration space is denoted C), and
in this paper we consider two types of planar motion.
We have C, = IR? when the target has two trans-
lational degrees of freedom and a fixed orientation.
When the target is allowed to both translate and ro-
tate in the plane, the target configuration space is
R* x S

The sensor we employ is an idealized but physically
realizable model of a point-and-shoot sensor, such as
a laser range finder. A sensor configuration is speci-
fied by a placement and a viewing direction, or aim.
When in a particular configuration, the sensor returns
a distance and normal reading to the nearest object,
which is accurate to within some known bound. Such
a ranging device has been developed in our robotics

2This is similar to the notion introduced by Buckley [6] of
a confusable set in the context of motion planning. There, two
contact points z and y are said to be confusable if they are ca-
pable of generating the same position and force measurements.
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Figure 2: An example sensitive volume for a general
sensor at configuration ¢ = (p,t). The sensor is
placed at position p and pointed in direction . The
sensitive volume is the lightly shaded region SV (¢).
It is partly bounded by obstacles (darkly shaded).

laboratory at Cornell, and has been used for both
map-making and robot localization [4, 5].

We denote the space of sensor placements Cs, =
IR? and the space of sensor aims C_ = S'. Our sensor
configuration space is Uy = U, x Cs_ = IR? x St. For
a given sensor configuration (p, ¢), the sensor returns
distance and normal readings for a subset of IR*. We
call this subset the sensitive volume of the sensor,
and denote it by SV (p,). Figure 2 illustrates an
example of the sensitive volume for a general sensor
at position p € (s, and pointed in direction ¢ € C_.
In what follows, we restrict our attention to questions
of visibility within the sensitive volume.

For a region X in the target object’s configura-
tion space, let R(X) denote its recognizability region,
that is, the set of all sensor placements from which
the sensor can detect an object A in region X. Let
C(X,Y) denote the confusability region, that is, the
set of all sensor placements from which the sensor
cannot tell A € X and A € Y apart. To guar-
antee goal recognizability for an EDR strategy, we
wish to find a sensor placement p € Cf, such that
p € R(G)NR(H)— C(G, H). Figure 3 illustrates a
case in which A € G and A € H may be confused.

Before we can solve the problem of sensor planning
in the EDR framework, we must develop the nec-
essary strategies for computing visibility maps and
make the notion of detectability more concrete. In
the next section we will present algorithms for com-
puting visibility maps under two models of visibility,
and will use these algorithms in subsequent sections.

Figure 3: An instance of confusability. A represents
the target; its reference point is indicated by the black
dot. G is the goal region and H is the failure region.
The darkly shaded polygons are obstacles. A € G
and A € H are confusable from sensor placement p.

3 Visibility algorithms

In Sections 3.1 and 3.2, we give algorithms for com-
puting the recognizability region of a target in a goal
under two different notions of visibility. We justify
our use of visibility as a model for detectability by
noting that the recognizability region of a target given
most sensors is a subset of the region from which the
target is visible. For an idealized ranging device, the
visibility region of the target i1s equivalent to the rec-
ognizability region. The visibility regions can be re-
stricted to account for the error characteristics of the
sensor, as shown in Section 4.

Our algorithms explicitly construct the locus of
points from which a polygon is visible, and we an-
alyze how these visibility regions change as the dis-
tinguished polygon moves.

3.1 Complete visibility

In this section we consider a simplified version of the
target detection problem, in which the computed sen-
sor placements are those that allow an unobstructed
view of the target. We give algorithms for detecting
a stationary target, and for detecting a target at any
position and orientation within a goal region.

Our result is the following:

Theorem 1 The recognizability region of a target

translating and rotating through a goal with k ver-
tices can be computed in time O(na(n) + nk) in an
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Figure 4: Shadows cast by obstacle B with respect
to target (G in the complete visibility model. The
shadows regions are shown darkly shaded.

environment with n vertices in the complete visibility
model.

3.1.1 The complete visibility algorithm for a
stationary target

We say that target A at configuration q = (z,y,6)
is completely visible from sensor placement p € Cj,
if for no point y on the boundary of the target does
the segment py intersect an obstacle. Note that py
may intersect Aq. If Aq is completely visible from p
in the presence of the obstacles then we say that the
sensor at p has an wunobstructed view of the target
at configuration q. Our algorithm assumes that no
obstacle lies within the convex hull of Ag, 2.e.,

(CH(Aq) N Bi) = 0.

