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Abstract

This paper proposes the dynamic window ap-
proach to reactive collistion avoidance for mobile robots
equipped with synchro-drives. The approach s derived
directly from the motion dynamics of the robot and
1s therefore particularly well-suited for robots operat-
g at high speed. It differs from previous approaches
wn that the search for commands controlling the trans-
lational and rotational velocity of the robot s carried
out directly in the space of velocities. The advantage
of our approach is that it correctly and in a rigorous
way incorporates the dynamics of the robot. This is
done by reducing the search space to the dynamic win-
dow, which consists of the velocities reachable within
a short time interval. Within the dynamic window the
approach only considers admaissible velocities yielding
a trajectory on which the robot is able to stop safely.
Among these velocities the combination of translational
and rotational velocity is chosen by marimizing an ob-
gective function. The objective function includes a mea-
sure of progress towards a goal location, the forward
velocity of the robot, and the distance to the next ob-
stacle on the trajectory. In extensive experiments the
approach presented here has been found to safely con-
trol our mobile robot RHINQO with speeds of up to 95
em/sec, in populated and dynamic environments.

1 Introduction

One of the ultimate goals of indoor mobile robotics re-
search is to build robots that can safely carry out mis-
sions in hazardous and populated environments. For
example, a service-robot that assists humans in indoor
office environments should be able to react rapidly to
unforeseen changes, and perform its task under a wide
variety of external circumstances. Most of today’s com-
mercial mobile devices scale poorly along this dimen-
sion. Their motion planning relies on accurate, static
models of the environments, and therefore they often

seize to function if humans or other unpredictable ob-
stacles block their path. To build autonomous mobile
robots one has to build systems that can perceive their
environments, react to unforeseen circumstances, and
(re)plan dynamically in order to achieve their missions.

This paper focuses on one particular aspect of the
design of such a robot: the avoidance of collisions with
obstacles. In general, we desire an approach to collision
avoidance to have the following properties:

1. Safe. The robot must travel safely even with high
speed. It therefore must take the dynamic con-
straints into account.

2. Reactive. The robot should react adequately and
rapidly to unforeseen circumstances. This requires
fast techniques for the detection of obstacles and
the selection of appropriate steering commands.

3. Effective. The robot should make maximum
progress towards the goal. This implies that when-
ever advantageous, the robot should modify its
travel direction to stay away from obstacles.

Unlike most previous approaches, the dynamic window
approach proposed here meets all these requirements.
It is safe, because it rigorously takes the inertia and
the torque limits into account. It quickly reacts to
unforeseen obstacles, and re-plans dynamically, trading
off direct progress towards the goal and clearance.
The dynamic window approach is based on an ap-
proximation of the exact motion equations of synchro-
drive robots by sequences of sequences of circular
arcs [4]. In a nutshell, the dynamic window approach
works as follows. It first prunes the overall search space
of trajectories, resulting in a two-dimensional space of
circular trajectories. Then, the search space is reduced
to the admissible velocities allowing the robot to stop
safely without colliding with an obstacle. Finally, the
dynamic window restricts the admissible velocities to
those that can be reached within a short time inter-
val given the limited accelerations of the robot. This
way the dynamic constraints are properly taken into
account. After that, the robot picks a trajectory at



which it can maximize its translational velocity and
the distance to obstacles, yet minimize the angle to its
goal relative to its own heading direction. This is done
by maximizing an appropriate objective function. The
combination of all objectives leads to a very robust,
efficient, and reactive collision avoidance strategy.

Figure 1. The robot RHINO, an RWI B21.

The dynamic window approach has been imple-
mented and tested using RHINO, a B21 robot man-
ufactured by Real World Interface Inc. (see Figure 1),
and other synchro-drive robots. In extensive experi-
mental evaluations using ultrasonic proximity sensors
for the construction of local world models (obstacle line
fields), the method has proven to avoid collisions reli-
ably with speeds of up to 95 cm/sec on several robots
in several indoor environments (University of Bonn,
Carnegie Mellon University, 1994 AA AT robot competi-
tion, 1995 IJCAI robot exhibition, and others, see also
[3]). The method has also successfully been operated
based on cameras and infrared detectors as sensory in-
put.

