A Framework and Architecture for
Multirobot Coordination

R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic, Y. Hur
V. Kumar, I. Lee, J. P. Ostrowski, G. Pappas
B. Southall, J. Spletzer, and C. J. Taylor
GRASP Laboratory and SDRL Laboratory
University of Pennsylvania, Philadelphia PA 19104, USA

Abstract: In this paper, we present a framework and the software architec-
ture for the deployment of multiple autonomous robots in an unstructured
and unknown environment with applications ranging from scouting and re-
connaissance, to search and rescue and manipulation tasks. Our software
framework provides the methodology and the tools that enable robots to
exhibit deliberative and reactive behaviors in autonomous operation, to be
reprogrammed by a human operator at run-time, and to learn and adapt to
unstructured, dynamic environments and new tasks, while providing per-
formance guarantees. We demonstrate the algorithms and software on an
experimental testbed that involves a team of car-like robots using a single
omnidirectional camera as a sensor without explicit use of odometry.

1. Introduction

It has long been recognized that there are several tasks that can be performed
more efficiently and robustly using multiple robots [1]-[4]. In fact, there is
extensive literature on robot control and the coordination of multiple robots.
Our goal, in this paper, is to describe a set of software tools that allows the de-
velopment of controllers and estimators for multirobot coordination. The tools
consist of a framework for developing software components, architecture for
control and estimation modules, and a set of decentralized control, planning
and sensing algorithms. Qur software framework divides the overall multi-
robot control task into a set of modes or behaviors, which may be executed
either sequentially or in parallel. Modes can consist of high-level behaviors
such as planning a path to a goal position, as well as low-level tasks such as
obstacle avoidance. We use a high-level language to formally describe how and
when transitions between these modes are to take place in order to achieve a
set of global objectives. Finally, because it is difficult to predict exactly un-
der what conditions switching between modes should occur, we parameterize
mode boundary transitions within each robot’s information space and use re-
inforcement reward to obtain locally optimal mode boundary locations. Thus
the multirobot system can learn to continually improve overall performance
through interaction with the environment, without human intervention.

2. Motivation

There is extensive literature on the control of robot manipulators or mobile
robots in structured environments, and robot control is a well understood prob-
lem area. However, traditional control theory mostly enables the design of con-
trollers in a single mode of operation, in which the task and the model of the
system are fixed. When operating in unstructured or dynamic environments
with many different sources of uncertainty, it is very difficult if not impossible
to design controllers that will guarantee performance even in a local sense. A
similar problem exists in developing estimators in the context of sensing. If
one views planning as an extension of control, and mapping as an extension of
estimation, similar problems exist at higher levels of control and coordination.
In contrast, we also know that it is relatively easy to design reactive controllers
or behaviors that react to simple stimuli or commands from the environment.
This is the basis for the subsumption architecture [5] and the paradigm for
behavior-based robotics [6]. While control and estimation theory allows us
to model each behavior as a dynamical system, it does not give us the tools
to model switches in behavior or the hierarchy that might be inherent in the
switching behavior, or to predict the global performance of the system. Our
goal in this paper is to present the software tools that are at the core of the
development of intelligent robotic systems. Specifically, we describe an archi-
tecture and a high-level language, CHARON, with formal semantics, that can be
used to describe multiagent, networked robotic systems with multiple control
and estimation modes, and discrete communication protocols in a principled
way. The architecture allows the development of complex multirobot behavior
via hierarchical and sequential composition of control and estimation modes,
and parallel composition of agents. We present our ongoing work to auto-
matically generate control and simulation code from the high-level language
description. We also illustrate the application of these ideas to the develop-
ment of an experimental platform of multiple mobile robots that cooperate in
tasks that require sensing, mapping, navigation and manipulation using vision
as a sensing modality. Experimental results illustrate the benefits and the limi-
tations of mode switching and the methodology underlying the implementation
of robot formation control.