K3

The idea is that each obstacle casts shadows with
respect to the target. Each shadow is a subset of the
sensor placement space Cfy, from which the target is
partially occluded. See Figure 4 for an illustration.
To compute the set of placements from which the
target at configuration (z,y, 0) is completely visible,
we use the following algorithm:

Complete visibility algorithm for a stationary target

1. Construct all local inner tangents between the
obstacles and the target. Represent each tangent
as a ray anchored on a vertex of the target.

2. Extend each tangent ray starting at the point of
tangency with an obstacle until it hits an edge
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Figure 5: The segments of the tangent rays used in
the arrangement computation are shown solid.
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Figure 6: The arrangement cell containing G is shown

lightly shaded.

of the environment (an obstacle or the bounding
polygon). We call these segments visibility rays.
See Figure 5 for an illustration.

3. Consider the arrangement of all the polygons in
the environment, along with these visibility rays.
Compute the single arrangement cell that con-
tains the target polygon. Figure 6 gives an illus-
tration.

Complezity of the complete visibility algorithm

Let A be a polygon representing the target, and
B; be a polygonal obstacle. If A has m vertices
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and obstacle B; has n; vertices, we can compute the
O(n;) local inner tangents between A and B; in time
O(mn;). For an environment of obstacles with n ver-
tices overall, we can compute the O(n) local inner
tangents in time O(mn). Computing a single cell in
an arrangement is equivalent to computing the lower
envelope of a set of line segments in the plane, which
for a set of size n takes time O(na(n)), where a(n) is
the inverse Ackerman function [24]. Thus, the over-
all time for computing the recognizability region of a
stationary target in the complete visibility model is

O(na(n) + mn).

3.1.2 Complete visibility over a region

We now consider sensor placements with an unob-
structed view of the target at any position or orienta-
tion within a goal region G. We model the target as
a connected polygon, with a reference point that lies
inside the polygon. Note that the target is said to “lie
in the goal” if and only if its reference point lies in
the goal. The idea is that a sensor placement is valid
if and only if, as its reference point moves within the
goal, the entire swept area covered by the target is
visible. We present two algorithms below.

Complete visibility algorithm for a translating target

First consider the case where the target has a fixed,
known orientation. We further restrict the target’s
motion to pure translation. Denote the target at
orientation 8 by Ay. Consider the Minkowski sum
Ag B G. Ap ® G is the set of points Ay can occupy
when the reference point lies in G. The complete vis-
ibility region for the polygon Ay @ G is the set of all
sensor placements from which Ay can be completely
seen when its reference point lies anywhere in G.

To compute the shadow boundaries, we introduce
local inner tangents between each obstacle and the
convex hull of Ag @ G, denoted C'H(Ap & ). Note
that this is not an approximation; only the outermost
tangents with the distinguished polygon (in this case
Ap ® @) generate shadows in the complete visibility
model.

We can compute the convex hull of Ay & G effi-
ciently by exploiting the fact that for polygons A and
B [20]

CH(A)® CH(B) = CH(A® B).

Note that A and B do not need to be convex. So in-
stead of computing C'H(Ag & G) explicitly, we simply
convolve CH(Ap) and CH(G).

If inner tangent e is locally tangent at obstacle ver-
tex v, then we again introduce a visibility ray that

Figure 7: Target A, goal G, and the swept goal region
M(G, A).

extends e away from vertex v. The arrangement of
the visibility rays and the environment now partitions
(s, into shadow regions and visibility regions, ¢.e.,
regions from which Ay & G 1s partially occluded or
entirely visible. But instead of computing the entire
arrangement, we again note that it suffices to com-
pute a single cell in the arrangement, namely the cell
containing the goal.

Complete visibility algorithm for a translating and ro-
tating target

Now consider the case of a target rotating and
translating through the goal. We want the set of
placements from which no portion of the target’s
boundary is occluded by obstacles no matter what
position or orientation the target has within the goal.
We take the longest Euclidean distance from the tar-
get’s reference point to a vertex of the target. We
call this distance the radius of the target. Suppose
the target has a radius of » and its reference point
lies at w. Then the disc of radius r centered at w
is equivalent to the area covered by the target as it
rotates around its reference point.

