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In this paper we consider the motion planning prob-
lem for closed chain systems. We propose an extension
of the PRM methodology which uses the kinematics of
the closed chain system to guide the generation and
connection of closure configurations. In particular, we
break the closed chains into a set of open subchains,
apply standard PRM random sampling techniques and
forward kinematics to one subset of the subchains, and
then use inverse kinematics on the remaining subchains
to enforce the closure constraints. This strategqy pre-
serves the PRM sampling philosophy, while addressing
the fact that the probability that a random configura-
tion will satisfy the closure constraints is zero, which
has proven problematical in previous attempts to apply
the PRM methodology to closed chain systems.

Another distinguishing feature of our approach is
that we adopt a two-stage strategy, both of which em-
ploy the PRM framework. First, we disregard the en-
vironment, fiz the position and orientation of one link
(the “virtual” base) of the system, and construct a kine-
matic roadmap which contains different self-collision-
free closure configurations. Next, we populate the envi-
ronment with copies of the kinematic roadmap (nodes
and edges), and then use rigid body planners to connect
configurations of the same closure type. This two-stage
approach enables us to amortize the cost of computing
and connecting closure configurations.

Our results in 3-dimensional workspaces show that
good roadmaps for closed chains with many links can
be constructed in a few seconds as opposed to the sev-
eral hours required by the previous purely randomized
approach.

1 Introduction

Closed chain mechanisms arise in many practical prob-
lems, such as the Stewart Platform [22], closed molec-

Figure 1: The Stanford Assistant Mobile Manipulator
[12]. (Photo Courtesy of Prof. O. Khatib.)

ular chains [21], reconfigurable robots [14, 20], and the
closed chain system formed by multiple robots grasping
an object [13] (see Figure 1). Closed chains are some-
times called parallel chains since they can be viewed as
consisting of two or more serial /open chains that pro-
vide parallel linkages between two points. While closed
chains can offer advantages over open chains in terms
of the rigidity of the mechanism, motion planning and
control of closed chains is complicated by the need to
maintain the closed chain structure, the so-called clo-
sure constraint.

In this paper we consider the motion planning prob-
lem for closed chain systems. The motion planning
problem is to find a collision free path that takes the
closed chain from one configuration to another. A real
world example is to find a collision free path for a multi-
fingered robotic hand, to move a grasped part from one
station to another for machining. For some tasks, the
robot might need to regrasp the object, i.e., to change
the grasp points and grasp fingers, so as to accommo-
date the workspace limits of the robot or to avoid colli-
sions. In general, it is not easy to move and regrasp the
object simultaneously. One approach [16] proposed for
this problem is to interleave transit paths, which only
implement the regrasp without moving the object, and



Figure 2: A probabilistic roadmap (C-space).

transform paths, which only transfer the object using
fixed grasps. A manipulation system on a transform
path with a fixed grasp can be viewed as a system
with closed chains.! While the transform path plan-
ning problem has been studied for simple robot ma-
nipulation systems, the general problem remains open
and is one motivation for our work. Other motivational
applications of closed chain motion planning include
animation, virtual reality and training.

Motion planning [15] is a challenging problem which
involves complicated physical constraints and high-
dimensional configuration spaces. The fastest existing
deterministic planner [6] takes time exponential in the
number of degrees of freedom of the robot. On the
other hand, a class of randomized planners proposed
during the last decade have successfully solved many
previously unsolved problems. In particular, Proba-
bilistic Roadmap Methods (PRMs) [2, 3, 4, 5, 10, 11, 24]
have been used successfully in high-dimensional con-
figuration spaces. The general methodology of PRMs
is to construct a graph (the roadmap) during prepro-
cessing that represents the connectivity of the robot’s
free configuration space (C-space), and then to query
the roadmap to find a path for a given motion plan-
ning task (see Figure 2). Roadmap vertices are (gen-
erated from) randomly sampled configurations which
satisfy feasibility requirements (e.g., collision free),
and roadmap edges correspond to connections be-
tween ‘nearby’ vertices found with simple local plan-
ning methods. For the most part, the major successes
for PRMs have been limited to rigid bodies or artic-

!Besides the collision-free and closure constraints, more
manipulation constraints need to be taken into account for
regrasp planning, which will be addressed in a follow up

paper.
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ulated objects without closed chains. Recently, some
efforts have been made to apply the PRM paradigm to
closed chain systems [18] and to flexible objects [9].

The PRM planner for closed chain mechanisms pro-
posed in [18] builds a roadmap in the portion of
the configuration space that satisfies the closure con-
straints. The roadmap vertices are generated by first
sampling points from the entire configuration space,
and then performing a randomized gradient descent to
try to transform them into configurations satisfying the
closure constraints. Roadmap vertices are connected
by a randomized gradient descent traversal of the con-
straint surface. When applied to closed chain linkages
composed of line segments in the plane, this approach
required several hours of computation to generate a
well connected roadmap. Thus, while this work rep-
resents a crucial first step towards extending the PRM
methodology to this important class of problems, the
methods do not yet lead to efficient solutions for many
practical problems.