3. Software Architecture

We have developed CHARON, an acronym for Coordinated Control, Hierarchi-
cal Design, Analysis, and Run-Time Monitoring of Hybrid Systems, a high-
level language to facilitate the programming of multiple, interacting hybrid
systems [7]. The language is designed with the goal of being able to control
multiple mobile, autonomous robots for mission-critical applications and strin-
gent requirements on safety. A hybrid system here refers to a collection of
digital programs that interact with each other in a physical world that is ana-
log in nature. A hybrid system has multiple modes or behaviors of operation.
Each mode is a reactive, sensor-based, control law that generates a behavior in
a robot, and indirectly in a group of robots, see Figure 1. More details about
the language, the semantics and the formal description are presented in [8].

H Input Port
O Output Port :

Robotl
*awayTargel atTarget
U

control

'/ sensing
B3

Figure 1. Hierarchy in CHARON.

]
control

ol
A%

The architecture proposed here allows the development of complex multirobot
behavior via hierarchical and sequential composition of control and estimation
modes, and parallel composition of agents. This is schematically illustrated in
Figure 2. All software components are called agents. For example, all robots are
modeled as agents. Agents can communicate with each other and the human
operator can interact with the agents. Agent definitions can have parameters
that can be used to create different agents of the same type. Variables, in ad-

Reactive Modes Control Modes

A

Sensor Modes

Cooperative - Velocity
[Mapper] [Locallzer] [Estimator]

Sensor Objects T
Radio
Edge Obstacle | |Color Blob wall Target Control
Detector Detector Detector Detector Detector
\ 4

1
| Frame Grabber | Actuators

Figure 2. Architecture for multirobot coordination.

dition to being typed, can be discrete or analog. Analog variables are updated
continuously, while discrete variables are updated only upon initialization and
mode switches. The variables of an agent are partitioned into read, write, and
private to allow modular specifications. For example, the robot can receive
estimates of the obstacles from other robots, and commands and specifications
from the human operator on input channels, and it can send its own informa-
tion to other robots or to the human operator on the output channels. While
physical variables such as the position and velocity of the robot are public,
the sensory or control information that is internal to a robot is designated as
private. The agent definition contains modes describing behaviors that are
available to the robot. Modes specify evolution of control. If the state of an

agent is given by & € R", its evolution is determined by a set of differential
equations:
z = fy(z,u), u = kq(z, 2), (1)

where u € R™ is the control vector, ¢ € Q C Z is the control mode for the
agent, and z € R? is the information about the external world available ei-
ther through sensors or through communication channels. A mode definition
includes transitions among its submodes. A transition specifies source and des-
tination modes, the enabling condition, and the associated discrete update of
variables. Each mode can have submodes, and there is a hierarchy of modes
that is typical in most robot software. Our low-level implementation in C++
uses Live Objects. Live Objects have been developed as part of the software
architecture for implementation on the hardware platforms. A live object en-
capsulates algorithms and data in the usual object-oriented manner together
with control of a thread within which the algorithms will execute, and a number
of events that allow communication with other live objects. At the top of the
hierarchy, the algorithms associated with the objects are likely to be planners,
whilst at bottom they will be interfaces to control and sensing hardware. The
planner objects are able to control the execution of the lower level objects to
service high-level goals. To offer platform independence, only the lowest level
objects should be specific to any hardware, and these should have a consis-
tent interface for communication with the more planning objects that control
their execution. Visual servo control algorithms have been incorporated into
the live object framework for such basic functionality as obstacle avoidance,
wall-following, formation keeping, mapping and localization. Learning is also
relevant to our work. Since this is not the main focus of this paper, we point
the reader to a description of the Boundary Localized Reinforcement Learning
(BLRL) to obtain locally optimal mode transition boundary locations [9].

4. Multirobot Coordination
4.1. Experimental platform

The mobile robot we use for our experiments is shown in Figure 3. It has been
constructed from a commercial radio-control truck kit. Some modifications
have been made to improve shock absorption and to house an omnidirectional
vision system, a 2.4 GHz wireless video transmitter, and a battery pack.