Hence, for target A with radius r, the Minkowski
sum of the goal G with the disc of radius r represents
the swept area covered by the target as it translates
and rotates through the goal. Call this Minkowski
sum the swept goal region M (G, A). See Figure 7
for an illustration. We now compute the set of sensor
positions that have an unobstructed view of M (G, A).

To compute the shadow boundaries, we introduce
local inner tangents between each obstacle and the
convex hull of M (G, A). This can be accomplished
by simply computing all inner tangents between each
obstacle and the disc of radius r at each vertex of G,
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then taking the outermost tangents at each obstacle.
Once we have these inner tangents, the rest of the
algorithm is the same as above.

Complezity of the complete visibility algorithm over a
reqion

In the translation-only case, we first compute the
convex hull of Ay & G. If A has m vertices and G
has k vertices, C'H(Ap) and CH(G) can be com-
puted in O(mlogm) and O(klogk) time, respec-
tively [13]. So CH(As & G) = CH(As)® CH(G)
has complexity O(m + k) and can be computed in
time O(mlogm + klogk).

Computing the O(n) local inner tangents between
CH(Ap & G) and the environment can be done in
time O(n(m + k)). The complete visibility region
is the arrangement cell containing CH (A & G). As
mentioned above, computing a single cell in an ar-
rangement is equivalent to computing the lower enve-
lope of a set of line segments in the plane. So the over-
all time to compute the visibility regions for a target
translating through the goal is O(na(n)+ n(m+ k)).

In the case of a target rotating and translating
through the goal, the only difference between the al-
gorithm given here and the one given in Section 3.1.1
for a stationary target is that instead of computing
tangents between a stationary target and the obsta-
cles, we convolve a disc with the goal and compute
tangents between the result of this convolution and
the obstacles. In terms of complexity, the algorithms
differ only in that the goal complexity rather than
the target complexity is relevant. Assuming that we
know the target radius r, we can compute M (G, A)
for a goal G of size k in time O(k). If obstacle B; has
n; vertices, we can compute the O(n;) local inner tan-
gents between B; and the convex hull of M (G, A) in
time O(kn;). For an environment of obstacles with n
vertices overall, we can compute the O(n) local inner
tangents in time O(kn). So the overall time for com-
puting the recognizability region for a target rotating
and translating through the goal in the complete vis-
ibility model is O(na(n) + nk).

3.2 Partial visibility

We turn now to the question of computing recogniz-
ability regions in the partial visibility model. First we
consider the problem of detecting a stationary target
within a polygonal obstacle environment. We then
apply these tools to the problem of detecting a trans-
lating target as it enters the goal.

We will show the following:

Theorem 2 In the partial visibility model, the recog-
nizability region of a target translating through a goal
of size k can be computed in time O(kmn3(n + m))
for an environment of complexity n and a target of
complexity m.

3.2.1 The partial visibility algorithm for a
stationary target

We say that target A is partially visible from sensor
placement p € (s, if at least one point in the closure
of A 1s visible from p.

For target A at configuration q € C), we construct
the partial visibility region using an approach similar
to that given by Suri and O’Rourke for computing
the region weakly visible from an edge [27]. Our al-
gorithm 1s as follows:

Partial vistbility algorithm for a stationary target

1. Construct the visibility graph for the entire envi-
ronment, consisting of distinguished polygon A
and obstacles B.

2. Extend each edge of the visibility graph maxi-
mally until both ends touch an edge of the envi-
ronment. If neither of the endpoints of the ex-
tended visibility edge lie on the polygon A, dis-
card the visibility edge. Otherwise, clip the edge
at its intersection with A and call this piece a
vistbility ray.

3. For each vertex v in the environment, perform
an angular sweep of the visibility rays incident
to v. If A remains visible to v throughout the
swept angle between two adjacent visibility rays
anchored at v, then the triangular swept region
1s output as a wvisibility triangle.

The union of these visibility triangles forms the re-
gion from which A is partially visible. The comple-
ment of the union of triangles and the environment is
a collection of holes in the visibility region, which we
call shadows. Figure 9 shows the shadows for an ex-
ample environment. This example demonstrates the
fact that in the partial visibility model, shadows are
not necessarily bounded by tangents between an ob-
stacle and the goal.