1.1 Owur Approach

In this paper, we propose a new approach for plan-
ning the motion of kinematic chains with closure con-
straints. Like [18], we believe the PRM methodology
can be extended to closed chains. However, since the
probability that a randomly generated node lies on
the constraint surface is zero [18], we believe that the
purely randomized philosophy of the PRM must be aug-
mented with more deliberate techniques developed in
the robotics community to deal with the closure con-
straints. In particular, we advocate the use of kinemat-
ics to guide the generation and connection of closure
configurations. Briefly, the kinematics of an articulated
object (such as a robotic finger) describes the relation-
ship between the configuration/motion of the joints of
the linkage and the resulting configuration/motion of
the rigid bodies which form the linkage. Our plan-
ner uses both forward and inverse kinematics to gener-
ate closure configurations. In particular, we break the
closed chain into a set of open subchains, apply stan-
dard PRM random sampling techniques and forward
kinematics to one subset of the subchains, and then
use inverse kinematics on the remaining subchains to
enforce the closure constraints.

Another distinguishing feature of our approach is
that we adopt a two-stage strategy, both of which em-
ploy the PRM framework. First, we disregard the en-
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Figure 3: Snapshots of a kinematic roadmap path for a
7-link closed chain.

vironment, fix the position and orientation of one link
of the chain (which can be viewed as a “virtual” base
of the system)? , and construct a roadmap which con-
tains different self-collision-free closure configurations.
We call this roadmap a kinematic roadmap since it
deals solely with the robot’s kinematics and utilizes
both forward and inverse kinematics in its construc-
tion. Figure 3 shows snapshots from a path contained
in a kinematic roadmap found by our planner. Next,
we populate the environment with copies of (portions
of) the kinematic roadmap. This stage again employs
the PRM strategy. In particular, we select random con-
figurations (position and orientation) in the environ-
ment for the base in the kinematic roadmap, and re-
tain those portions of the kinematic roadmap that are
collision-free. Finally, local planning methods for rigid
bodies are used to connect configurations of the same
closure type. Note that this strategy restricts the con-
nection of different closure configurations to the kine-
matic roadmap, i.e., the only edges between different
closure types in the main roadmap are copied from the
kinematic roadmap.

Our motivation for this two-stage approach is that
it amortizes the cost of computing and connecting the
closed chain configurations. Another benefit of this
strategy is that we do not waste time trying to connect

2The virtual base can be chosen in other ways. For
example, in a hand-object manipulation system, we can
choose the object as the virtual base of the system.

unconnectable closure configurations when construct-
ing the final roadmap. Indeed, our experimental results
in 3-dimensional workspaces show that good roadmaps
for closed chains with many links can be constructed in
a few seconds as opposed to the several hours required
by the previous purely randomized approach [18].

This paper is outlined as follows. In Section 2, we
describe the related work in more detail. We formally
define the closed chain motion planning problem in Sec-
tion 3. The details of our approach are described in
Sections 4 through 6. We present some experimental
results in Section 7, and some concluding remarks in
Section 8.

For simplicity and clarity, two-dimensional figures
are used throughout this paper to illustrate the closed
chain motion planning problem and our kinematics-
based PRM motion planning approach. It should be
noted that the general discussion and planning frame-
work are applicable to both two-dimensional and three-
dimensional workspaces.

2 Related Work

PRMs. As mentioned in Section 1, the success of
PRMs for rigid body and articulated open chain robots
[2, 3,4, 5,10, 11, 24], has motivated the extension of the
PRM strategy to planning for elastic objects (FPRM) [9]
and closed chains [18]. The major challenge here is in
finding an effective way to deal with the additional con-
straints imposed on the feasible robot configurations.
In particular, while the only constraint on feasible con-
figurations for rigid bodies and open chains is that they
be collision free (constraints on the joint variables of
an open chain linkage can generally be encoded in the
robot’s configuration space), elastic objects can only
achieve deformations with (local) minimum elastic en-
ergy and closed chains need to satisfy the closure con-
straints.

As previously mentioned, while [18] pioneered the
use of PRMs on closed chain systems, the relative inef-
ficiency of the randomized gradient descent technique
used to generate closure configurations from randomly
sampled configurations, and to connect closure config-
urations, emphasized the need for better techniques.
The fundamental problem is that since the probability
that a sampled node lies on a constraint surface is zero
[18], it is very difficult to find (and connect) configu-
rations satisfying the closure constraints using purely
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randomized techniques. This is what motivates our
kinematic roadmap, whose construction employs both
forward and inverse kinematics. We note that although
it was not used, the possibility of placing pre-computed
closure configurations at different locations in the en-
vironment was mentioned in [18].