The robot has a servo controller on board for steering and a digital propor-
tional speed controller for forward /backward motion. A parallel port interface,
also designed in our lab, allows driving up to 8 mobile robot platforms from a
single Windows NT workstation. The receiver, located at the host computer,
feeds the signal to a frame grabber that is able to capture video at full frame
rate (30 Hz.) for image processing. This yields a video signal in a format for
viewing and recording, as well as image processing.

4.2. Sensors

Color feature extraction and target tracking Pixels corresponding to a target
can be identified in the image using a YUV based color extractor which pro-
vides robustness to variations in illumination. Three-dimensional color models

Figure 3. The mobile robot platform with Omnicam (left), range mapping
(right).

are generated a priori from images of the target at numerous distances, orienta-
tions, and illumination levels. These data are stored in a pair of look-up-tables
(LUTSs) to speed image processing. During operation, the target detection al-
gorithm - the blobExtractor sensor, is initially applied to the entire image and
can run at frame rate (30 Hz). Once the target is acquired, the sensor switches
to target tracking mode.

The target tracking scheme is simple yet robust. To increase the speed
of color feature extraction, a region of interest is dynamically constructed sur-
rounding the target in the current image based on its location in the previous
image. By constraining image processing operations to this region of interest,
we are able to run multiple target trackers at frame rate. This allows us to
assume little motion of the targets between consecutive image captures. Such
small inter-frame movement thus permits the straightforward tracking process
whereby the position of the region of interest (which is centered upon the tar-
get) is moved to coincide with the centroid of the target extracted from each
frame.

4.2.1. Range mapping

A Sobel gradient was applied to the original omnidirectional image. The re-
sulting edges in the image were assumed to be features of interest, see Figure 3.
By assuming a ground plane constraint, the distance to the nearest feature in
the sector of interest was determined from the its relative elevation angle to
the mirror. This provides a range map to all obstacles at frame rate.

4.2.2. Localizer

We have implemented a localization algorithm for our mobile robots. The
algorithm employs an extended Kalman filter (EKF) to match landmark ob-
servations to an a priori map of landmark locations. The Localizer object uses
the blobExtractor sensor to determine the range and the bearing of an observed
landmark. If the observed landmark is successfully matched, it will be used to
update the vehicle position and orientation. Figure 4 depicts a typical image
used for localization.
The kinematic model of the mobile robot is given by

& =wuycosl, §=ugsing, 6= ltand), b= Mug — ¢), (2)

Localization Results

P ECE + localized
T il o

\
§ ﬁ@, Eq"ﬁ; < averhead

T
02 04 06 08 1 12 14 16 18 2
X axis (i)

Figure 4. Tmage used for localization (left), experimental results (right).

— T] — i
{ L
ACTUAL " EXTRACTED
‘ , :
g l { |
4m 1 o ;

s

Figure 5. Cooperative mapping.

where [is the body length, us is the steering command, |#| < 70° is the
steering angle, and A ~ 4s~! is a parameter that depends on the steering
servo time constant and wheel-ground friction. The control vector is given by

u = [u1 U2]T.

4.2.3. Velocity estimator

The leader-following control object described in the next section, requires re-
liable estimation of the linear velocity and angular velocity of a leader mobile
robot. The velocity estimator algorithm is also based on an extended Kalman
filter. It uses the blobFEztractor sensor to determine the range p and the bearing
B of the observed leader. In addition, the filter requires a sensor model, and
the relative kinematic equations of the leader and follower robots.

4.2.4. Mapper

We have implemented a cooperative mapping using three nonholonomic plat-
forms. A simulated room 4mx4m was constructed. The positions of two robots
are held fixed, while the third robot, called mapper, is driven around the test
area. A global map updates is accomplished at 3-5 Hz. The experimental setup
and results are displayed in Figure 5.