Complezity of the partial visibility algorithm
Suppose the obstacles and bounding polygon to-
gether have n vertices, and the target has m ver-

tices. The visibility graph for this environment, the
basic data structure used in the algorithm, has size
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Figure 8: An angular sweep between two visibility
rays at vertex v. The lightly shaded regions are visi-
bility triangles.
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Figure 9: The shadows cast by obstacles By, B, and
Bs are shown shaded. The complement of the shad-
ows, the obstacles, and the target forms the partial
visibility region of target A.

O(n(n+ m)). Note that we are not interested in vis-
ibility edges between the vertices of the target itself.
The extended visibility graph will, in practice, have
fewer edges than the basic visibility graph, since we
only keep the edges whose extensions intersect the
target. Its worst-case complexity, however, remains
O(n(n 4+ m)). Each vertex of the environment has
O(n+m) visibility rays incident to it. Therefore each
vertex contributes O(n + m) visibility triangles, so
we have O(n(n 4 m)) visibility triangles overall. In
general, the union of these triangles has complexity
O(n*(n 4+ m)?). As was mentioned in the paper by
Suri and O’Rourke [27], the triangles can be output in
constant time per triangle: Asano et al. have shown
that the visibility edges at a vertex v can be obtained
sorted by slope in linear time with Welzl’s algorithm
for computing the visibility graph [30, 1]. Thus, the
overall time for explicitly computing the boundary of
the partial visibility region for target A at any fixed
configuration q is O(n?(n +m)?). The region can be
given as a union of triangles; without computing the
boundary, in time O(n(n + m)).

3.2.2 Partial visibility over a region

The algorithm above solves the problem of detect-
ing a stationary target in the partial visibility model.
We now address the problem of maintaining line-of-
sight contact with the target as it moves within the
confines of a particular polygon, for example, as the
target moves within the goal. How do the visibility
triangles and shadows change as the target moves? To
answer this question, we need to introduce some ad-
ditional terminology. Let e be a visibility edge whose
associated visibility ray intersects the target at point
z. The endpoint of e lying closer to z (possibly #
itself) is defined as the anchor vertex of e, while the
further endpoint is called the attachment vertex of e.
If a vertex of the shadow (considering the shadow as
a polygon) lies in free space, i.e., if it lies inside the
bounding polygon and is not on the boundary of an
obstacle, then we call it a free vertex of the shadow.

As the target translates, free shadow vertices trace
out point conics if their generating edges are anchored
on the target [3].

3.2.3 Swept shadows in the partial visibility
model

We have shown how to compute shadows for any fixed
target position, and have discussed how these shad-
ows change as the target translates. In order to detect
the target as it enters the goal, we must compute the
shadows swept for all positions of the target in the
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goal. We define a swept shadow of the goal in the
partial visibility model to be a maximal connected
region of Cy, such that for each point p in the re-
gion, there exists a configuration of the target in the
goal from which the target is totally occluded.

We compute swept shadows for the target at a
fixed orientation anywhere in the goal by translat-
ing the target polygon along the edges of the goal
polygon. The boundary of a swept shadow is com-
posed of obstacle segments and the curves (lines and
conics) traced by free vertices. Discontinuities in the
boundary of a swept shadow occur at critical events.
We characterize the critical events as follows:

1. A moving visibility ray becomes aligned with a
fixed edge of the visibility graph.

2. A free vertex of a shadow intersects an obstacle
edge or the bounding polygon.

3. Two moving visibility rays bounding a shadow
become parallel.

Below we present our algorithm for computing the
partial visibility region of a target as it translates
through the goal at a known orientation #. This gives
us the set of all sensor placements from which at least
one point on the boundary of the target can be seen,
no matter where the target is in the goal.

Partial visibility algorithm for a translating target

1. Let e be any edge of goal GG. Consider Ay to be
placed on one of the endpoints of e. Call this
configuration q. Construct the partial visibility
region of target A at configuration q.

2. Translate Ay along e. As the shadows cast by
the obstacles change, call the area swept out
by a shadow a swept shadow. Between critical
events, the vertices of each shadow move along
lines or conics. The equations of these curves can
be computed algebraically given the positions of
the obstacles in the environment and the visi-
bility rays. Update the boundary of the swept
shadows at critical events.

3. Translate Ay along all other edges e;, 1 < <k,
of (7, repeating step 2 for each edge.

4. Compute each swept shadow independently as
described in the above steps. The complement
of the union of all the swept shadows, the target,
and the obstacles is the partial visibility region.

The output of the algorithm is the set of swept
shadows. Note that the boundary of a swept shadow
is piecewise linear and conic.