Our approach differs from previous approaches in
(a) that it is derived directly from the motion dynam-
ics of a mobile robot, (b) it therefore takes the inertia
of the robot into account — which is particularly impor-
tant if a robot with torque limits travels at high speed
—, and (c) has safely controlled several RWI robots
in various cluttered and dynamic environments with
speeds of up to 95 centimeter per second. We envision
this approach to be particularly useful for robots that
travel at even higher speeds and for low-cost robots
with limited motor torques, for which the constraints
imposed by the motion dynamics are even more imper-
ative.

The remainder of this paper is organized as follows.
After discussing related work Section 3 describes our

approach, as outlined above. Experimental results are
summarized in Section 4, followed by a discussion of
further research issues.

2 Related Work

The collision avoidance approaches for mobile robots
can roughly be divided into two categories: global and
local. The global techniques, such as road-map, cell de-
composition and potential field methods (see [8] for an
overview and further references), generally assume that
a complete model of the robot’s environment is avail-
able. The advantage of global approaches lies in the
fact that a complete trajectory from the starting point
to the target point can be computed off-line. However,
global approaches are not appropriate for fast obsta-
cle avoidance. Their strength is global path planning.
More specifically, these methods have proven problem-
atic when the global world model is inaccurate, or
simply not available, as is typically the case in most
populated indoor environments. Hu/Brady, Moravec
and others [5, 9], have shown how to update global
world models based on sensory input, using probabilis-
tic representations. A second disadvantage of global
methods is their slowness due to the inherent complex-
ity of robot motion planning [10]. This is particularly
problematic if the underlying world model changes on-
the-fly, because of the resulting need for repeated ad-
justments of the global plan. In such cases, planning
in a global model i1s usually too expensive to be done
repeatedly.

Local approaches, on the other hand, are used for
reactive collision avoidance. They consider only a
small fraction of a temporary world model to generate
robot control. This comes at the obvious disadvantage
that they cannot produce optimal solutions. Local ap-
proaches are easily trapped in local minima (such as
U-shaped obstacle configurations). However, the key
advantage of local techniques over global ones lies in
their low computational complexity, which is particu-
larly important when the world model is updated fre-
quently based on sensor information. For example, po-
tential field methods, as proposed by [6], determine the
steering direction by (hypothetically) assuming that
obstacles assert negative forces on the robot, and that
the target location asserts a positive force. These meth-
ods are extremely fast, and they typically consider only
the small subset of obstacles close to the robot. Boren-
stein and Koren [7] identified that such methods of-
ten fail to find trajectories between closely spaced ob-
stacles; they also can produce oscillatory behavior in
narrow corridors. In [2], the vector field histogram ap-
proach is proposed, which extends the previously de-
veloped wvirtual force field histogram [1]. This approach
uses an occupancy grid representation for modeling the



robot’s environment, which is generated and updated
continuously using ultrasonic proximity sensors. Oc-
cupancy information is transformed into a histogram
description of the free space around the robot, which
i1s used to compute the motion direction and velocity
for the robot. In [11] a method similar to ours has been
proposed which, according to Simmons, has been de-
veloped later but independently. As noted above, local
methods are typically very fast, and they quickly adapt
to unforeseen changes in the environment.
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Figure 2. Example situation

Current approaches deal poorly with the constraints
imposed by the dynamics of the robot. This is due
to the fact that most of the local approaches gener-
ate motion commands for the robot in two separate
stages [1, 2, 6]. In the first stage a desired motion di-
rection is determined. In the second stage the steering
commands yielding a motion into the desired direction
are generated. Strictly speaking, such an approach is
only legitimate if infinite forces can be asserted on the
robot. However, for robots with limited accelerations
it 1s necessary to take into account the impulse of the
robot.