FPRM [9] deals with the energy requirement for
elastic objects in a manner similar to the kinematic
roadmap we use for closed chains: minimal energy de-
formations are computed a priori, disregarding the ob-
stacles in the environment, and then copies of these
deformations are placed at randomly selected locations
(positions and orientations) in the environment. How-
ever, a difference between FPRM and our approach is
that we also use the PRM strategy to construct the
kinematic roadmap and populate kinematic roadmap
edges, which correspond to connections between clo-
sure configurations. In contrast, FPRM populates min-
imal energy deformations only and performs node con-
nection directly in the environment. We note that our
two-stage PRM strategy can be applied to flexible ob-
ject motion planning. More specifically, we can first
generate a “deformation” roadmap with connections
between minimal energy deformations in a clear envi-
ronment and then populate it to the real environment
containing obstacles.

Other Methods. A random exploration strategy,
based on the Ariadne’s Clew Algorithm [1], has been
used to solve point-to-point inverse kinematics prob-
lems for redundant manipulators. Given an initial con-
figuration of a robot, the problem was to find a reach-
able configuration that corresponds to a desired posi-
tion and orientation of the robot end-effector and to
find a feasible path connecting the initial and the goal
configuration. Central to their approach was the con-
struction of a roadmap?® which took into account con-
straints due to joint limits, self-collision, and collision
with environment obstacles. A point-to-point inverse
kinematics problem was then solved by querying the
roadmap.

In [25], the recently proposed Rapidly-ezploring Ran-
dom Trees (RRT) [17] strategy was used to greatly de-
crease the computation time required for several of the
examples studied in [18].

$While the roadmap in [1] is called a kinematic roadmap,
it is different from our kinematic roadmap which we con-

struct without any knowledge of the obstacles in the envi-
ronment.
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Figure 4: Breaking a Closed Chain into 2 Open Chains

3 Problem Formulation

In this section, we study the configuration spaces of
multi-link chains and discuss the effect of closure con-
straints on these spaces. When a linkage system in-
volves multiple closed chains, the overall closed chain
constraint is satisfied if and only if each closed chain
constraint is satisfied. Therefore, we discuss in detail
only the case for one closed chain, with the understand-
ing that the problem involving multiple closed chains
can be similarly formulated and handled by our plan-
ner.

We first note that a closed chain system can alter-
natively be viewed as a linkage system consisting of a
collection of open chains, where we ‘break’ each closed
chain, and then satisfy the closure constraints, if any,
by forcing the break points to coincide. For example,
in Figure 4, chain 1 and chain 2 form a closed chain
where the frames E; and FEs attached to the break-
point (the “end effector”) must coincide to satisfy the
closure constraints.

Consider a closed chain system that can be bro-
ken into k open chains. The configuration of an open
chain ¢ can be specified by its base configuration and
its joint variables. In particular, the configuration
of the base can be specified by the Euclidean (rigid
body) transformation from the world frame Fy to
the body frame Fp;: guwp; = (Pwb;, Ruwp;) € SE(d)
where d € {2,3} is the dimension of the workspace,
puwp; € RY and Ry, € SO(d) are, respectively, the
position and orientation of Fp; relative to Fy, and
SE(d) denotes the special Euclidean group. Denote
by 8; = (Bi1,-- -, Bin; ), the vector of joint variables for
chain 7. For a revolute joint, the joint variable is an
angle §;; € [0,27), with the angle 27 equated to an-
gle 0, which is naturally associated with a unit circle in
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the plane, denoted by S*, and hence we write 3;; € S*.
A prismatic joint is described by a linear displacement
Bi; € R along a directed axis. In summary, the config-
uration space of a multi-link robot can be represented
as

C= {(gwbpﬁla"'agwbkaﬁk”
Juwb; € SE(d)a/Bz € S" x Rpiai = laak}(l)

where 7; and p; are the number of revolute joints and
prismatic joints for link 7, respectively.

One of the reasons PRMs work well for systems with-
out closed chains is that any configuration ¢ sampled
from C is a walid configuration (when collision con-
straints are ignored). However, this is not true for
systems involving closed chains where ¢ must also sat-
isfy the closure constraints. For example, the two end-
effector frames in Figure 4 must coincide:

Gwe; = Gwbi 9bre; (Bl) = Gwb2Gbseo (182) = Gwes (2)

where gp,e, (8:),1 = 1,2, is the forward kinematic trans-
formation [7, 19] of chain ¢ which determines the end-
frame configuration based on joint variables. (Inverse
kinematics solves the inverse problem of determining
proper joint variables to achieve some specified end-
frame configuration.)

The closure constraint is often expressed in the form
f(@) =0 (e.g., gwe; — Gwe, = 0). When multiple closed
chains exist in a linkage system, each closed chain im-
poses one closure constraint; the /th such constraint is
denoted by f;, and we use f(g) = 0 to denote f;(¢) =0,
for all 1 <[ < K, where K is the number of closed
chain constraints. In general, the valid configurations
of a closed chain system lie in the set:

Cetosure = {¢lq € C and f(q) = 0}. (3)

Notice that closure constraints such as Equation 2
can be transformed to the zeros of polynomials us-
ing the projective transformation. Then, the valid
configurations of the system, Cipsure, define a lower-
dimensional algebraic variety embedded in the higher-
dimensional configuration space C. This is roughly
analogous to embedding a 2-dimensional surface or a
1-dimensional curve in a three dimensional space. The
fact that the volume measure of a low-dimensional en-
tity in a high-dimensional ambient space is zero is why

the probability that a random configuration ¢ € C will
satisfy the closure constraint is zero. While closure
constraints pose difficulties for standard PRM planners,
as we will see, the structure of C.psure can be utilized
to guide the generation and connection of closure con-
figurations.