Complezity of the partial visibility algorithm over a
reqion

The extended visibility edges bounding the shad-
ows are all either external local tangents between an
obstacle and the target, or internal local tangents be-
tween obstacles. Since the obstacles are fixed, the
visibility edges between them remain fixed. As the
target moves, the only visibility edges that move are
those that are anchored on a vertex of the target.

With n vertices in the environment and m target
vertices, there are O(mn) moving visibility edges. As
the target translates along an edge of the goal, a visi-
bility edge anchored at target vertex a; and attached
at obstacle vertex b; could become aligned with each
of the O(n) fixed visibility edges at obstacle vertex
bj. This gives O(mn?) critical events of the first type
as the target translates along an edge of the goal.
There are O(m?n?) free vertices tracing out curves,
which may intersect each of the O(n) obstacle seg-
ments. This gives O(m?n3) critical events of the sec-
ond type. When the third type of critical event oc-
curs, a free vertex disappears. There are O(m?n?) of
these events.

At a critical event of the first type, a visibility ray
appears or disappears, causing a visibility triangle to
appear or disappear. The total cost of handling all
updates of this type is O(mn3(n + m)). Only local
change is caused by events of the second type and
third type.

Between critical events, we simply grow the shad-
ows, either along lines or conics. Note that the shad-
ows never shrink: A point p € Cf, is in a shadow
with respect to a polygonal goal if there exists some
target configuration such that the target is not at all
visible from p. The computation of swept shadows
is done by translating the target polygon along the
edges of the goal, updating the boundary at critical
events. The total running time of the algorithm for a
goal with k vertices is O(kmn3(n + m)).

4 TUncertainty in sensor place-
ment and aim

A real sensor cannot be configured exactly. Rather,
it will be subject to both errors in placement and er-
rors in aim. These errors depend on the sensor plat-
form (e.g., a mobile robot). Therefore we would like
to compute sensor strategies that take uncertainty in
sensor configuration into consideration. In this sec-
tion, we sketch how the computation of visibility re-
gions can be extended to handle this type of sensor
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Figure 10: A narrow visibility triangle anchored at
vertex v is shown lightly shaded.

error. Our approach does not address the problem of
sensor measurement error.

Positional uncertainty characterizes the sensor
placement error. Let ¢, denote the worst-case po-
sitional uncertainty of the sensor. If the commanded
sensor placement is p, the actual sensor placement
could be any position in the disc of radius €p,; cen-
tered at p. We handle positional uncertainty by grow-
ing the shadows by the uncertainty ball of radius €, .
The complement of the union of these grown shadows
and the environment will be the visibility region that
accounts for uncertainty in sensor position.

Directional uncertainty characterizes the sensor
aim error. Let € denote the maximum angular error
of the sensor aim. That is, if the commanded sens-
ing direction 1s 1, the actual sensor heading could be
any direction in the cone (¢ — €, ¢ + €). The effect of
sensor directional uncertainty is that we must disal-
low angularly narrow wedges of visibility. This type
of uncertainty is most relevant in the case of partial
visibility. See Figure 10 for an illustration of a narrow
visibility triangle. This triangle does not become part
of the visibility region when directional uncertainty is
considered.

After we compute the visibility rays as described in
Section 3.2.1, we visit each vertex in the environment,
and combine adjacent visibility triangles that end on
the same polygon. We make the following definitions:

1. The maximal union of adjacent visibility trian-
gles anchored on a single vertex v and ending on
the same polygon is called a wisibility polygon.
By construction, visibility polygons are simple.

2. The core triangle of a visibility polygon anchored

at v 1s the maximal inscribed triangle whose apex
s v.

If the angle at the apex of such a maximal visibility
triangle is less than our angular uncertainty bound e,
we discard the polygon. Otherwise, we classify the
maximal visibility triangle as an e-fat triangle. After
this processing, we now have O(n(n+m)) fat visibility
triangles. We can now use a result of Matousek et al.
[21] on the union of fat triangles. Their result bounds
the number of holes in a union of fat triangles. In our
case, the “holes” are shadows in a union of visibility
triangles. Their theorem states that for any fixed
d > 0, and any family F of n d-fat triangles, their
union has O(n/6°M)) holes. When we restrict our
visibility triangles to be at least e-fat, we have at
most O((n(n 4+ m))/e?M)) shadows.