For example consider the situation given in Figure 2
and suppose that the robot is in a fast straight mo-
tion through the corridor while the target point is in
the small opening to its right. Obviously, the optimal
target direction implies a turn to the right. However,
a robot whose forces are not high enough to perform
the necessary sharp turn would collide with the wall
(right wall IT) if it does not consider its dynamics con-
straints. The dynamic window approach is especially
designed to deal with such situations. By only consid-
ering the admissible velocities in the dynamic window
the robot detects that it cannot turn to the right and
therefore keeps its straight motion direction.

3 The Dynamic Window Approach

In [4] we showed how to approximate the trajectory of
a synchro-drive robot by a sequence of circular arcs.
In the remainder of this paper we will refer to these
circles as curvatures. Each curvature is uniquely de-
termined by a velocity vector (v, w) of translational

velocity v and rotational velocity w. In the dynamic
window approach the search for commands controlling
the robot is carried out directly in the space of such
velocities. The dynamics of the robot is incorporated
into the method by reducing the search space to those
velocities which are reachable under the dynamic con-
straints. In addition to this restriction only velocities
are considered which are safe with respect to the ob-
stacles. This pruning of the search space is done in
the first step of the algorithm. In the second step the
velocity maximizing the objective function is chosen
from the remaining velocities. A brief outline of the
different parts of one cycle of the algorithm is given in
the following box (in the current implementation such
a cycle is performed every 0.25 seconds).



1. Search space: The search space of the possible
velocities i1s reduced in three steps:

The dynamic
window approach considers only circular
trajectories (curvatures) uniquely deter-
mined by pairs (v,w) of translational and
rotational velocities. This results in a two-
dimensional velocity search space.

(a) Circular trajectories:

(b) Admissible velocities: A pair (v,w) is
considered admissible, if the robot is able
to stop before it reaches the closest obsta-
cle on the corresponding curvature. The
restriction to admissible velocities ensures
that only safe trajectories are considered.

(c) Dynamic window: The dynamic window
restricts the admissible velocities to those
that can be reached within a short time
interval given the limited accelerations of
the robot.

2. Optimization: The objective function
G(v,w) = o(a-angle(v,w)+ 3 - dist(v,w)
+7 - vel(v,w))

1s maximized. With respect to the current po-
sition and orientation of the robot this function
trades off the following aspects:

(a) Target heading: angle is a measure of
progress towards the goal location. It is
maximal if the robot moves directly to-
wards the target.

(b) Clearance: dist is the distance to the
closest obstacle on the trajectory. The
smaller the distance to an obstacle the
higher 1s the robot’s desire to move around
it.

(c) Velocity: vel is the forward velocity of the
robot and supports fast movements.

The function ¢ smoothes the weighted sum of
the three components and results in more side-
clearance from obstacles.

A more detailed description is given in Sections 3.1-
3.2 In the remainder of this section we will use the
situation shown in Figure 2 to describe the different
aspects of the dynamic window approach.

3.1 Search Space
(a) Circular trajectories

To make the search for velocity commands feasible,
the dynamic window approach considers exclusively
the next velocity, and assumes that the velocities in
the remaining time intervals are constant (which is
equivalent to assuming zero accelerations after the first
time intervals). This reduction is motivated by the
observations that (a) the reduced search space is two-
dimensional and thus tractable, (b) the search is re-
peated after each time interval, and (c) the velocities
will automatically stay constant if no new commands
are given.

(b) Admissible Velocities

Obstacles in the closer environment of the robot impose
restrictions on the rotational and translational veloci-
ties. For example, the maximal admissible speed on a
curvature depends on the distance to the next obsta-
cle on this curvature. Assume that for a velocity (v, w)
the term dist(v, w) represents the distance to the closest
obstacle on the corresponding curvature (in Section 4.1
we describe how to compute this distance given circu-
lar trajectories). A velocity is considered admissible, if
the robot is able to stop without collision. Let v and
wp be the accelerations for breakage. Then the set V,
of admissible velocities i1s defined as

Vo =

{(v,w) | v < /2 dist(v,w)

Aw < /2 dist(v, w) ~w'b}.