4.3. Controllers

4.8.1. Obstacle avoidance and wall following

The wall follower works by using inputs from two live object sensors - a wall
detector and an obstacle detector. Both take as input the image from an it

120
x OBstacle Avoidance

| ﬁ,

|

i 100 \1‘ o Wall Foilowipg
I

i

80 %

%,
_ .
g *TN R
; A\
40 Qw@,
20 Obstacle %
: A
20 %
s wall ’\ A3
-40 i
%

-60 :
80 -60 -40 -20 0 20 40 60 80

Figure 6. The wall-follower, sample wall-following configuration, and corre-
sponding mode vs. position results.

edge detector, and use range map data to find the relative position of the
wall/obstacle. The wall detector has a 40° field-of-view from 160 to 200 degrees.
A line is fit to these points using RANSAC (random sampled consensus), which
gives us a line fit robust to outliers. From this we are able to extract the
relative position and orientation of the robot to the wall. We use I/0O feedback
linearization techniques to design a PD controller to regulate the distance of
the vehicle to the wall, Figure 6 (left). Wall following can be considered as a
particular case of path following. Thus, the kinematics in terms of the path
variables become

$=wvyco88p, d=wu;sinb,, ép:UTltanqﬁ, ¢ =vy. (3)

In this case §; = T and 6, = 6 — 6;. Assuming the robot is to follow the wall
with a piecewise constant velocity v;(t), the controller is given by

u= tan_l[m(kp(do —d) — kyvy siné,)], (4)
where u(t) is the steering command, v; (¢) is the linear velocity, and k,, k, are
positive design controller gains. Usually, we may want a critically damping
behavior i.e., ky, = 2,/kp.

The obstacle detector picks up objects in its 80° forward-staring field-
of-view. Since the position and orientation relative to the wall are known,
the detector is able to discriminate which obstacles are actually the wall, and
which are truly obstacles that must be avoided. Mode switching between wall
following and obstacle avoidance is accomplished by giving priority to the latter.
Experimental results are depicted in Figure 6 (axes units are inches).

4.8.2. Leader-Following Control

We consider a team of n nonholonomic mobile robots that are required to fol-
low a prescribed trajectory while maintaining a desired formation. The desired
formation may change based on environmental conditions or higher-level com-
mands. A robot designated as the lead robot follows a trajectory generated

by a high-level planner g(¢t) € SE(2). The follower robots should maintain
a prescribed separation and bearing from its adjacent neighbors. This con-
troller (denoted Separation Bearing Controller SBC here) is implemented on
each robot in the team. The desired separations [{; and bearings ¢, will define
the shape of the formation, see Figure 7 (left).

The kinematics of the nonholonomic é-robot are given by

i’i = v; COS 0,-, yz = v; sin 0,’, 0= Wi, (5)

where z; = (z;,y;,0;) € SE(2). The control velocities for the follower are given
by [10]

vj = 8ij €087Yij — lij siny;(bij + w;) + v; cos(6; — 6;), (6)

1
wj = = [sij sinyij + 1ij cos 735 (bij + wi) + vi sin(6; — 0;)], (7)

J

where

Yij = 0; + sz'j — 6y, (8)
sij = kil —liy),)
bij = k(¥ —vi), ki k2> 0. (10)

The closed-loop linearized system becomes
lij = k(= 1), iy = k(W = 35), 65 = . (11)

In the following theorem, we provide a stability result for the SBC [11].
Theorem 4.1 Assume that the reference trajectory g(t) is smooth, the refer-
ence linear velocity is large enough and bounded i.e., Bmax > Vi > Bmin > 0,
the reference angular velocity is small enough i.e., ||w;il| < Winaz and the initial
relative orientation is bounded i.e., ||0; — ;|| < g9 < . If the control velocities
(6)-(7) are applied to R;, then system (11) is stable and the output system
error of the linearized system converges to zero exponentially.

O
While the two output variables in (11) converge to the desired values arbitrarily
fast (depending on k1 and k2), the behavior of the follower’s internal dynamics,
0;, depends on the controlled angular velocity w;. In our analysis we have
considered the internal dynamics which is required for a complete study of the
stability of the system. Let the orientation error be expressed as

ég =W —Wwj (12)
After some work, we have

€9 = —% sineg + fa(’u,, 69) (13)
J

where u is a vector that depends on the output system error and reference
angular velocity w;. fg(+) is a nonvanishing perturbation for the nominal system

T [To folower
0 O leader

pg@@ane g

8
0000 ¢
o 009 2000,

g o
(<3 o

(%:9,8)

»
»

Figure 7. The Separation Bearing Control (SBC), and formation control ex-
perimental setup.