When € is a fixed constant, we have at most
O(n(n+m)) shadows. In effect, this means that con-
sidering directional uncertainty actually lowers the
complexity of computing the recognizability region.
Note that our construction yields a conservative ap-
proximation to the recognizability region under un-
certainty.

The next section extends the sensor placement al-
gorithms presented here to the domain of Error De-
tection and Recovery by avoiding placements that
could give ambiguous readings.

5 Avoiding confusable place-
ments

The set C(G, H) is the set of all sensor placements
that could lead to confusion of G and H. A placement
p 1s in the confusable region if the only visible portion
of the target polygon could be due to an edge of A in
G or an edge of Ain H.

Note that a sensor reading that confuses a target
Aq In G with a target Ay in H is due to an edge of
Aq being colinear with an edge of Ay/. See Figure 11
for an example.

For each pair of edges (e;, e;) having the same ori-
entation, we compute the overlap region O(e;, e;) =
(e;®G) N (e; & H). We define O, to be the union
of all O(e;,e;) for all pairs of edges (e;,¢e;) having
orientation a. See Figure 12.

The confusable region is defined as

C(G,H) = {p|3ae GUH,YY:(SV(p,¥)NAq)
C O(e;, e5) for some (e;,€5).}.
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Figure 11: A sensor reading that confuses Aq € G
and Aq € H is due to an edge of Aq being colinear
with an edge of Ag. The darkly shaded rectangles
are obstacles.

ed G

ed H

Figure 12: Edge e at orientation a of target A is
convolved with G and H. The darkly shaded region
is the overlap O,. Sensor readings in O, can lead to
confusion of GG and H.

5.1 Discrete goal and failure regions

Before turning to the problem of handling polygonal
goal and failure regions, we first consider the case in
which the goal and failure regions are discrete points.
Our technique for computing the set of good sensor
placements 1s to first compute the set of overlap re-
gions, and then compute the recognizability regions
for the non-overlap portion of A in G and the non-
overlap portion of A in H. The algorithm is as fol-
lows:

1. Compute all overlap regions O(e;, e;) for all pairs
of edges (e;,e;) having the same orientation.
Note that in the case of point-sized goal and fail-
ure regions, the overlap regions consist of edge
segments.

2. Perform the following steps for A in G and A in
H:

(a) Construct a new target A’ by deleting the
overlap segments from A. Figure 13 illus-

Figure 13: The set of thick solid edges comprises A’
for A € (G. The dashed line outlines the target poly-
gon in the failure region H. The thick dashed line is
the overlap region.

A/

Figure 14: An angular sweep between two visibility
rays at vertex v. The lightly shaded regions are vis-
ibility triangles. The thick solid edges comprise A’,
and the dashed line is the overlap region.

trates the overlap for a point-sized goal and
failure region. The new target consists of a
set of edge segments, where each edge seg-
ment has an associated outward-facing nor-
mal, so it is visible only from one side.

(b) Compute the set of visibility triangles for
target A’ using the partial visibility algo-
rithm for a stationary target as described
in Section 3.2. Figure 14 gives an illustra-
tion of some visibility triangles.

(c¢) Compute the union of the visibility trian-
gles formed above. This is the partial visi-
bility region for the non-overlap portion of
A at this configuration.

3. Compute the intersection of the two visibility re-
gions computed for A in G and A in H in steps
2(a)-2(c) above. This gives the set of all sensor
placements from which both A in G and A in H
can be recognized, but not confused.
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5.2 Polygonal goal and failure regions

In the case of polygonal goal and failure regions, the
computation of R(G) N R(H) — C(G, H) is an incre-
mental one. Recall that each overlap region is due to
an edge of A in G being colinear with an edge of A in
H. In this case, the overlap region (e; & G)N(e; & H)
for parallel edges e; and e; is formed by a line sweep-
ing through a region determined by G and H.

To determine the set of placements from which G
and H can be distinguished but not confused, we do
the following:

1. Compute the set of overlap regions O, for all
orientations « of the edges of A.

2. Place A at a vertex of G. Let A'(q) = Aq —
(Aq N (UO4) be the set of edge segments of A at
configuration q not intersecting any Oy.

3. Compute the partial visibility region of A’(q) as
it sweeps through (; as described in Section 3.
Note that the endpoints of the edges of A’(q) are
not fixed, but vary during the sweep.