Finally, for both open and closed chain systems,
feasible configurations should not involve collision be-
tween the robot and an obstacle, or self-collision among
the links. We denote by Csr¢. the set of robot config-
urations ¢ € C which do not cause any collision in the
system.

Using the notation defined above, the closed-chain
motion planning problem can be defined as follows:

Problem 1 Given a start configuration qo and a goal
configuration q1, the objective of the planner is to find
a path g(t),t € 0,1], such that ¢(0) = go, a(1) = g1,
and YVt € [0, 1], q(t) € Cerosure N Ctree-

4 A Kinematics-Based PrRM

In this section, we describe the high-level strategy of
our kinematics-based PRM for closed chain systems.

We begin by noting that the closure constraint in
Equation 2 can be reduced to:

Gwb, (gble1 (Bl) — Gb1b2Gbsen (182)) =0 (4)
Gbier (/81) — Gb1b29bres (/62) =0 (5)

where gp,e;,¢ = 1,2, are the end-frame configurations
described in the body frame Fp;, and g, s, is the trans-
formation from the base link of chain 1 to the base link
of chain 2. If we think of the base link of the first chain
as the virtual (mobile) base of the system, its configura-
tion gyp, can be interpreted as a rigid body motion on
the system. In other words, Equation 4 reveals one im-
portant property of closure configurations: rigid body
transformations preserve closure configurations. Equa-
tion 5 further shows that closure constraints can be
defined independent of the base configuration.

In the following discussion, we will use g, to de-
note the configuration of the virtual base of the system.
In addition, we will treat the transformation from the
system base to the base of any chain, say chain i, as a
virtual link with joint variables being the parameteriza-
tion of the transformation gy, e.g., a position vector
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(prismatic joints) py,, € R? and an orientation vec-
tor (revolute joints) aps, € Sl Thus, every open
chain can be viewed to be virtually extended to the sys-
tem base. As a result, we can define a joint variable for
the extended chain as 6; = (ppp,, app;, 5i),t = 1,---, k.
For simplicity, we will call 8; the joint variable of sub-
chain 7, with the understanding that it includes the vir-
tual joint variables, when applicable. Define the joint
variable of the system to be § = (61,---,60;) € S” xRP,
where p and r are the total number of prismatic joints
and revolute joints, respectively. Then the system con-
figuration space can be rewritten as

C = {(guwb,0)|guws € SE(d),0 € S" x RP}.  (6)

Since the closure constraint (Equation 2) or its gen-
eral form f(gq) = 0, in fact, does not depend on the
base configuration and only specifies constraints with
respect to joint variables, we can define the equivalent
constraints of f on the joint variables as

f(0)=0 (7)

Furthermore, define
éclosure = {0|0 e S" x R;D,f(e) = 0} . (8)

Now, the subset of C corresponding to closure configu-
rations can be expressed as:

Cclosure - {(gwb70)|gwb S SE(d),0 € éclosure} (9)

The following two observations summarize the above
discussion, and form the basis of our two-stage PRM
closed chain planner:

Observation 1 Only the joint variables 6 determine
if a configuration ¢ = (guws,0) is closure or not. The
closure constraint defines an algebraic variety (Equa-
tion 8) on 0 € S™ x RP, which can be parameterized al-
most everywhere. In other words, 0 can be partitioned
into 8, and 6, 0 = 0, %0, where 8, can be determined
from 0, based on the closure constraints (Equation 7).

Observation 2 A given “closure configuration” 6,
can be combined with different base configurations
gwr € SE(d), which corresponds to placing the same
closure configuration at different locations in the envi-
ronment.

L. Han and N. M. Amato

The first observation suggests an efficient way to gen-
erate closure configurations: ignore the environment
(obstacles) and set a nominal base configuration, ran-
domly generate 6, and determine the corresponding 6,,
by solving the closure constraints (Equation 7), and
retain the self-collision free closure configurations. For
example, consider the closed chain shown in Figure 4.
Suppose we select the joint variables of chain 2, 65, as
the active variables 6,, and randomly generate values
for them. We then use forward kinematics to determine
the end-frame configuration gs,, and then use inverse
kinematics to compute joint variables of chain 1 (the
passive variables 6,) which will make gpe, coincide with
Jve, and satisfy the closure constraints.