Thus V, is the set of velocities (v,w) allowing the
robot to stop without colliding with an obstacle. Con-
sider the example given in Figure 2. Figure 3 shows
the velocities admissible in this situation given the ac-
celerations v, = 50 cm/sec? and o = 60 deg/sec?.
The non-admissible velocities are denoted by the dark
shaded areas. For example, all velocities in area right
wall II would cause a sharp turn to the right and thus
cause the robot to collide with the right wall in the
example situation. The non-admissible areas are ob-
tained using sonar sensors (see Section 4).
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Figure 3. Dynamic window



(¢) Dynamic window

To take into account the limited accelerations, the over-
all search space is reduced to those velocities that are
attainable within the next time interval. Let ¢ be the
time interval during which the accelerations v and w
will be applied and let (vq, wq) be the actual velocity.
Then the dynamic window Vy; is defined as

Vi = {(v,w) | ve[va — v -t,vq + 0]

ANwelws —w -t wg +w -1}

The dynamic window is centered around the actual
velocity and the extensions of it depend on the accel-
erations that can be exerted. All curvatures outside
the dynamic window cannot be reached within the next
time interval and thus are not considered for the obsta-
cle avoidance. An example dynamic window obtained
in the situation shown in Figure 2 given a time interval
of 0.25 sec is shown in Figure 3.

Resulting Search Space

The above restrictions of the search space lead to a
smaller region in the velocity space, called V; (see Fig-
ure 3). Let V; be the space of possible velocities, then
the area V, 1s defined as the intersection of the re-
stricted areas, namely V, = V; NV, N Vy. In Figure 3
the resulting search space is represented by the white
area.

3.2 Maximizing the Objective Function

Having determined the resulting search space V., a ve-
locity is selected from V... To incorporate the criteria
target heading, clearance, and velocity, the maximum
of the objective function

G(v,w) = o(a-angle(v,w)+ 5 - dist(v,w)
+7 - velocity (v, w))

is computed within V.

(a) Target heading

The target heading angle(v,w) measures the alignment
of the robot with the target direction. It is given by
the angle of the target point relative to the robot’s
heading direction. Since this direction changes with
the different velocities target heading ¢ is computed for
a predicted position of the robot as shown in Figure 4.

The predicted position is the position reached by
the robot if it moves with the selected velocity for the
next time interval and then stops with maximal decel-
erations.

predicted position

actual position

Figure 4. Target heading 6.

(b) Clearance

The function dist(v,w) represents the distance to the
closest obstacle that intersects with the curvature. If
no obstacle is on the curvature this value 1s set to a
large constant.

(c) Velocity

The function velocity(v,w) is used to evaluate the
progress of the robot on the corresponding trajectory.
It is simply a projection on the translational velocity
.

Smoothing

All three components of the objective function are nor-
malized to [0, 1] and locally smoothed. The smoothing
increases side-clearance of the robot. The resulting ob-
Jjective function for our example is shown in Figure 5.
In the plot the values for non-admissible velocities are
set to zero (compare with Figures 2 and 3). For sim-
plicity we show the evaluation of the entire velocity
space and do not restrict it to a dynamic window. The
function is obtained by a value of 0.2 for @ and v and
a value of 2.0 for B. Due to the impact of the target
heading velocities yielding a turn to the right get higher
values. The position of the maximal value is depicted
by the vertical line. As expected, the fastest trajectory
leading through the door area has the largest value.

smoothed evaluation function —

90

0
rot. velocity [deg/sec] 45 o

Figure 5. Objective function



It should be noticed that all three components of G,
the target heading, the clearance, and the velocity, are
necessary. By maximizing solely the clearance and the
velocity, the robot would always travel into free space
but there would be no incentive to move towards a
goal location. By solely maximizing the target head-
ing the robot quickly would get stopped by the first
obstacle that blocks its way, unable to move around it.
By combining all three components, the robot moves
round obstacles as fast as it can under the constraints
listed above, while still making progress towards the
goal.

In our implementation, the objective function 1s
maximized by discrete search in a 10 x 10 grid. This
search is repeated every 0.25 seconds, which 1s fre-
quently enough to yield smooth trajectories.