4. Repeat steps 2 and 3 for A sweeping through H.

5. Take the intersection of the regions computed for
A sweeping through G and H, respectively.

The resulting region is the set of all placements
from which A at any position in G U H can be de-
tected, but A € GG and A € H can not be confused.

6 Experimental results

The algorithms for computing the complete and par-
tial visibility regions of a polygon have both been
implemented and used in conjunction with existing
packages for graphics, geometric modeling, and plane
sweep.

We used the implementation of the complete vis-
ibility algorithm to build a demonstration of robot
surveillance using two of the mobile robots in the
Cornell Robotics and Vision Laboratory. The au-
tonomous mobile robots are called ToMMY and LiLy.
The task was for ToMMY to detect when LiLY en-
tered a particular doorway of the robotics lab. Ini-
tially ToMMY is at a position from which this door-
way cannot be seen. Below we describe the various
components of the system.

6.1 The visibility component

We constructed by hand a map of our lab, and used
that map as the input environment to the complete

visibility system. The map and the computed visibil-
ity region of the doorway are shown in Figure 15.

TomMmY’s task was to monitor the doorway, which
is marked in the Figure with “G”. The dark gray re-
gions are obstacles representing real objects in the
room — chairs, desks, couches, bookshelves, ete.
Given that most of the objects are regularly shaped
and resting on the floor, the idea of using polygons as
“footprints” of 3D objects turned out to give a good
approximation of the 3D geometry. Given this map,
our algorithms give us the exact placements from
where the doorway can be monitored. The lightly
shaded region in Figure 15 is the complete visibility
region for this environment — the exact set of place-
ments from where the doorway can be entirely seen
with a sensing device such as a CCD camera.

6.2 Choosing a new placement

Based on the visibility region and the initial config-
uration of TOMMY, a new configuration is computed
inside the visibility region. A motion plan to reach
that new configuration is generated along with the
distance from there to the goal.

In particular, we do the following to choose such
a placement. We first shrink the visibility region to
account for model and sensor uncertainty. The proce-
dure to perform this shrinking returns a list of edges
making up the shrunk visibility region. We now want
to choose a new point inside this shrunk visibility re-
gion, one that is closest to the current position of the
robot. We use the following heuristic to find such a
point: we discretize the edges of the shrunk visibility
region, obtaining a list of candidate points. We then
sort this list of points by distance from the current
position of the robot. Then test each of the points,
searching for one that is reachable from the current
position in a one-step motion. The first such point
found is returned as the new configuration. If no
such point is found, this 1s signaled. This could be
due to two reasons: a point reachable in a one-step
motion was missed due to the discretization being
too coarse, or no one-step motion plan exists (i.e.,
the robot would have to move around corners, or can
not reach the visibility region at all). While the for-
mer case could easily be fixed by iteratively refining
the discretization, the latter case requires the use of
a full-fledged motion planner.

Figure 16 shows the shrunk visibility region and
one of the starting points we used, as well as the new
placement which was computed using the method de-
scribed above.
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Figure 15: The map and complete visibility region for the robotics lab.

Figure 16: The shrunk visibility region, the computed new configuration and the one-step motion.
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Figure 17: Our model of LiLy.

6.3 Computing the viewing direction

The planner computes a viewing direction depend-
ing on the new placement and information obtained
from the map. We fix a coordinate frame for the lab
with the origin in one corner of the room. Then we
compute the vector between the new computed place-
ment and the centroid of the goal. The # component
of the new configuration i1s simply the angle of this
vector. The final output from the planner is a vector
containing the z-, y-, and #-components of the new
configuration, along with the distance in world coor-
dinates from this new configuration to the centroid of
the goal.

6.4 Locating LiLY

LiLy’s task is to move into the doorway and wait
for TomMmy. LiLy is run without a tether. She is
programmed to translate a fixed distance and stop
(in the center of the doorway). She then waits until
her bump sensors are activated. When a bumper is
pressed, LILY translates a fixed distance in reverse,
rotates by 180 degrees, and then translates forward a
fixed distance in order to leave the room.

Here is how the surveillance and recognition parts
of the system work.

We first built a calibrated visual model of LiLy. We
used the Panasonic CCD camera mounted on ToMMY
to take a picture of LILY from a known fixed distance
(4 m). We then computed the intensity edges for that
image using an implementation of Canny’s edge de-
tection algorithm [8]. The actual model of LiLy that
we created and used is shown in Figure 17. We did
not alter the intensity edges that Canny’s algorithm
output, and experimentation demonstrated that our
results are relatively insensitive to the particular im-
age taken.