The closure configurations generated will be the ver-
tices of a (small) roadmap which records paths con-
necting self-collision-free closure configurations (again,
with no dependence on the base configuration gp)-
The edges in this roadmap can be generated using
straight-line, or any other simple local planner to con-
nect the active variables 6, of the two closure configu-
rations, and then computing the corresponding passive
variables 6, along the local path. As with any PRM, a
self-collision-free local path is recorded as a roadmap
edge. By a slight abuse of terminology, we call such a
roadmap a kinematic roadmap since it reveals the kine-
matic connectivity of the closure structures, and its
construction involves the computation of both forward
and inverse kinematics. Figure 5(a) shows a three-node
kinematic roadmap for a 4-link closed chain.

The second observation suggests that we place multi-
ple copies of the same closure configuration in the envi-
ronment. There are two advantages to this approach.
First, we quickly populate the environment with clo-
sure configurations and amortize the cost of computing
a closure configuration. Second, we can treat configu-
rations with the same closure structure as rigid body
configurations, which can then be connected by effi-
cient rigid body PRM local planning methods.

While one could generate a roadmap simply from
configurations with one closure structure, the query
process would have to connect any start configuration
and goal configuration to this closure structure, which
might become very hard, or might not be possible at
all. Hence, instead of copying only one closure config-
uration, we copy an entire kinematic roadmap to the
environment and retain all vertices and edges that are
collision free (see Figure 5(b)). Next, we group con-
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Figure 5: (a) A kinematic roadmap (Workspace), (b) copying the kinematic roadmap to different base configurations
(C-space), and (c) connecting configurations with the same closure structure (C-space).

figurations by closure structure, and attempt to make
(rigid body) connections within each group (see Fig-
ure 5(c)).

5 The Kinematic Roadmap

This section discusses a PRM planner to construct
a kinematic roadmap. Recall that the kinematic
roadmap encodes the connectivity of the closure con-
figurations 6 € Cerosure and does not depend on the
environment.

KINEMATIC ROADMAP CONSTRUCTION
1. NODE GENERATION
(find self-collision-free closure configurations)
2. CONNECTION
(connect nodes and save paths with edges)
(repeat as desired)

5.1 Node Generation

The task here is to generate joint variables 6 which sat-
isfy the closure constraints and retain self-collision-free
closure configurations as kinematic roadmap nodes.
Recall that 6 can be partitioned into active and pas-
sive variables, 6, and 6,, where the value of 6, can
be determined for a given 6, value based on closure
constraints.

From an algorithmic point of view, 8, needs to be
chosen such that for a given value of 6,, the corre-
sponding value of 6, satisfying the closure constraints,
if any, can be computed efficiently. While solutions
are not known for inverse kinematics problems for gen-
eral linkages, the closed-form inverse kinematic solu-
tions for simple chains (such as 4-link chains) and most
industrial robots do exist. Therefore, we are most

Figure 6: Closure configurations for some kinematic

chains generated by our planner.

interested in choosing 6, and 6, as consecutive joint
variables. More specifically, for a system involving K
closed chains, each closed chain is broken into two open
chains: one an “active chain” with joint variables 6,
and the other a “passive chain” with joint variables
01p, wherel =1,..., K, is the index of the closed chain.
We also need to ensure that the chain corresponding to
the passive joint variables 6, has a closed-form inverse
kinematic solution. This can always be done, for exam-
ple, by choosing any three consecutive joint variables
in each closed chain as 6,.

NODE GENERATION FOR KINEMATIC ROADMAP
1. Randomly generate 6,




2. Use forward kinematics for active chains to
compute end-frame configurations gi.,l =1,..., K,
at the break point of each closed chain;

3. Use inverse kinematics for passive chains to compute
joint variables 6, to achieve the end-frame
configurations computed in Step 2.

4. 1If a solution is found in Step 3 (closure exists)
5. If closure configuration 6 = (0, 6p)

is self-collision free
6. retain 0 as a kinematic roadmap node

In Step 3, if multiple solutions exist for the inverse
kinematics problem, we can either keep all solutions
or randomly choose one. Figure 6 shows some closure
configurations generated by our planner.

Finally, we note that when a link or joint is involved
in multiple closed chains, i.e., when the system involves
common loops, the closed chain constraints need to
be carefully handled to guarantee that different closed
chains will result in the same link configuration or the
same joint variable. In particular, we can use the al-
gorithm above to close loops one by one, by choosing
joint values to avoid breaking loops while creating other
loops. The first loop can choose arbitrary values for its
active joint variables 6!. If the loop cannot be closed,
i.e., there does not exist 0; satisfying the closure con-
straints, then discard it. Otherwise, continue working
on its neighboring loop, say loop 2. Assume the joints
612 are common for loop 1 and loop 2. Then we will use
the values of 612 that have been computed from loop 1
as part of the active joint values 62 of loop 2 (to keep
loop 1) and then compute the corresponding 012,. In gen-
eral, if a loop shares joint variables with other loops,
it has to keep the values of the common joint variables
that have been determined from the closure constraints
of other loops. Clearly, when a loop has more deter-
mined joint values, it is more constrained, and thus it
is more difficult to close the loop. One heuristic for
node generation of common loops is to start from the
loop with the largest number of common joints. For
the example shown in Figure 7, it would be better to
start from the center loop.