4 Implementation and Experimental
Results

The dynamic window approach has been implemented
and tested using the robot RHINO which is a synchro-
drive robot currently equipped with a ring of 24 Po-
laroid ultrasonic sensors, 56 infrared detectors, and a
stereo camera system. Because the main beam width
of an ultrasonic transducer is approximately 15°, the
whole 360° area surrounding the robot can be mea-
sured with one sweep of all sensors. A complete sonar
sweep takes approximately 0.4 sec. The infrared detec-
tors and the camera system are not used in the exper-
iments reported here.

4.1 The Obstacle Line Field
The world is modeled by an obstacle line field [3], which

is a two-dimensional description of sensory data rela-
tive to the robot’s position (see Figure 6). We adjusted
our sonar sensors such that most erroneous readings
indicate a too long distance. To be maximally conser-
vative, every reading is converted to an obstacle line.
If the sensors would produce spurious short readings
(e.g. due to cross-talk), more sophisticated sensor inter-
pretation and integration models such as for example
occupancy probability grid maps [9] would be required.

The obstacle line field 1s centered around the robot’s
position and is built out of the data gathered by prox-
imity sensors. It contains a line for each reading of a
sonar sensor, which is perpendicular to the main axis of
the sensor beam at the measured distance. The length
of the line is determined by the breadth of the beam in
the given distance. Using this obstacle representation
the distance to obstacles on curvatures 1s computed as
follows: let r be the radius of the circular trajectory,
and let v be the angle between the intersection with

left wall L, = s |
B / /
obstacle lines
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Figure 6. Corridor with exemplary obstacle lines and
target point
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Figure 7. Determination of the distance

the obstacle line and the position of the robot (see Fig-
ure 7). Then the distance to the next obstacle is given
by ~ - r.

To allow the robot to react quickly to changes in the
environment, we limit the number of lines to 72 and ap-
ply a first-in-first-out strategy to remove the least ac-
tual lines from the obstacle line field. We found these
values to allow the robot to travel safely even with
speeds of up to 95 cm/sec, while simultaneously keep-
ing the computational time within 0.25 sec on an 1486
computer.

4.2 Further Implementation Details

The following additional strategies improved the ma-
neuverability and the elegance of robot motion. Since
they are not essential for the approach proposed in this
paper, we will only sketch them here.

¢ Rotate away mode. In rare cases we observed
that the robot got stuck in local minima. This
is the case if no admissible trajectory allows the
robot to translate. When this condition occurs,
which is easily detected, the robot rotates until it
is able to translate again.

e Speed dependent side clearance. To adapt
the speed of the robot according to the side clear-
ance to obstacles we introduced a safety margin
around the robot, which grows linearly with the
robot’s translational velocity. Thus the robot trav-
els with high speed through corridors and deceler-
ates when driving through narrow doors.



4.3 Experimental Results

Based on the dynamic window approach to collision
avoidance, RHINO has been operated safely in vari-
ous environments, over the last 2 years. The method
showed great reliability within extensive tests during
more than 100 hours. Collisions were only caused
by fast moving obstacles (e.g. doors) or sensor fail-
ures. The maximum velocity is constrained by the
robot’s hardware to approximately 95 cm/sec. RHINO
reaches this velocity in large openings and hallways,
when no obstacles block its way. If obstacles block its
way, slower velocities are selected, and collisions are
avoided by selecting appropriate trajectories. For ex-
ample, when moving through doors, RHINO typically
decelerates to approximately 20 cm per second in the
vicinity of the door.