Based on the distance information from ToMMY’s

[

Figure 18: Intensity edges for the cropped image.

new configuration, the model edges are scaled to the
expected size of LiLY’s image as seen from this config-
uration, using the fact that the image size is inversely
proportional to the distance.

The video camera on ToMMY is used to repeat-
edly grab image frames, which along with the scaled
model are input to a matcher that operates on edge
images. The followingloop is performed until a match
1s found:

1. Grab a frame.

2. Crop it, keeping only the portion of the image

where LILY is expected to be.

Compute intensity edges for the cropped image.

4. Run the matcher to find an instance of the scaled
model in the cropped 1mage.

wo

Figure 18 shows the intensity edges for a crop of one
of the images that was grabbed with ToMMY’s video-
camera once ToMMY had moved into the computed
configuration.

The matcher used in the experiment is based on
the Hausdorff distance between sets of points and was
written by William Rucklidge [25] and has been used
extensively in the Cornell Robotics and Vision Lab-
oratory for image comparison, motion tracking, and
visually-guided navigation [17].

The particular matcher used here is a translation-
only matcher that uses a fractional measure of the
Hausdorff distance. Matches are found by search-
ing the 2D space of translations of the model, and
computing the Hausdorff distance between the image
and the translated model. A match occurs when the
Hausdorff distance of a certain fraction of the points
1s below some specified threshold. All translations of
the model that fit the image are returned.

The dark gray outline in Figure 19 shows all
matches that were found between the scaled model
of LiLy and the image in Figure 18.
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Figure 19: Matches found between the image and the
scaled model.

Based on where LILY is found in the image, TOMMY
first performs a rotational correction so that LILY is
centered in the image. An estimated value for the fo-
cal length of the camera was used to perform a rota-
tion to correct for errors in dead reckoning. ToMMY
then moves across the room to where LILY is using a
simple guarded move.

6.5 Analysis

We videotaped several runs of the system. For these
runs, we used two different starting positions for
Tommy, on different sides of the room, both from
where the goal doorway could not be seen. We
also demonstrated the robustness of the system by
having people enter and leave through the doorway
while TOMMY was monitoring it. The system per-
formed consistently well. TOMMY never reported a
false match — neither when the doorway was empty,
nor when other people stood in the doorway. Once
LiLy was in position, the recognition component (on
a SPARC 20 running Solaris) typically took 2-4 sec-
onds to locate LiLy. Disk access time accounted for
some of this time (saving and loading image files) and
could be eliminated by using a different file access
strategy.

7 Conclusion

In this paper we explored the problem of automatic
sensor placement and control. We presented methods
for computing the placements from which a sensor has
an unobstructed or partially obstructed view of a tar-
get region, enabling the sensor to observe the activity
in that region. In particular, we have presented al-

gorithms for computing the set of sensor placements
affording complete or partial visibility of a stationary
target, complete visibility of a target at any position
or orientation within a goal, and partial visibility of
a target translating through a goal at a known ori-
entation. The algorithms account for uncertainty in
sensor placement and aim.

The Error Detection and Recovery (EDR) system
of Donald [12] provides a framework for construct-
ing manipulation strategies when guaranteed plans
cannot be found or do not exist. An EDR strategy
attains the goal when the goal is recognizably reach-
able, and signals failure otherwise. Our results extend
the guarantee of reachability to a guarantee of recog-
nizability for the case of a polygon translating in the
plane. In future work we plan to address the problem
of planning sensing strategies when the target poly-
gon may translate and rotate, resulting in unknown
orientations of the target in G and H.

The implementation of the complete visibility algo-
rithm was used as the planning component in a robot
surveillance system employing both task-directed and
visually-cued strategies. The system plans and exe-
cutes sensing strategies that enable a mobile robot
equipped with a CCD camera to monitor a particu-
lar region in a room, and then react when a specific
visually-cued event occurs. OQur experimental results
demonstrate both the robustness and applicability of
the visibility algorithms we have developed. They
show that complete visibility of a goal region can be
computed efficiently, and provides a good model of
detectability in an uncluttered environment. We be-
lieve that this successful effort has validated our prin-
cipled approach to planning robot sensing and control
strategies.
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