For the efficiency of the PRM node generation, it is
important to choose 6, and 68, in a way that the in-
verse kinematics for the passive chains, corresponding
to the 6, joint variables, has a closed form solution.
It is also important to maximize the probability that
a closure configuration can be obtained given a ran-
domly generated 6,. For example, consider the closed
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loop 1 (center)

Figure 7: A System with Common Loops

Figure 8: Different joint partition schemes.

chain shown in Figure 8. Two possible selections of 6,
are shown: (i) the two joints marked with black cir-
cles, or (ii) the three joints marked with squares. In
this case, the three joint option would be preferable,
since the intersection of the workspaces of the active
and passive chains is larger. In the following, we make
this argument more precise.

Recall that the workspace of an open chain with joint
variables 0 is defined as

W = {gs. € SE(d)|30 € Q,5.t.g0c = g1 (8)}  (10)

where @ is the joint space, i.e., the set of all possible
joint variable values with joint limits taken into ac-
count, gpe is the end-frame configuration with respect
to the base, and gy (0) is the forward kinematics of the
open chain.

For one closed chain, we denote the end-frame config-
uration of the active chain by gs,, and the workspaces
of the active chain and passive chains by W, and W,
respectively.

Observation 3 A randomly generated value of 6, can
result in a closure configuration, i.e., there exist passive
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joint variable values satisfying the closure constraint,
if and only if the end-frame configuration of the active
chain, gpq, falls in the workspace of the passive chain,
.. gpg € Wp.

Therefore, a rough estimate of the probability that
a randomly generated 6, results in a closure configura-
tions is:
Volume(W, N W,)
Volume(W,)

prob(closure) ~ (11)
where Volume denotes the volume of the workspace
measured in SE(d).

Remark 1 If both W), and W, can be computed, then
a random closure configuration 8 = (8,,0,) can be 0b-
tained by randomly choosing a configuration in W,NW,
and using inverse kinematics of both the active chain
and the passive chain to compute 8, and 8,. This is one
of the most effective ways to generate a random closure
configuration. However, it is not easy to compute the
workspaces. We will still use 8, and 0, in the following
discussion with the understanding that the knowledge of
the workspaces, when available, should be exploited to
improve the effectiveness of node generation.

Since multiple joint variable values may result in the
same end-frame configuration, the above probability
measure is not accurate because it does not take the
multiplicity into account. Denote by g '(gs,) the in-
verse kinematic solutions for one end-frame configu-
ration of the active joints. Then, the probability of
obtaining a closure configuration from a randomly gen-
erated 0, is:

Volume(g—t(W, N W,))
Volume(g—1(W,))

prob(closure) = (12)
where g~ (W) denotes set of inverse kinematic solu-
tions for each configuration in W, and where the vol-

ume is computed in the active joint space instead of
SE(d) as in Equation 11.

As different joint partition schemes may result in dif-
ferent probabilities of successfully generating a closure
configuration, the joint partition scheme should ideally
be chosen based on this probability. However, the com-
putation of the probability measure (Equation 12) in-
volves the computation of the workspaces, inverse kine-
matics, and volume integrals, which is probably too
complicated to be practical for most linked systems.

Nevertheless, the probability measure provides us with
insight that can be used to develop heuristics to guide
the partition of the joint variables. For example, bal-
ancing the lengths of the active and passive chains is
one possible heuristic.

Finally, we note that increasing the probability that
a closure configuration exists will in many cases com-
plicate the inverse kinematics for the passive chain. For
example, the length heuristic mentioned above might
result in longer passive chains with more complicated
inverse kinematics than the 3-joint/4-link chains we
have selected.

5.2 Node Connection

An edge between two closure configurations in the kine-
matic roadmap consists of a sequence of intermediate
closure configurations. Since it is relatively expensive
to generate closure configurations, the edges of the
kinematic roadmap are saved for future use. Node con-
nection in the kinematic roadmap follows the standard
PRM framework.

NODE CONNECTION FOR KINEMATIC ROADMAP
1. For any two ‘nearby’ closure configurations 6; and 0;
2. Use (simple) local planner to find path from 6;, to
Oja: Ba(t),t € [0, 1], where 6,(0) = 0;a, 0a(1) = 0ja
3. For each intermediate point on the path 04(t)
4. If inverse kinematics determines that no 6,(t)
exists to satisfy the closure constraints
return no-edge
Choose the closure configuration #(t) that is
continuous from previous step
If A(t) involves self-collision, then return no-edge
endfor
. save the edge (and with it the path 6(t),t € [0, 1])
0. return edge-exist

D o

The connection of common loop configurations has
to be processed similarly as for the node generation
of common loops. In general, any connection strategy
and local planner for rigid body robots or serial chains,
such as the nearest neighbors connection strategy and
the C-space straight line local planner, can be used
to choose pairs of closure configurations for potential
edge generation and to connect the active joint vari-
ables. When the system involves complicated closed
chain structures, more sophisticated techniques such as
the Jacobian method or a point-to-point inverse kine-
matic solver [1] can also be used to generate kinematic
roadmap edges. The distance metric on the set Colosure
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can be, e.g., Euclidean distance (Equation 13) with the
modification that the distance between two joint angles
is at most 7.