In the remainder of this section, we will give exper-
imental results generated with the dynamic window
approach. Although its performance depends on the
weighting parameters «, 3, and 7, it is robust with re-
spect to slight changes of their values. Without any
exhaustive tuning of these parameters we found values
of 0.2, 0.2 and, 2.0 for «, 3, and 7 to give good results.
In the following figures the environment is drawn by
hand. Nonetheless each plot stems from an actual ex-
periment and all shown trajectories are extracted from
real position data. Each of these examples show the
complete path to a particular goal point, which in our
tests 1s set by a human operator. In the every-day use,
these goal points are set automatically by a global path
planner described in [12].
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Figure 8. Trajectories chosen for different dynamic
parameters

Role of the Dynamic Window

The first experiment demonstrates the impact of the
dynamic window on the behavior of the robot. The
three paths in Figure 8 are examples for the typical
behavior of the robot under different dynamics con-
straints. The crucial point of the experiment is the
path taken in the dark shaded decision area. In this
area the robot detects the opening to its right and has
to decide whether to take the sharp turn to the right or

not. This decision strongly depends on the dynamics
of the robot. Only if the actual velocity and the pos-
sible accelerations allow the robot to turn sharply to
the right, the robot directly moves to the target point.
This trajectory is denoted by the dashed line. In the
other two cases the robot decides to pass the opening
and moves parallel to the wall until the evaluation of
the target heading angle(v, w) becomes very small. No-
tice that without considering the dynamic constraints,
an attempt to turn right would have resulted in a col-
lision with a wall. Other approaches, that do not con-
sider dynamics, would be subject to such failures. In
fact, in initial experiments with a simulator, in which
we ignored some of the dynamic effects, we experienced
such collisions frequently.

Straight Motion in Corridors

Figure 9. Trajectory through corridor

Figure 9 shows an example of traveling along a hallway
with only one obstacle in the middle of the hallway. In
this case RHINO first orients itself to the target point.
But then the obstacle is detected and the robot chooses
a smooth trajectory avoiding the obstacle. Although
RHINO slows down to 55 cm/sec before passing the
obstacle, the average speed in this experiment was ap-
proximately 72 cm/sec. It should be noted that af-
ter having driven round the obstacle RHINO follows
straight lines whenever possible, and does not oscil-
late, as sometimes is the case with potential field ap-
proaches [7].

Fast Motion through Cluttered Environ-
ments
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Figure 10. Trajectory through cluttered corridor

The third experiment is shown in Figure 10 and in-
volves traveling through a cluttered corridor. All hu-
mans in the corridor are smoothly circumvented with a



Figure 11. Run at the AAAT 94 mobile robot

competition

maximal speed of 95 cm/sec. Notice that although the
robot decelerates to less than 20 cm/sec when passing
the narrow passage (less than 80 cm wide) between the
fourth person and the open door, it still maintains an
average speed of 65 cm/sec!

The AAAI ’94 Mobile Robot Competition

The trajectory shown in Figure 11 was generated in the
arena of the AAAT 94 mobile robot competition. The
figure gives a plot of the occupancy map of the arena
along with the trajectory of the robot. Here the robot
moved free of collisions in an artificial indoor environ-
ment during an exploration run which took about 15
minutes. The target points for the collision avoidance
were generated by a global planning algorithm. Doors
were approximately 80-110 cm wide.

It is generally difficult to compare the results de-
scribed here to results obtained by other researchers,
mainly because robots vary in sizes, and small changes
in the environment can have an enormous impact on
the difficulty of the problem. For example, in a config-
uration similar to the ones shown in Figures 9 and 10
Borenstein et al. report that their robot traveled with
an average speed of 58 cm/sec through a cluttered en-
vironment [1, 2]. As far as it can be judged from a
single example (which is all that is available in [1, 2]),

our results compare favorably to those of Borenstein et
al.

5 Discussion

This paper describes the dynamic window approach to
collision avoidance for mobile synchro-drive robots. As
demonstrated by our extensive empirical tests, this ap-
proach is safe even at high speed, it reacts adequately,
and it effectively steers the robot to its goal.