Separation | Bearing

0.8

07F----d-----

o
>
34444

o
@

Amplitude (m)

03F----

o

IS

T

|

|

|

|
S S

1

|

|

|

|

0.2

Time (s)

Estimated linear velocity (leader)
0.6 T

[e e e

0 —===do-momboood Lo

o
N
|
|
|
|
|
|
|
|
|
|
|
|
|
L
I
|
|
|
|
|
|
|
|
=G T T Y T Sy E

o
N
S
IS
S
=3
3
@
3
.
3

Time (s) Time (s)

Figure 8. Leader following experimental results.

(13) which is (locally) exponentially stable. By using stability of perturbed
systems [12], it can be shown that system (13) is stable, thus the stability
result in Theorems 1 follows.

Figure 7 (right) shows a view of leader-following experiment. These are
actual data points collected from an overhead camera installed in our lab for
ground truth purposes. Figure 8 depicts the estimated linear and angular
velocity of the leader robot, and the measured separation and bearing. We
choose l; = 0.6 m and ¥y = 180°. The robustness of the system is verified
when we manually hold the follower for a few seconds at ¢ ~ 65 s.

Acknowledgements

This research was supported in part by DARPA ITO MARS 130-1303-4-534328-
xxxx-2000-0000.

5. Concluding Remarks

We describe a formal architecture and high-level language for programming
multiple cooperative robots. Our approach assumes that each robot has a
finite set of behaviors or modes that it can execute, and the programming
language is used to formally specify a set of conditions under which mode
transitions take place. Thus the tasks performed by the multirobot system are
uniquely specified as mode transition boundaries that are defined in the robots
information space. Experiments have been carried out in complex scenarios
where robots need to exhibit a variety of behaviors such as localization, target
acquisition, collaborative mapping and formation keeping.

References

[1] Donald B., Gariepy L., Rus D. (2000) Distributed manipulation of multiple
objects using ropes. Proc. IEEE Int. Conf. on Robotics and Automation, 450-
457.

[2] Khatib O., Yokoi K., Chang K. et al. (1996) Vehicle/arm coordination and mo-
bile manipulator decentralized cooperation. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 546-553.

[3] Parker L. (2000) Current state of the art in distributed robot systems, Dis-
tributed Autonomous Robotic Systems 4. Parker L., Bekey G., Barhen J. (Eds.).
Springer, 3-12.

[4] Rus D., Donald B., Jennings J. (1995) Moving furniture with teams of au-
tonomous robots. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 235-
242.

[5] Brooks R. (1986) A robust layered control system for a mobile robot. IEEE J.
Robotics and Automation, 2(1):14-23.

[6] Balch T., Arkin R. (1998) Behavior-based formation control for multi-robotic
teams. IEEE Transactions on Robotics and Automation, 14(6):926-934.

[7] Alur R., Henzinger T., Lafferriere G., Pappas G. (2000) Discrete abstractions of
hybrid systems. Proceedings IEEE, 88(2):971-984.

[8] Alur R., Grosu R., Hur Y., Kumar V., Lee I. (2000) Modular specification of
hybrid systems in CHARON. LNCS 1790, Lynch N. A., Krogh B. H. (Eds.).
Springer, 6-19.

[9] Grudic G., Ungar L. (2000) Localizing search in reinforcement learning. National
Conference on Artificial Intelligence (AAAT 2000), 590-595.

[10] Desai J., Ostrowski J., Kumar V. (1998) Controlling formations of multiple
mobile robots. Proc. IEEE Int. Conf. on Robotics and Automation, 2864-2869.

[11] Fierro R., Das A., Kumar V., Ostrowski J. (2001) Hybrid control of formation
of robots. IEEE Int. Conf. on Robotics and Automation, ICRAOQ1, Seoul, Korea,
May, 2001. To appear.

[12] Khalil H. (1996) Nonlinear Systems. Prentice Hall.