dist(6, — 02) = ||01 — 6| (13)

6 Building a Roadmap from
a Kinematic Roadmap

The kinematic roadmap provides us with a set of self-
collision-free closure configurations 6 € Colosure (Equa-
tion 8) and connections between them. Therefore, by
randomly generating base configurations g, we can
‘populate’ the environment with kinematic roadmap
nodes and edges — this will only require collision de-
tection with environment obstacles since we save the
paths associated with the kinematic roadmap edges.
Furthermore, roadmap nodes generated from the same
closure configuration can be treated as rigid body con-
figurations during roadmap connection.

ProTOTYPE KINEMATICS-BASED PRM

I. PopuLATE ENVIRONMENT WITH KINEMATIC ROADMAP
generate random base configurations and retain
collision-free parts of kinematic roadmap in roadmap

II. ADDITIONAL CONNECTION OF ROADMAP NODES
connect roadmap nodes with the same closure
structure using rigid body planners

6.1 Populating the environment with
copies of the Kinematic Roadmap

PoPULATING ENV. WITH COPIES OF KINEMATIC ROADMAP

1. Choose random vertex 6 from the kinematic roadmap

2. Generate random base configuration gy

3. If the configuration (g, 8) is collision-free

4. Retain (guws,f) as a roadmap vertex

5. For each neighbor of 8, say 0, in the kinematic

map (repeat with their neighbors as needed)

6. If (guws,0) is collision-free

7. Retain (gus,f) as a roadmap vertex _

8. Retrieve the path 6(t) connecting 6 and 6
from the kinematic map

9. If (guws,0(t)) is collision-free for all intermediate
closure configurations along the path

10. Add an edge between (gup,8) and (guwb, )

(repeat as desired)

The generation of the random base configuration in
Step 2 can be implemented with any node generation
strategy developed for rigid body robots such as PRM

L. Han and N. M. Amato

[11], PRM with Gaussian filter [5], OBPRM [2], and the
medial-axis PRM [23]. We next note that since the
kinematic roadmap’s nodes and edges are known to
be self-collision free, the only collision checks needed
in this stage are between environment obstacles and
the robot, i.e., it is not necessary to check the links
for self-collision. Therefore, the reuse of the closure
configurations and their connection edges can signifi-
cantly reduce the total number of collision detection
calls, which represent the major computation cost at
this stage.

6.2 Connecting same closure nodes

Closed-chain configurations with the same closure con-
figurations can be viewed as configurations of a rigid
body. Therefore, we can use rigid body PRM methods
to connect them. More specifically,

CONNECTING NODES OF SAME CLOSURE TYPE
1. For each closure configuration # in kinematic roadmap

2. Collect all roadmap nodes with this closure
configuration in a set
3. Use rigid body PRM connection methods to connect

configurations in the set
4. Add the edges generated in Step 3 to the roadmap
5. endfor

Figure 9 shows a portion of the roadmap, being pro-
gressively built by connecting configurations with clo-
sure structures C'1,C2 and C3, respectively.

7 Experimental Results

7.1 Implementation Details

Our prototype closed chain PRM planner was developed
on top of the C++ OBPRM software package developed
by the robotics group at Texas A&M University [2,
4]. This strategy was taken because the construction
of the kinematic roadmap and the connection of the
roadmap nodes with the same closure configuration are
both basically simple PRM planners. It turned out to
be fairly easy to incorporate the closed-chains into the
PRM framework due to the object oriented design of the
code. All experimental results reported in this section
were performed on an SGI Octane and used the RAPID
[8] package for 3D collision detection.
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Figure 9: Roadmap connection in three rigid body phases: connecting configurations of type (a) C1, (b) C2, and (c) C3.

Table 1: Kinematic roadmap construction times (seconds)
and statistics for k-link closed chains, k = 6,7,11 and 15.
In the table, planner and spatial chains are labeled respec-
tively with P and S following their link numbers, and cfg
and CC denote the number of nodes and the number of con-
nected components respectively in the resulting kinematic
roadmap. Note that the roadmap for a single planar closed
chain should have two connected components.

Kinematic Roadmap Construction
Chain || Generation || Connection
Links sec | cfg sec | CC

6(P) || 0.84 | 203 || 24.66

7(P) 0.90 | 122 9.88
11(P) || 1.24 | 16 || 0.48
15(P) || 1.63 3| o.01

6(S) 0.97 28 0.88

7(8) || 1.09 | 20| 0.41
11(S) || 1.76 1] 0.00

= O R W R NN

7.2 Experiments

While our planner can handle complicated three-
dimensional closed chains, the results presented here
are for single loop closed chains in three-dimensional
environments. In particular, the chains we consider
consist of m identical links, all joints are revolute, and
we partition the m joint angles into 3 consecutive pas-
sive angles and m — 3 active angles.