The key to the effectiveness of the approach lies in
the objective function for the selection of motion com-
mands. This function trades off a measure of progress
towards a goal location, the forward velocity of the
robot, and the distance to the next obstacle on the tra-
jectory. By combining these, the robot trades off its de-
sire to move fast towards the goal and its desire to ship
around obstacles (which decrease the free space). Since
dynamic constraints are taken into account via the dy-
namic window, the robot operates safely even at high
speed. The experiments show that the combination
of all objectives leads to a robust collision avoidance
strategy that safely operates our robot RHINO with
speeds of up to 95 cm/sec. Notice that the approach
described here is only part of the overall RHINO con-
trol architecture. For example, approaches for building
occupancy maps, global path planning and computer
vision are surveyed in [3].

The technique of approximating the trajectories of
mobile robots by circular arcs is not restricted to
synchro-drive robots. If the influence of the shape of
the robot on the curvatures depending on steering com-
mands is taken into account, the dynamic window ap-
proach can also be applied to non-synchro-drive robots.

In principle, the approach proposed here only as-
sumes geometric information about the relative loca-
tion of obstacles. Therefore, 1t 1s well-suited for prox-
imity sensors such as ultrasonic transducers, which
were used in the experiments reported here, or laser
range-finders. In some preliminary tests we also used
camera and infrared sensors for the detection of ob-
stacles. Knowing the geometry of the robot and the
angle of its camera, pixel information was converted to
proximity information. However, the resulting proxim-
ity estimate was only accurate if an obstacle extends to
the floor. Obstacles in different heights lead to an over-
estimation of distance, which would cause the robot to
collide. Stereo vision might potentially overcome this
problem. The result with infrared detectors suffered
from the fact that RHINQO’s detectors have only a small
range of view (< 30 cm). Therefore, when moving high-
speed the robot may collide nonetheless. Combining ei-
ther of the two sensor systems with ultrasonic measure-
ments, however, consistently improved the smoothness
of the robot’s trajectories.



References

(1]

Johann Borenstein and Yoram Koren. Real-time
obstacle avoidance for fast mobile robots in clut-
tered environments. In Proc. IEEE Int. Conf.
Robotics and Automation, volume CH-2876, pages
572-577, 1990.

Johann Borenstein and Yoram Koren. The vector
field histogram - fast obstacle avoidance for mo-
bile robots. IEEE Transactions on Robotics and
Automation, 7(3):278-288, 1991.

Joachim Buhmann, Wolfram Burgard, Armin B.
Cremers, Dieter Fox, Thomas Hofmann, Frank
Schneider, Jiannis Strikos, and Sebastian Thrun.
The mobile robot Rhino. ATl Magazine, 16(1),
1995.

Dieter Fox, Wolfram Burgard, and Sebas-
tian  Thrun. The dynamic window ap-
proach to collision avoidance.  Technical Re-
port TAI-TR-95-13, University of Bonn, 1995.
http://www.cs.uni-bonn.de/ fox/.

Huosheng Hu and Michael Brady. A Bayesian ap-
proach to real-time obstacle avoidance for a mobile
robot. In Autonomous Robots, volume 1, pages 69—
92. Kluwer Academic Publishers, Boston, 1994.

Oussama Khatib. Real-time obstacle avoidance for
robot manipulator and mobile robots. The Inter-
national Journal of Robotics Research, 5(1):90-98,
1986.

Yoram Koren and Johann Borenstein. Potential
field methods and their inherent limitations for
mobile robot navigation. In Proc. IEEE Int. Conf.
Robotics and Automation, April 1991.

Jean-Claude Latombe. Robot Motion Planning.
Kluwer Academic Publishers, Boston, MA, 1991.
ISBN 0-7923-9206-X.

Hans P. Moravec. Sensor fusion in certainty grids
for mobile robots. Al Magazine, pages 61-74,
Summer 1988.

Jacob T. Schwartz, Micha Scharir, and John
Hopcroft. Planning, Geometry and Complezity
of Robot Motion. Ablex Publishing Corporation,
Norwood, NJ, 1987.

Reid Simmons. The curvature-velocity method for
local obstacle avoidance. To appear in Proceedings

of ICRA "96.

[12] Sebastian Thrun. Exploration and model build-

ing in mobile robot domains. In Proceedings of
the ICNN-93, pages 175-180, San Francisco, CA,
March 1993. IEEE Neural Network Council.