We first study the effectiveness of our method for
generating the kinematic roadmap, which involves gen-
erating and connecting closure configurations in the ab-
sence of obstacles in the environment. We used the al-
gorithm presented in Section 5.1 to check if it is feasible
for a randomly generated active joint angle to achieve
a closure configuration. As seen in Figures 3 and 6,
this method was effective in generating and connecting
closure configurations.

However, as predicted in Section 5.1, our success in

Figure 10: The “Walls” Environment.

generating closure configurations is closely tied to the
“balance” of the partition of the joints into the active
and passive sets. Table 1 shows the kinematic roadmap
statistics for closed chains with various numbers of
links (all cases contained three passive joint angles).
The nodes were generated from 2000 trials using the
algorithm sketched in Section 5.1. The edges were gen-
erated by trying to connect each node to its 20 nearest
neighbors using a C-space straight line planner. The
results shown in the table are consistent with the analy-
sis of Section 5.1. Namely, for both planar and spatial
types of chains, the planner generated more closure
nodes for the chains with fewer links, which are also
those for which the partition into the active and pas-
sive chains is most equal, and where their workspaces
overlap the most. In addition, the results for planner
chains are better than their spatial counterparts, again
due to their larger overlapping workspaces. Clearly,
the simple PRM kinematic roadmap planner does not
work as well for the 15-link planar chain and 11-link
spatial chain. We are working on incorporating more
sophisticated planning methods, such as the Ariadne’s
Clew algorithm [1], into our system which should help
in such situations.

We now analyze the benefit of the kinematic pre-
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Table 2: Roadmap construction times (seconds) and statis-
tics for roadmaps constructed with and without the kine-
matic roadmap. In the table, planner and spatial chains
are labeled respectively with P and S following their link
numbers, and cfg and CC denote the number of nodes and
connected components in the roadmap (there are two), re-

spectively.
Roadmap Construction
Chain || Kinematic Map | Generation || Connection
Links || sec [ cfg [ CC || sec | cfg sec | CC
7(P) 1.25 31 2 | 2.44 341 12.56 2
7(P) - - - || 5.25 | 338 || 62.07 6
9(P) 044 | 13 3] 0.99 | 132 9.27 3
9(P) - -] -] 463 104 || 1104 | 8
7(S) 0.31 7 6 || 0.09 43 3.93 7
7(S) - - — || 3.52 39 5.61 16

processing. That is, the benefit of using the kinematic
roadmap as opposed to simply generating closure con-
figurations directly in the environment (as was done
in [18]). To study this issue, we compare roadmaps
constructed with and without the kinematic prepro-
cessing. We used the environment shown in Figure 10.
Table 2 shows the statistics for 7 and 9-link chains.
The roadmaps without kinematic preprocessing were
generated using the PRM planner implemented in the
OBPRM software package. The nodes were generated
from 4000 attempts, using the generation method out-
lined in Section 5.1, the only difference being that
now the base configuration was randomly generated
and collision was checked with the obstacles in the
environment as well. The edges were generated us-
ing the straight line planner to connect each node to
its 20 nearest neighbors. The kinematic map nodes
were generated from 400 attempts for planer chains
and 500 attempts for the spatial 7-link chain, and,
again, the 20 nearest neighbors were checked using the
straight line planner. Then, five different base configu-
rations were generated for each closure node when pop-
ulating the environment with copies of the kinematic
roadmap. The final rigid body connections between
configurations with the same closure type also used the
straight line planner with the 20 nearest neighbors. As
can clearly be seen from the table, the roadmaps con-
structed using kinematic preprocessing are superior in
all aspects: faster computation and improved roadmap
quality (fewer connected components).

L. Han and N. M. Amato

8 Conclusion

This paper presents a kinematics-based probabilistic
roadmap planner for closed chains. The two-stage con-
struction of our roadmap first builds a (small) kine-
matic roadmap that deals solely with the robot’s kine-
matics and utilizes both forward and inverse kinemat-
ics in its construction. In the second stage, the en-
vironment is populated with copies of the kinematic
roadmap, and rigid body connections are made be-
tween nodes with the same closure type. Both stages
employ PRM planners to construct their roadmaps. Our
preliminary experimental results indicate that the use
of kinematics to guide the generation and connection of
closure configurations is very beneficial, both reducing
the computation costs and improving the connectiv-
ity of the resulting roadmap as compared to previous
purely randomized approaches.

Therefore, we believe that augmenting the ran-
domized philosophy of PRMs with more deliberate
techniques developed in the robotics community is
a promising direction to pursue for motion planning
problems involving additional constraints.

While our results are promising, there are still many
issues to be addressed. First, we intend to more fully
exercise our current closed chain PRM planner on more
complex linkages. We anticipate that the computa-
tional costs will grow, so that additional optimization
will be required. One area we intend to explore in
this regard is parallelization, which has been shown to
be effective for traditional PRMs [3]. We also plan to
study more complicated manipulation planning prob-
lems such as regrasp planning.
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